
Second-order Stencil Descent for Interior-point Hyperelasticity

LEI LAN, The University of Utah, USA

MINCHEN LI, UCLA, USA
CHENFANFU JIANG, UCLA, USA
HUAMIN WANG, Style3D Research, China

YIN YANG, The University of Utah & Style3D Research, USA

Fig. 1. Falling barbarian ships. We propose a new GPU-based algorithm for generic finite element simulation using interior-point methods. Due to the use

of barrier functions, interior-point methods are expensive, and the requirement of per-iteration CCD imposes extra challenges for GPU parallelization. Our

method is locally second-order leveraging complex-step finite difference to efficiently estimate local Hessian-vector products. We design a complementary

coloring and hybrid sweep scheme to fully exploit the throughput of the GPU. Together with a dedicated warm-start process, our method offers speedup

of two orders, even with intense contacts and collisions. As a demonstration, the teaser figure shows snapshots of two barbarian ships falling on a spiral

stair. There are nearly one million (974K) elements on the ships. The thin paddles at both sides collide with the staircase and the handrails yielding rich and

interesting deformations. Under the time step of Δ𝑡 = 1/100 sec, our simulation faithfully captures all the details but it is 129× faster than the vanilla CPU

IPC [Li et al. 2020]. Indeed, our GPU simulation is faster than the state-of-the-art reduced simulation [Lan et al. 2021]. The simulation remains efficient and

robust even after we increase the time step size to Δ𝑡 = 1/30 sec.

In this paper, we present a GPU algorithm for finite element hyperelastic

simulation. We show that the interior-point method, known to be effective

for robust collision resolution, can be coupled with non-Newton procedures

and be massively sped up on the GPU. Newton’s method has been widely

chosen for the interior-point family, which fully solves a linear system at

each step. After that, the active set associated with collision/contact con-

straints is updated. Mimicking this routine using a non-Newton optimization

(like gradient descent or ADMM) unfortunately does not deliver expected

accelerations. This is because the barrier functions employed in an interior-

point method need to be updated at every iteration to strictly confine the

search to the feasible region. The associated cost (e.g., per-iteration CCD)

quickly overweights the benefit brought by the GPU, and a new parallelism

modality is needed. Our algorithm is inspired by the domain decomposition

Authors’ addresses: Lei Lan, The University of Utah, USA, lanlei.virhum@gmail.com;
Minchen Li, UCLA, USA, minchernl@gmail.com; Chenfanfu Jiang, UCLA, USA,
Chenfanfu.Jiang@gmail.com; Huamin Wang, Style3D Research, China, wanghmin@
gmail.com; Yin Yang, The University of Utah & Style3D Research, USA, yin.yang@
utah.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.
0730-0301/2023/4-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

method and designed to move interior-point-related computations to local

domains as much as possible. We minimize the size of each domain (i.e., a

stencil) by restricting it to a single element, so as to fully exploit the capacity

of modern GPUs. The stencil-level results are integrated into a global update

using a novel hybrid sweep scheme. Our algorithm is locally second-order

offering better convergence. It enables simulation acceleration of up to two

orders over its CPU counterpart. We demonstrate the scalability, robustness,

efficiency, and quality of our algorithm in a variety of simulation scenarios

with complex and detailed collision geometries.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Physics-based simulation, Interior point

method, Barrier function, GPU

ACM Reference Format:

Lei Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, and Yin Yang. 2023.

Second-order Stencil Descent for Interior-point Hyperelasticity. ACM Trans.

Graph. 1, 1 (April 2023), 16 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Newton’s method has been a popular choice [Baraff and Witkin

1998] for solving the variational form [Kane et al. 2000; Martin et al.

2011] associated with various deformable models. Recently, many

contributions suggest that more efficient simulation is possible using

non-Newton or quasi-Newton solvers [Hecht et al. 2012; Li et al.

2019; Liu et al. 2017; Narain et al. 2016; Wang and Yang 2016; Wang

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

HTTPS://ORCID.ORG/0009-0002-7626-7580
HTTPS://ORCID.ORG/0000-0001-9868-7311
HTTPS://ORCID.ORG/0000-0003-3506-0583
HTTPS://ORCID.ORG/0000-0002-8153-2337
HTTPS://ORCID.ORG/0000-0001-7645-5931
https://orcid.org/0009-0002-7626-7580
https://orcid.org/0000-0001-9868-7311
https://orcid.org/0000-0003-3506-0583
https://orcid.org/0000-0002-8153-2337
https://orcid.org/0000-0001-7645-5931
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Lei Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, and Yin Yang

et al. 2020]. The key insight is to leverage the fact that a deformation

process is normally smooth and continuous. A full Newton solve

is less economical than slower-converging but more parallelizable

iterative methods. This observation also endorses the use of smaller

time steps [Macklin et al. 2019].

This paradigm fails with the presence of collisions and contacts.

Under such circumstances, the assumption of continuous deforma-

tion is severely violated by abrupt and acute interactions among

3D models. In theory, a collision is also smooth [Baraff and Witkin

1992]. It occurs when two objects come into contact under a positive

relative velocity (i.e., they are moving toward each other). After col-

liding, the kinetic energy transforms into the elastic potential. The

latter accumulates and releases eventually to generate a repulsive

force pushing models apart. This physical change is well understood

and can be directly observed with a high-speed camera [Labous

et al. 1997]. However, it appears invisible under a common time

step size of tenths or hundredths of a second, and the conversion

between kinematic and elastic energies is hidden behind inequality

constraints. Robust treatment of those constraints under insuffi-

ciently sampled time discretization becomes a major challenge.

The interior-point method seems to be a promising solution. As

demonstrated in recent contributions [Li et al. 2020, 2021b] the

inequality constraints, due to contact and collision, can be well han-

dled using barrier functions, which yield increasingly stronger penal-

ties when constraints are about to become violated. This method is

named incremental potential contact or IPC. The robustness of IPC

comes from its line search mechanism, which must be certified by

a continuous collision detection (CCD) routine. The CCD ensures

a position update is always within the feasible region i.e., where

the inequality constraints are strictly satisfied, and the barrier func-

tions are well-defined. That said, any displacement update must be

accompanied by a CCD as long as barriers are part of the optimiza-

tion. Such binding to CCD raises the hidden cost for each iteration

and imposes significant difficulties in improving the scalability and

efficiency of the interior-point family.

In this paper, we propose a GPU solution for efficient and scalable

barrier-enabled simulations. Due to the dependence on CCD, we

divert our focus from fast per-iteration computation i.e., as in most

existing GPU solvers, to improved convergence. This objective is

achieved by the coordination of 1) a second-order parallel solver; 2)

lightweight local CCD; 3) complementary coloring with a hybrid

update scheme; 4) and a better warm start.

Our method is locally second-order. We find local curvature in-

formation highly effective in relaxing the nonlinearity induced by

barriers. When a collision pair (i.e., a vertex-triangle or an edge-edge

pair) stays nearby, a regular CCD often yields a close-to-zero time

of impact (TOI). Such a small TOI łfreezesž the whole simulation as

displacement updates of other vertices are also truncated. We name

this issue TOI locking as more iterations must be followed until this

colliding pair is fully resolved. Therefore, vanilla IPC is inefficient

for collision-intensive scenes (despite its robustness). We contrive

a local CCD scheme, which allows those nearby pairs to be solved

locally while other freedoms can keep deforming.

The scalability and efficiency are enabled by parallel local solves

over a subset of unknown degrees of freedom (DOFs). We refer

to each subset as a stencil, which corresponds to a tetrahedron on

the model or a vertex-triangle or an edge-edge collision pair. The

updates of stencils become independent if they are not connected on

the mesh or coupled by a barrier function. Normally, such a Gauss-

Seidel-like scheme requires coloring irrelevant stencils based on

their connectivity [Fratarcangeli and Pellacini 2015; Fratarcangeli

et al. 2016; Ton-That et al. 2022]. As collision pairs vary dynamically,

the coloring also needs to be recomputed at each iteration. We pro-

pose a complementary coloring method and mixed update strategy,

which avoid recoloring for different collision configurations and

improve the convergence. With a dedicated warm-start step, our

algorithm runs substantially faster than its CPU counterparts.

In addition, our method does not rely on simplification of the

material models (as opposed to projective dynamics [Bouaziz et al.

2014; Lan et al. 2022b] or position-based dynamics [Macklin et al.

2016]) and can deal with any hyperelastic material. It is less sen-

sitive to the stiffness of the model or the time step size, thanks to

local second-order relaxations. Our iteration count is comparable to

Newton’s method, but our approach gives speedups of two orders

in general. In fact, it is able to match the state-of-the-art subspace

simulation performance without using reduced-order models.

2 RELATED WORK

Deformable body simulation has been an active graphics research

topic since the 1980s [Terzopoulos and Fleischer 1988; Terzopoulos

et al. 1987, 1988]. The goal of deformable simulation is to replicate

real-world material behaviors digitally, and it has been an indis-

pensable ingredient in a wide range of applications like surgical

training [Meier et al. 2005], fabrication [Vanek et al. 2014], robot-

ics [Umedachi et al. 2013], AR/VR [Popescu et al. 1999], digital

fashion [Choi and Ko 2005a; Wang 2018] etc.

Due to the numerical stiffness of deformable models, implicit time

integration methods like backward Euler [Baraff and Witkin 1998]

or Newmark [Hughes 2012] are mostly chosen. Doing so improves

the stability of the integration but leaves a global (often sparse)

linear system to solve. This computation is expensive and stands as

the major bottleneck of the simulation pipeline. A natural thought

is to avoid a full linear solve in classic Newton’s method. Following

this idea, Hecht and colleagues [2012] proposed a lagged factor-

ization scheme that reuses existing Cholesky factorization to save

the computation. Multi-resolution [Capell et al. 2002b; Grinspun

et al. 2002] and multigrid solvers project fine-grid residual errors

onto a coarser grid, on which linear or nonlinear iterations are more

effective [Bolz et al. 2003; Tamstorf et al. 2015; Wang et al. 2020; Xian

et al. 2019; Zhu et al. 2010]. Quasi-Newton methods use Hessian

approximations, instead of the exact Hessian, to estimate a good

search direction [Li et al. 2019; Liu et al. 2017; Wang et al. 2020].

Idealizations of the elasticity model also lead to several important

simulation techniques. A classic example would be stiffness warp-

ing [Müller et al. 2002], which reuses rest-shape stiffness matrix for

large rotational deformation. This method can also be combined

with modal analysis to enable real-time simulations [Choi and Ko

2005b]. Chao and colleagues [2010] designed a simplified material

model measuring the distance of linear deformation and rotation.

This concept is similar to the shape matching algorithm [Müller et al.

2005], where the deformation energy is defined based on the nearest

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

Second-order Stencil Descent for Interior-point Hyperelasticity • 3

rigid body transformation. Position-based dynamics (PBD) [Macklin

et al. 2016; Müller et al. 2007] regards the elastic energy as a set of

compliant constraints and uses steepest descent to update the vertex

positions. This method is later generalized to handle fluid [Macklin

and Müller 2013] and rigid bodies [Müller et al. 2020]. Similarly,

projective dynamics (PD) separates the constraint projection and

the distance measure into local and global steps [Bouaziz et al. 2014].

The key benefit of PBD and PD is the (partial) decouple of DOFs

in different constraints. As a result, both methods can be well par-

allelized on the GPU [Fratarcangeli et al. 2016, 2018; Wang 2015].

Those existing fast simulation algorithms rely on the assumption

that the deformation occurs smoothly along the time, and a full

second-order Newton iteration could be replaced with multiple but

less costly first-order ones [Wang 2015].

Model reduction is another popular acceleration technique a.k.a.

the subspace method or reduced-order models, which creates a sub-

space representation of fullspace DOFs. Modal analysis [Choi and

Ko 2005b; Hauser et al. 2003; Pentland and Williams 1989] and its

first-order derivatives [Barbič and James 2005] are often considered

the most effective method for subspace construction. Displacements

from recent fullspace simulations can also be utilized [Kim and

James 2009]. Prior art also coarsens the geometric representation

to prescribe the dynamics of a fine model. For instance, Capell

and colleagues [2002a] deformed an elastic body using an embed-

ded skeleton; Gilles and colleagues [2011] used 6-DOF rigid frames

to drive the deformable simulation; Faure and colleagues [2011]

used scattered handles to model nonlinear dynamics; Lan and col-

leagues [2020; 2021] exploited the medial axis transform to build

the mesh skeleton; Martin and colleagues [2010] used sparsely-

distributed integration points named elastons to model the nonlin-

ear dynamics of rods, shells, and solids uniformly. Since the number

of simulation DOFs does not depend on the resolution of the model,

orders-of-magnitude speedups are not uncommon with reduced

simulation. On the downside, the accuracy compromise and the

loss of simulation details are inevitable ś after all, it compresses a

high-dimension simulation into a low-dimension space.

The presence of collisions and contacts imposes an extra layer of

difficulty for deformable simulation. A collision occurs in a short

period of time leading to rapid velocity/position changes. Collisions

have been modeled by impulses in early works [Baraff 1989; Mir-

tich and Canny 1995; Moore and Wilhelms 1988; Weinstein et al.

2006]. Doing so stiffens the simulation, leading to undesired artifacts

and failure of the system to converge when the non-penetration

constraint must be strictly enforced [Cline and Pai 2003]. Switch-

ing to complementarity programming does not resolve this issue.

As it is an NP-hard problem, we often do not have the luxury to

run the complementarity search to the end for an optimal solu-

tion [Anitescu and Potra 1997; Erleben 2007; Kaufman et al. 2005].

Consequently, the simulation remains inconsistent and unstable. An

inexpensive alternative is the penalty method [Cundall and Strack

1979; Terzopoulos et al. 1987; Teschner et al. 2005]. Instead of using

inequality constraints, a penalty method chooses a spring-like re-

pulsion mechanism based on the penetration depth between two

objects [Drumwright 2007; Fisher and Lin 2001; Hasegawa et al. 2004;

Wu et al. 2020]. While straightforward, the penalty method fails

for fast-moving models or simulations under bigger time steps and

often requires tedious tuning of stiffness parameters per scene. Its

stability can be enhanced using implicit formulations coupled with

CCD [Tang et al. 2012; Xu et al. 2014]. Nevertheless, intersections

among models still can and will result.

The interior-point method [Mehrotra 1992] incorporates barrier

functions to approximate inequality constraints induced by col-

lisions and contacts. As the name suggests, a barrier function is

designed as a nonlinear penalty yielding increasingly stronger re-

pulsion when models are moving closer to each other. Its feasibility

and robustness have been validated by Li and colleagues [2020],

where they name this barrier-based collision resolution IPC. IPC

offers two immediate advantages: 1) Unlike using impulses, IPC

smooths the problem formulation with controllable accuracy; 2) IPC

enables the algorithmic guarantee that the inequality constraints are

always satisfied so the resulting simulation is free of interpenetra-

tion. This method has then been successfully employed for reduced

simulation [Lan et al. 2021], co-dimensional simulation [Li et al.

2021b], rigid body simulation [Ferguson et al. 2021; Lan et al. 2022a],

embedded FEM [Choo et al. 2021], FEM-MPM coupling [Li et al.

2021a], and geometric modeling [Fang et al. 2021].

The CCD-based line search plays a key role in the IPC framework

ś it ensures that any displacement update is confined within the

domain of the barrier function. This also suggests existing GPU

algorithms, which trade a costly Newton step for multiple inexact

but inexpensive iterations [Narain et al. 2016; Wang and Yang 2016;

Wu et al. 2022], become hardly practical since performing culling

and CCD at each iteration is prohibitive. Lan and colleagues [2022b]

alleviated this difficulty by casting the barrier as a positional con-

straint in the framework of PD. Unfortunately, for more generic

simulations, one has to evaluate the barrier to determine if the cur-

rent search direction is descending. Without per-iteration CCD, the

barrier functions become undefined, and the simulation then fails.

The existence of barriers is a double-edged blade. On the one hand,

it converts inequality-constrained simulation to an unconstrained

one and allows highly robust resolutions of collisions and contacts.

On the other hand, it ties any iterative solvers with CCD, ruling

out most parallel strategies currently available. In this paper, we

present a non-Newton and parallel solver, dedicated to barrier-in-

the-loop deformable simulations. Our algorithm is closely related to

the domain decomposition method [Farhat et al. 2000] by breaking

the original model into many small domains. While this idea is not

new in graphics and has been employed with model reduction for

per-domain subspace customization [Barbič and Zhao 2011; Kim

and James 2012; Wu et al. 2015; Yang et al. 2013], we show that it

also leads to scalable and parallelizable nonlinear programming. Our

method is also relevant to the coordinate descent method [Naitsat

et al. 2020; Wright 2015], which is a simple divide-and-conquer

solution for large-scale optimizations. We perform a local second-

order Newton-like optimization over blocks of coordinates and align

each of such blocks with an element on the model.

3 ALGORITHM OVERVIEW & PRINCIPAL DESIGN

Before jumping into the details of our method, we first give a brief

review of the interior-point method and explain why a different

algorithm is needed for barrier-in-the-loop elastic simulation.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

4 • Lei Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, and Yin Yang

[0]

[1]

[3]

[4]

[2]

Scheme 1

[0]

[3]

[4]

[2]

Semi-implicit
stepping

Regular CCD

GS
sweep

Jacobi
sweep

GS
sweep

Jacobi
sweep

Jacobi
sweep

Jacobi
sweep

GS
sweep

Jacobi
sweepL

o
ca

l
C

C
D

L
o

ca
l

C
C

D

Jacobi
sweep

GS
sweep

GS
sweep

Jacobi
sweep

L
o

ca
l

C
C

D

Iteration #1

Regular CCD
Next step

...Warm start

[1]
Scheme 2

Primary color

Primary color

Complementary
coloring

Warm start Parallel second-order stencil descent

Iteration #2

Regular CCD

Conservative

barrier update

Fig. 2. Algorithm overview. We present a local second-order GPU solver to efficiently simulate barrier-in-the-loop elastic models. An input model will be

colored based on the connectivity of stencils with several complementary schemes (ğ 5). At each time step, a warm start is carried out first building a global

collision list with an altered per-stencil barrier formulation (ğ 6). The core relaxation runs in parallel using a hybrid sweep strategy based on computed color

schemes (ğ 4), where we use local CCD during the iterations as much as possible.

Assume the implicit Euler is used, the elastic simulation is formu-

lated as the variational optimization of:

𝑥𝑡+1 = argmin
𝑥

1

2
(𝑥 − 𝑥)⊤M(𝑥 − 𝑥) + ℎ2Ψ(𝑥) s.t. ℎ𝑖 (𝑥) ≥ 0. (1)

Here, 𝑥𝑡+1 represents the unknown positional DOFs of all the ver-

tices on the model i.e., a tetrahedral mesh. 𝑥 = 𝑥𝑡 +ℎ𝑣𝑡 +ℎ2M−1 𝑓𝑒𝑥𝑡
is a known vector depending on the position 𝑥𝑡 and velocity 𝑣𝑡

from the previous time step as well as the external force 𝑓𝑒𝑥𝑡 . ℎ

is the time step size, and M is the mass matrix. The first term

𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =
1
2 (𝑥−𝑥)

⊤M(𝑥−𝑥) in Eq. (1) is sometimes also referred to

as the inertia potential. Ψ(𝑥) denotes the hyperelastic energy mea-

suring the łmagnitudež of the deformation. ℎ𝑖 (𝑥) ≥ 0 form a set of

𝐶 inequality constraints enforcing the simulation to be free of inter-

and intra-model intersections. Eq. (1) is mathematically equivalent

to an unconstrained optimization using indicator functions 𝐼Ω (𝑥),

which evaluates +∞ if 𝑥 ∉ Ω and 0 otherwise:

min
𝑥

1

2
(𝑥 − 𝑥)⊤M(𝑥 − 𝑥) + ℎ2Ψ(𝑥) +

𝐶∑︁

𝑖=0

𝐼{ℎ𝑖≥0} (𝑥) . (2)

IPC [Li et al. 2020] is a primal implementation of the interior-point

method, which approximates ℎ𝑖 (𝑥) ≥ 0 with logarithmic barrier

functions:
𝐶∑︁

𝑖=1

𝐼{ℎ𝑖≥0} ≈ 𝜅

𝐶∑︁

𝑖=1

𝜙𝑖 (𝑥), (3)

where each barrier 𝜙𝑖 is defined as:

𝜙𝑖 (𝑑𝑖 , 𝑑) =

{
−(𝑑𝑖 − 𝑑)

2 log
(
𝑑𝑖
𝑑

)
, 0 < 𝑑𝑖 < 𝑑

0, 𝑑𝑖 ≥ 𝑑
. (4)

𝑑 is a global hyper-parameter prescribing the accuracy of the ap-

proximate in Eq. (3). Intuitively, it allows 𝜙𝑖 to be łactivež if the

closest distance between a collision pair (i.e., 𝑑𝑖) is smaller than 𝑑 .

Similar to 𝐼{ℎ𝑖≥0} , 𝜙𝑖 approaches to +∞ as 𝑑𝑖 approaches to 0, scaled

by 𝜅. IPC then aims to find the optimal solution to:

min
𝑥

𝐸 (𝑥), 𝐸 =
1

2
(𝑥 − 𝑥)⊤M(𝑥 − 𝑥) + ℎ2Ψ(𝑥) + 𝜅

𝐶∑︁

𝑖=0

𝜙𝑖 (𝑥) . (5)

As nonlinear programming iteratively seeks a better solution to

Eq. (5), one needs to ensure that each displacement update Δ𝑥 is

descent and lowers the target function 𝐸 (𝑥). Note that 𝜙𝑖 (𝑥) is only

defined for 𝑑𝑖 > 0 per Eq. (4). If Δ𝑥 takes any 𝜙𝑖 (𝑥) out of its domain,

there is no way for us to validate whether Δ𝑥 is a legit improvement.

Thus, an interior-point algorithm like IPC always equips each itera-

tion with a CCD to ensure 𝜙𝑖 (𝑥) are well-defined. Being taxed by

CCD, slow-converging methods like gradient descent [Wang and

Yang 2016] are no longer an option.

Parallel algorithms break the computation into smaller subsys-

tems, and the convergence-efficiency trade-off is embodied via dif-

ferent choices of 1) the size of a subsystem 2); how each subsystem

is solved, and 3) how subsystems are coupled/integrated. In gen-

eral, smaller subsystems, lower-order methods, and less information

sharing improve efficiency, but the simulation will need much more

iterations for stiffer problems. By contrast, we choose to solve a

bigger subsystem using a second-order method and a much stronger

subsystem coupling mechanism.

Fig. 2 sketches an overview of our method. The core computation

of our pipeline is a local second-order relaxation scheme namely

stencil descent (ğ 4). The use of local curvature information greatly

improves the convergence for barrier-enabled problems. Unfortu-

nately, this method alone is unable to deliver the desired perfor-

mance. We design a simple and effective coloring method that can

be pre-computed and is robust against different collision patterns

(ğ 5). This coloring method, combined with a hybrid update scheme,

allows the simulation to converge at a similar pace as Newton’s

method. The performance of our solver is further enhanced by a

warm-start process using an altered barrier formulation (ğ 6).

4 SECOND-ORDER STENCIL DESCENT

Coordinate descent is a well-known optimization algorithm [Wright

2015] that minimizes a multivariable function e.g., 𝐸 (𝑥) in Eq. (5)

by optimizing one DOF (coordinate) at a time successively. The

convergence of coordinate descent can be easily confirmed, as each

local iteration always lowers the target function [Zheng et al. 2000].

We generalize this concept by finding a descent direction of a

group of DOFs at once. Specifically, each group houses 12 DOFs cor-

responding to 1) a tetrahedron element on the model or 2) a colliding

vertex-triangle or edge-edge pair with an activated barrier namely,

an elasticity stencil or a barrier stencil. The reason behind this choice

is multifaceted. First, a tetrahedron forms a minimal 3D simplex,

which uniquely determines its own rigid body transformation. As a

result, the residual in the null space can be effectively suppressed

locally, which better improves the global convergence than smaller

subsystems e.g., per vertex. Being a simplex, tetrahedrons do not

have isolated DOFs (except for the ones at the boundary corners)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

Second-order Stencil Descent for Interior-point Hyperelasticity • 5

meaning all the DOFs are shared by their neighbors. Therefore,

choosing the tetrahedron as the basic coordinate unit strengthens

the coupling among stencils and enables faster strain propagation.

Finally, a 12-dimension stencil remains compact and can still be

efficiently solved using second-order methods even with limited

hardware resources at each CUDA thread.

4.1 Projection-free Stencil-wise Newton-CG

In our algorithm, the 𝑘-th stencil solves an optimization of Eq. (5)

only w.r.t. its local DOFs, 𝑥 [𝑘] ∈ R12:

min
𝑥 [𝑘]

𝐸 (𝑥) ≡ min
𝑥 [𝑘]

𝐸 [𝑘] . (6)

Here the superscript [𝑘] denotes the index of the stencil. Note that

𝐸 [𝑘] accumulates not only the elasticity or the barrier of the stencil

itself but also energies shared by its neighbors. Any vertex-sharing,

edge-sharing, and face-sharing neighboring elements contribute to

𝐸 [𝑘] , and we have
∑
𝐸 [𝑘] ≥ 𝐸 (𝑥).

We use standard Newton’s method to solve Eq. (6) at each stencil,

and compute a tentative local update Δ𝑥 [𝑘] as:

Δ𝑥 [𝑘] = −
(
H[𝑘]

)−1
𝑔[𝑘] , (7)

where H[𝑘] and 𝑔[𝑘] are local Hessian and gradient. Again, both

H[𝑘] and 𝑔[𝑘] are different from the element Hessian/gradient, as

they also accommodate the first- and second-order derivatives of

neighbor stencils.

Solving the 12-by-12 linear system of Eq. (7) causes practical

obstacles. The analytical formulation is too complicated, if exists,

to be hard-coded while a local Gaussian elimination is logically

overwhelming for one CUDA thread. To this end, we choose to

use CG (conjugate gradient method) for our per-stencil relaxation

(Alg. 1). CG returns the exact solution of Eq. (7) after 12 iterations

because the error at each of 12 conjugated directions will be right

eliminated at the corresponding iteration [Shewchuk et al. 1994].

Indeed, CG was invented as a direct solver originally. The stencil-

level CG also frees us from an explicit Hessian assembly because

CG iterations only need Hessian-vector product (i.e., H[k]𝑝 𝑗 at

lines 3 and 5 in Alg. 1), which is the directional derivative of 𝑔[𝑘] :

H[k]𝑝 𝑗 = ∇𝑝 𝑗𝑔
[𝑘] [Shen et al. 2021; Yang et al. 2015].

Large deformations of nonlinear materials often yield a Hessian

that is not positive semi-definite (PSD), and the resulting Δ𝑥 [𝑘]

becomes errant. To restore the numerical stability, PSD-projected

Hessian is often used [Teran et al. 2005] a.k.a. projected Newton.

We note that CG can be used to solve local stencil robustly without

PSD projection in a Hessian-free manner.

To see the reason behind this, let us re-visit Newton’s method,

which Taylor expands 𝐸 [𝑘] around 𝑥 [𝑘] :

𝐸 [𝑘] (𝑥 [𝑘] + Δ𝑥 [𝑘]) = 𝐸 [𝑘] (𝑥 [𝑘]) +𝑄 (Δ𝑥 [𝑘]) +𝑂 (∥Δ𝑥 [𝑘] ∥3). (8)

Here, 𝑄 (Δ𝑥 [𝑘]) = 1
2Δ𝑥

[𝑘]⊤H[𝑘]Δ𝑥 [𝑘] + Δ𝑥 [𝑘]
⊤
𝑔[𝑘] is a quadratic

form of Δ𝑥 [𝑘] . Newton’s method ignores the third-order error and

seeks the minimizer of 𝑄 (Δ𝑥 [𝑘]), while CG happens to be a ded-

icated algorithm for minimizing 𝑄 (Δ𝑥 [𝑘]). Such coherence also

makes the Newton-CG family one of the most popular numerical

solutions for large-scale optimizations [Zhao et al. 2010].

ALGORITHM 1: Per-stencil CG iteration.

1: 𝑟0 ← −𝑔
[𝑘] − H[𝑘]Δ𝑥

[𝑘]
0 , 𝑝0 ← 𝑟0, 𝑗 ← 0 ;

2: while 𝑗 < 12 do

3: 𝛼 𝑗 ←




1
𝜎 , 𝑝⊤𝑗 H

[k]𝑝 𝑗 ≤ 0
𝑟⊤𝑗 𝑟 𝑗

𝑝⊤𝑗 H
[k]𝑝 𝑗

, otherwise
;

4: Δ𝑥
[𝑘]
𝑗+1 ← Δ𝑥

[𝑘]
𝑗 + 𝛼 𝑗𝑝 𝑗 ;

5: 𝑟 𝑗+1 ← 𝑟 𝑗 − 𝛼 𝑗H
[k]𝑝 𝑗 ;

6: 𝛽 𝑗 ←
𝑟⊤𝑗+1𝑟 𝑗+1

𝑟⊤𝑗 𝑟 𝑗
;

7: 𝑝 𝑗+1 ← 𝑟 𝑗+1 + 𝛽 𝑗𝑝 𝑗 ;

8: 𝑗 ← 𝑗 + 1;

9: end

If H[𝑘] is PSD, every CG iteration will lower 𝑄 (Δ𝑥 [𝑘])1. When

this is not the case, H[𝑘] then has non-positive eigenvalues, and

searching along the corresponding eigenvectors may increase the

value of 𝑄 (Δ𝑥 [𝑘]). This suggests a bad direction that one should

avoid. Geometrically, a negative eigenvalue corresponds to some

direction along which the curvature of the Hessian is concave. Pro-

jected Newton [Teran et al. 2005] directly łflattensž concave regions

to make it mildly convex. In CG, such concavity of a non-PSD Hes-

sian is reflected by 𝑝⊤H[𝑘]𝑝 (line 3). 𝑝⊤H[𝑘]𝑝 ≤ 0 implies 𝑝 largely

aligns with negative eigenvectors, and the trajectory along 𝑝 is

concave. Following the same strategy of projected Newton, we man-

ually alter local negative curvature by setting 𝑝⊤H[𝑘]𝑝 ← 𝜎 ∥𝑟 𝑗 ∥
2

i.e., a small positive quantity relative to the current residual norm

(line 3 of Alg. 1). Doing so allows CG to travel out of this concave

region and keep reducing residual in other conjugate directions. Al-

ternatively, one can simply quit the current CG iteration. In practice,

concave searches are rare, and few early terminations do not impact

the overall convergence of our method.

4.2 Local CCD & Inversion Search

The computation of Δ𝑥 [𝑘] is local and agnostic on potential geo-

metric or topological conflicts. Therefore, additional sanity checks

are needed namely, local CCD search and local inversion search.

The so-called local CCD performs a lightweight CCD over Δ𝑥 [𝑘] .

It does not exhaustively search nearby vertex-triangle and edge-

edge pairs as in a regular CCD routine. Instead, local CCD just makes

sure that existing collision pairs, identified by the most recent regular

CCD, do not generate intersections. Local CCD is quit fast without any

culling or neighborhood search. We use the fast polynomial solver

proposed by Yuksel [2022] to compute the local TOI. While the

cost of local CCD is subtle, it is a vital treatment in our framework

offering three important guarantees:

(1) Local CCD ensures that all the existing barrier functions are

well-defined so that per-stencil line search is meaningful.

(2) Local CCD retains the formulation of current target function

(Eq. (5)) by not adding new barriers or removing old ones.

1Minimizing 𝑄 (Δ𝑥 [𝑘]) does not necessarily mean Eq. (6) is improved due to the

existence of 𝑂 (∥Δ𝑥 [𝑘] ∥3) . Therefore, a line search is still needed even for a PSD
Hessian.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

6 • Lei Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, and Yin Yang

Local CCD

Regular CCD

Locking

0.8

0.8

Fig. 3. Regular and local CCD. Local CCD is a simple and effective treat-

ment for local displacement updates. The grey-colored deformable body

hits the tip of the collider. If the TOI at the colliding element (in orange) is

small, regular CCD filtering down scales the global update Δ𝑥 by 0.8𝑡𝑇𝑂𝐼 ,

which prevents the deformation of the whole model in following iterations.

Local CCD only adjusts the displacement of the colliding stencil, and other

stencils can keep updating their own Δ𝑥 [𝑘] .

(3) Local CCD uses local TOI to adjust Δ𝑥 [𝑘] of each stencil to

avoid TOI locking due to small global TOIs.

The third guarantee is particularly helpful for faster convergence.

As illustrated in Fig. 3, as soon as a collision pair yields a close-

to-zero TOI, the corresponding global displacement update will be

blocked since Δ𝑥 needs to be scaled by 0.8𝑡𝑇𝑂𝐼 to keep the barrier

well-defined2 ś even though other parts of the models are free of

collisions. It appears as the entire model is stiffened, waiting for the

relaxation of this specific barrier. The corresponding computations

are then wasted. Local CCD mitigates this issue since this small TOI

only affects local stencils, and other stencils keep deforming based

on their local descent directions.

Local inversion search is for elasticity stencils only, which pre-

vents newly computed Δ𝑥 [𝑘] from generating element inversions.

The first pass of the inversion search checks whether the following

equation of 𝑡 has a root between (0, 1]:
���������

(
𝑥
[𝑘]
2 + 𝑡Δ𝑥

[𝑘]
2 − 𝑥

[𝑘]
0 − 𝑡Δ𝑥

[𝑘]
0

)⊤
(
𝑥
[𝑘]
1 + 𝑡Δ𝑥

[𝑘]
1 − 𝑥

[𝑘]
0 − 𝑡Δ𝑥

[𝑘]
0

)⊤
(
𝑥
[𝑘]
3 + 𝑡Δ𝑥

[𝑘]
3 − 𝑥

[𝑘]
0 − 𝑡Δ𝑥

[𝑘]
0

)⊤

���������

= 0. (9)

Here 𝑥
[𝑘]
𝑖 , 𝑖 = 0, 1, 2, 3 are positions of four vertices of the stencil.

Δ𝑥
[𝑘]
𝑖 are their respective displacements. If Δ𝑥 [𝑘] does not invert

stencil [𝑘], the second pass iterates all the incidence elements and

checks if Δ𝑥
[𝑘]
𝑖 displaces vertices to the negative side of opposite

faces in those elements. Let 𝑥𝑠 , 𝑥𝑡 , and 𝑥𝑙 be the three vertices on the

opposite face of vertex 𝑥
[𝑘]
𝑖 . The inversion search checks whether

𝑡 = −
[(𝑥𝑠 − 𝑥𝑙) × (𝑥𝑡 − 𝑥𝑙)] · (𝑥

[𝑘]
𝑖 − 𝑥𝑙)

[(𝑥𝑠 − 𝑥𝑙) × (𝑥𝑡 − 𝑥𝑙)] · Δ𝑥
[𝑘]
𝑖

(10)

is between (0, 1]. If so, we scale Δ𝑥 [𝑘] by 0.8𝑡 . Lastly at this step,

after local CCD and inversion check, a local line search ensues. We

choose a simplified Wolfe condition and make sure Δ𝑥 [𝑘] lowers

𝐸 [𝑘] and thus improves 𝐸 overall.

Like all the existing GPU algorithms [Fratarcangeli et al. 2016,

2018; Wang 2015; Wang and Yang 2016], our speedup comes from

the parallelization of local computations at elasticity and barrier

2Here, 0.8 is a parameter of user’s choice, which should be slightly smaller than 1 to
keep the displacement update intersection-free.

One Gauss-Seidel iteration

Pass 1

Relax [0]

Relax [1]

Relax [2] Relax [3]

Relax [0]

Relax [3]

Relax [1]

Relax [2]

Relax [4]

One Jacobi iteration One hybrid sweep (ours)

Model coloring

[3]

[0]

[1]

[4]

[2]

Relax [4]

Relax [0]

Relax [3]

Relax [1]

Relax [2]

Relax [4]

Relax [0]

Relax [3]

Relax [1]

Relax [2]

Relax [4]

Relax [0]

Relax [3]

Relax [1]

Relax [2]

Relax [4]
Pass 2 Pass 3 Pass 4 Pass 1 Pass 2 Pass 3

Fig. 4. Hybrid sweep. Hybrid sweep follows the Gauss-Seidel style update

but fills idle GPU threads with Jacobi updates. Therefore, all stencils will

be updated at each sweep. This simple strategy improves the convergence

without noticeable GPU latency.

stencils. To make the most use of the GPU, we design a novel hybrid

sweep strategy that avoids per-iteration graph coloring.

5 PARALLELIZATION

Stencils share DOFs, and porting local Δ𝑥 [𝑘] to the global Δ𝑥 can

only be carried out for disjoint stencils. The parallelization relies

on graph coloring [Jensen and Toft 2011], which abstracts the con-

nectivity among stencils as an undirected graph. Stencils in the

same color are independent, and their local Δ𝑥 [𝑘] can be copied to

global displacement without conflicts. It is desired that each color

group houses as many disjoint stencils as possible for maximized

parallelism, while an over-dominant color inevitably shrinks other

colors and leads to unbalanced coloring. Due to the collision, stencil

connectivity varies at each iteration, and finding an optimal coloring

for non-planar graphs is NP-complete. Therefore, existing methods

resort to heuristics to do coloring on the fly [Fratarcangeli et al.

2016, 2018; Ton-That et al. 2023]. We present a pragmatic solution to

this challenge, which allows us to pre-compute all the colors before

the simulation.

5.1 Hybrid Sweep

For models with hundreds of thousands of elements, heuristic col-

oring algorithms typically generate a few dozen colors, where each

color has up to tens of thousands of stencils. Running stencil descent

in parallel, even for the largest color, is way below the GPU capacity.

For instance, we color a dragon model (Fig. 13) of 1M elements using

Vivace [Fratarcangeli et al. 2016]. It takes 308ms on average to relax

stencils of one color. Meanwhile, completing 12 CG iterations at all

the stencils only needs 339 ms.

To make the most out of the GPU, our hybrid sweep consists of

a Gauss-Seidel sweep and a Jacobi sweep. They jointly compute

Δ𝑥 [𝑘] for all stencils i.e., see Figs. 2 and 4. After local Δ𝑥 [𝑘] are

ready (which do not depend on the coloring of stencils), stencil dis-

placements of the current color are updated with the highest priority

in a Gauss-Seidel manner followed by Jacobi sweep, which aver-

ages displacements of vertices shared by multiple stencils without

modifying the committed Gauss-Seidel update. Local CCD, inversion,

and line searches are performed at each sweep separately. In other

words, a hybrid sweep combines one parallel Gauss-Seidel step for

stencils in one color group and one Jacobi iteration for all the other

stencils. This strategy feeds unoccupied GPU threads with the Jacobi

sweep. Assigning Jacobi sweeps at spare threads is nearly łfreež, and

they quietly improve the objective function in the background. As a

result, the hybrid sweep can accelerate the overall convergence over

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

Second-order Stencil Descent for Interior-point Hyperelasticity • 7

30% without noticeable latency. Our method should not be confused

with simply interleaving Gauss-Seidel and Jacobi iterations as men-

tioned in [Bender et al. 2017]. We would like to remind that either

Gauss-Seidel or Jacobi sweeps refers to how local displacements

are updated. Our underlying solver is locally second-order, which

converges faster than using Gauss-Seidel or Jacobi as linear solvers.

Hybrid sweep also makes our parallelization resilient to the topo-

logical change of the graph as we can keep barrier stencils with

Jacobi sweeps (i.e. grey color). This is reasonable because barriers

are often localized, and Jacobi-style relaxation is quite effective for

isolated barriers. In addition, our pipeline also includes a warm start

that pre-processes predicted barrier stencils (see ğ 6).

5.2 Complementary Coloring

Hybrid sweep is not sensitive to unbalanced coloring since all the

stencils are to be updated anyway. A small-size color may be less

helpful in vanilla Gauss-Seidel, but the accompanying Jacobi-sweep

greatly enhances its efficacy. This property allows a simple and

straightforward coloring algorithm, wherein we can focus on maxi-

mizing the dominant color group. As described in Alg. 2, our coloring

procedure is based on the classic Welsh-Powell method [Welsh and

Powell 1967]. We name the first-assigned color the primal color,

which tends to have more stencils. We always try to color a stencil

with the least indexed color available. During this process, new

colors are generated to accommodate conflicting stencils. We stop

adding more colors after the total number of colors reaches a thresh-

old 𝑇 and categorize all uncolored stencils into grey color. Those

grey stencils are updated via Jacobi sweep as they conflict with

other colors.

ALGORITHM 2: Complementary coloring.

1: for 𝑖 = 1 to len(𝐿) do

2: rank(𝐿[𝑖]) = degree of stencil 𝐿(𝑖) // 𝐿 is the stencil list

3: end

4: repeat

5: Sort all stencils in 𝐿 according to rank(𝐿[𝑖]);

6: for 𝑖 = 1 to len(𝐿) do

7: 𝑐 ← 0; // 0 is the primary color

8: repeat

9: Tentatively color stencil 𝐿[𝑖] with color 𝑐 ;

10: 𝑐 ← 𝑐 + 1 ;

11: until No conflict found;

12: if 𝑐 ≥ 𝑇 then

13: color(𝐿[𝑖])← +∞ ; // +∞ is the grey color

14: end

15: rank(𝐿[𝑖])← color(𝐿[𝑖]) + rank(𝐿[𝑖]);

16: end

17: until All color schemes are generated;

To cancel the bias induced by fixed-order Gauss-Seidel sweeps [Si-

mon 1992], we build multiple color schemes andmake them łcomple-

mentaryž to each other. Specifically, we ensure that each elasticity

stencil is assigned as the primal color at least once in a scheme so

S
c
h
e
m

e
 1

S
c
h
e
m

e
 2

Fig. 5. Complementary coloring. Our hybrid sweep is used with a com-

plementary coloring strategy. The coloring of stencils is pre-computed, and

we generate multiple color schemes to make sure each stencil shows up in

an independent color group at least in one scheme. Here, we show first four

colors of two schemes on a dragon model.

ALGORITHM 3: Inertia-barrier warm start.

1: 𝑥0 ← 𝑥𝑡 + ℎ𝑣𝑡 + 1
4ℎ

2 (𝑎𝑡 +M−1 𝑓𝑒𝑥𝑡);

2: CCD(𝑥𝑡 , 𝑥0);

3: Generate barrier list B;

4: 𝑥0 ← argmin𝑥
1
2 (𝑥 − 𝑥)

⊤M(𝑥 − 𝑥) +
∑
𝜙𝑖 ;

that it will undertake a major Gauss-Seidel sweep during the itera-

tion. We make sure that an elasticity stencil is not in grey color in all

the schemes. Such complementarity is enabled by sorting stencils

with different metrics. In the first color scheme, stencils are sorted

according to their degrees on the connectivity graph. In the follow-

ing schemes, the metric switches to the sum of color indices a stencil

previously received. Note that we have our primary color indexed as

0 and the grey color index as +∞ (lines 7 and 13 in Alg. 2). For high-

resolution models with many elasticity stencils, comparison-based

sorting could be expensive. We employ counting-based sorting i.e.,

radix sort [Davis 1992] which has the linear complexity for a small

number of colors. Nevertheless, the coloring procedure is before the

simulation. Fig. 5 shows two color schemes of a dragon model.

6 WARM START USING CUSTOMIZED BARRIERS

Ground truth
IPC barrier
Our barrier
Our barrier (adjusted)

Fig. 6. Per-stencil bar-

rier. By modifying bar-

rier formulation, we can

early start the relaxation

of barrier stencils.

An important ingredient of our pipeline

is a warm-start procedure for a better ini-

tial guess of 𝑥0. Our warm-start strategy

is inspired by time splitting [Wicker and

Skamarock 2002] and relaxes the stiffest

component of Eq. (5) i.e., the barrier en-

ergy in advance. It positions the system to

a collision-free state where the majority

of barriers are already relaxed. This initial-

ization dampens abrupt and impulse-like

barriers induced by fast-moving vertices

and therefore facilitates the convergence

of descent iterations.

As shown in Alg. 3, we start with a

semi-implicit prediction: 𝑥0 ← 𝑥𝑡 + ℎ𝑣𝑡 +
1
4ℎ

2 (𝑎𝑡 +M−1 𝑓𝑒𝑥𝑡). Based on the resulting 𝑥0, we compute B, a list

of vertex-triangle and edge-edge pairs by performing a regular CCD.

We interpret these pairs as a good estimate of active barriers when

the simulation arrives at 𝑡 = 1. However, if the distance between a

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

8 • Lei Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, and Yin Yang

pair of primitives is bigger than 𝑑 at 𝑡 = 0 according to Eq. (4), those

barriers remain inactive unless a regular CCD later finds 𝑑𝑖 < 𝑑 in

a later time. If these barriers will show up in the target function

eventually, why not take them into account earlier? To this end,

we abandon the setting that 𝑑 is defined globally and unchanged

during the simulation but assign a different 𝑑𝑖 for each 𝜙𝑖 at each

step. This yields a slightly modified barrier formulation of:

𝜙𝑖 (𝑑𝑖 , 𝑑𝑖) =

{
−(𝑑𝑖 − 𝑑𝑖)

2 log
(
𝑑𝑖
𝑑𝑖

)
, 0 < 𝑑𝑖 ≤ 𝑑𝑖

0, 𝑑𝑖 > 𝑑𝑖
, (11)

where we set 𝑑𝑖 for all the collision pairs in B as the vertex-triangle

distance or edge-edge distance at 𝑡 = 0. Eq. (11) then activates all

the barriers: They hold a vanished value at 𝑡 = 0 but will participate

in the optimization and contribute a non-zero Hessian and gradient

to stencils. Compared with the vanilla IPC, doing so is similar to

relaxing barriers a few iterations earlier during the optimization

and therefore, reduces the total iteration count. We understand that

advancing the system with a full elasticity solve provides a better

prediction. This strategy has also been explored previously [Bridson

et al. 2002]. However, solving the elasticity is significantly more

expensive, and the prediction does not substantially differ from a

semi-implicit guess in practice.

It is known that KKT’s complementary slackness of Eq. (1) is:

𝜆𝑖ℎ𝑖 (𝑥) = 0, (12)

where 𝜆𝑖 ≥ 0 is the Lagrange multiplier for each inequality con-

straint. Replacing 𝐼ℎ𝑖≥0 with 𝜙𝑖 (𝑥) essentially relaxes Eq. (12) to:

𝜆𝑖ℎ𝑖 (𝑥) = −𝜅 (𝑑𝑖 − 𝑑)
2, (13)

as a perturbed KKT. From this perspective, one could consider 𝜅 (𝑑 −

𝑑𝑖)
2 as an indicator of the approximate error of barrier-based colli-

sion resolution. Assigning each barrier a different 𝑑𝑖 may potentially

increase the error (when 𝑑𝑖 > 𝑑), which can be compensated by

reducing 𝜅 as 𝜅𝑖 ← 𝜅 𝑑

𝑑𝑖
(see Fig. 6).

After B is generated, we further improve 𝑥0 by minimizing the

variational problem partially for the inertia and barrier terms:

𝑥0 ← argmin
𝑥

𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎 (𝑥) +

| B |∑︁

𝑖=1

𝜙𝑖 (𝑥). (14)

Similar to barrier stencils, we use parallel Jacobi sweep with local

Newton-CG solves so the coloring is not needed for a warm start.

Collision pairs are often scattered over the boundary of the model,

and 𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎 does not strongly couple DOFs. Indeed, 𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎 is more

like a mass-weighted regularization for barriers 𝜙𝑖 (𝑥) optimization

since barriers are invariant under rigid body motions. Without

elasticity Ψ, this problem can be solved with fewer than 10 iterations

inmost cases. Local CCD and inversion searches are then followed to

make sure 𝐸 (𝑥0) is well-defined. The computed 𝑥0 is collision-free.

It keeps all the barriers in a łlukewarmž state: They are activated

since the distances between primitive pairs at 𝑡 = 0 are more or less

shortened by the inertia movement. Meanwhile, as those activated

barriers have been processed by stencil descent for a few rounds,

strong and sharp penalty is smoothed. The system becomes more

regularized and friendly to the follow-up elasticity-aware iterations.

40

1

2

3

[0]
[1]

[2]
0

1 2
0

12
0

1 2

0

1

2

3

4

1

0 2

2 0 1

1 0

2

0

1

[0]

0

1
2

1

2

0

1

2

[1]
2

1

2

3

3

4
22

[2]

2

1

0

2

1

0

0

1

2

0

0

1

2

3

0

2

1

3

2

4

1

2

0

1

2

2

2

0

0

0

0

0

0

0

1

1

0

0

0

1

0

Global index

Local index

0

1

[0]

0

1
2

[1]
2

1

2

3

3

4
22

[2]

2

1

0

0

1

Stencil-wise pass Vertex-wise pass Stencil-wise pass1 2 3

1

0

2

0

0 1 2 3 4
Adjacency

 list

<[0],1> <[0],0>
<[1],2>

<[2],1>

<[1],1><[0],2>
<[1],0> <[2],0>

<[2],2>

Fig. 7. Parallel Hessian-vector. Hessian-vector product at each iteration

is computed by taking multiple GPU passes alternating stencils and ver-

tices. This design aims to avoid redundant computations and lows the peak

memory demand.

In our experiment, we note that this warm-start step could reduce

the total iterations by up to 80%.

7 IMPLEMENTATION DETAILS

Being a GPU algorithm, dedicated engineering is essential to deliver

the desired performance. In this section, we elaborate on some note-

worthy details of the implementation. The common rule of thumb

is to understand whether a computation is memory-bounded or

computation-bounded. We split lengthy and complicated compu-

tations into multiple passes and properly use the shared memory

whenever possible.

7.1 Parallel Hessian-vector Product via CSFD

The most dominant computation is the Hessian-vector evaluation.

One local iteration yields a 12-dimension displacement update mean-

ing we need to compute, for each vertex, multiple directional force

gradients (i.e., ∇𝑝𝑖𝑔
[𝑘]) w.r.t. multiple stencils sharing this vertex.

Parallelizing at each vertex naïvely is not efficient because of dupli-

cated stencil visits: A vertex needs to access all the adjacent stencils

to compute the respective local directional force gradient.

As shown in Fig. 7, we maintain an auxiliary 2D array P, whose

elements are initially set as zero. P has 3𝑁 rows corresponding

to 𝑥 , 𝑦, 𝑧 components of per-vertex direction, 𝑝
[𝑘]
𝑖 ∈ R3, and 𝑁

is the total number of vertices. The number of columns of P is

set as the maximum degree of a vertex i.e., the greatest number

of elements shared by a vertex. Our parallelism is achieved with

several passes. The first pass is the stencil-wise CG iteration (Alg. 1),

which assigns each stencil a local search direction 𝑝 [𝑘] ∈ R12. After

an iteration is completed (i.e., all stencils are relaxed), we insert

P in parallel based on the resultant 𝑝 [𝑘] . In this pass, each vertex

iterates its adjacency list, which contains the references of its local

copies at each stencil. The third pass computes the Hessian-vector

products for each column of P that was just filled. This computation

spans across stencils to avoid redundancy induced by vertex-based

parallelization.

In other words, our strategy re-distributes stencil-based 𝑝 [𝑘] into

multiple vertex-based directions, and the computation of directional

force gradient can be unfolded back at stencils. The stencil forms

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

Second-order Stencil Descent for Interior-point Hyperelasticity • 9

Table 1. Time statistics and breakdown. We give detailed time statistics of experiments reported in the paper. # Ele., # DOF, and # Face are the total

numbers of elements, DOFs, and surface triangles in the simulation. Those are direct metrics indicating the complexities of parallel solve, direct solve, and

collision processing. Grey colored face count in the column of # Face is the number of triangles on colliders in the scene. # Color gives the total number

of colors in each test. Δ𝑡 is the time step size. The columnsWarm start reports the average iteration counts first and then give the computation time for

the warm start. Stencil descent, Local CCD and regular CCD are the total computation time for stencil descent solve, processing local CCD and regular

CCD. Misc. is the timing for other uncategorized computations such as the gradient evaluation and initialization of auxiliary data structure, etc. # Iter. is the

average number of iterations for one time step, and Total is the total per-step computation time. All the timing is in seconds.

Scene # Ele. # DOF # Face # Color Δ𝑡
Warm
start

Stencil
descent

Local
line search

Local
CCD

Regular
CCD

Misc. # Iter. Total

Fig. 1 975K 804K 393K + 58K 30 1/100 8 | 0.68 7.6 1.07 1.92 0.86 6.17 102 17.6 (129×)
Fig. 13 1.0M 585K 100K + 1.9K 15 1/100 3 | 0.09 3.9 0.52 0.38 0.3 1.56 16 6.7 (58×)
Fig. 14 487K 402K 197K + 58K 15 1/100 6 | 0.42 6.7 0.66 1.06 0.48 3.49 91 12.5 (91×)
Fig. 15 955K 854K 433K + 25K 15 1/150 26 | 4.0 47.8 27.2 12.3 10.5 19.1 422 116.8 (58×)
Fig. 16 446K 517K 236K + 37K 15 1/100 4 | 0.03 2.1 0.12 0.32 0.66 1.61 27 4.8 (72×)
Fig. 17 3.1M 2.3M 808K + 11K 45 1/100 17 | 6.4 126.8 54.7 36.5 16.1 33.5 321 267.6 (∼ 500×)
Fig. 18 1.7M 1.0M 231K + 271K 45 1/100 13 | 0.89 9.2 2.1 1.82 1.8 4.86 67 19.7 (122×)
Fig. 19 342K 387K 129K + 9K 10 1/100 3 | 0.23 4.6 0.31 0.84 0.23 1.36 44 5.1 (25×)
Fig. 21 147K 140K 69K + 10 15 1/100 7 | 0.2 0.43 0.05 0.06 0.066 0.33 17 0.93 (35×)

Regular barrier update Conservative barrier update

Fig. 8. Oscillating collision. Simulation of complex shapes may produce

oscillating collisions as vertices could bounce around multiple barriers (left).

Conservative barrier update eases this issue. It keeps recent barrier visible

during the optimization so that they can be effectively smoothed (right).

the basic unit for calculating the stress tensor, which is the most

costly step and should not be excessively performed. The Hessian-

vector product is formulated as: H𝑘𝑝 [𝑘] = ∇𝑝 [𝑘]

(
𝜕𝐸𝑘

𝜕F𝑘

)
: 𝜕F𝑘

𝜕𝑥 [𝑘]

for elasticity stencils and H𝑘𝑝 [𝑘] =
𝜕𝜙𝑖

𝜕𝑑𝑖
· ∇𝑝 [𝑘]

(
𝜕𝑑𝑖
𝜕𝑥 [𝑘]

)
for barrier

stencils. HereH𝑘 denotes the element/barrier stiffness matrix, which

should not be confused with H[𝑘] as the latter also includes the

Hessian blocks from adjacent stencils. F𝑘 is the deformation gradient.

The directional derivative ∇𝑝 [𝑘] 𝜕𝐸
𝑘/𝜕F𝑘 and ∇𝑝 [𝑘] 𝜕𝑑𝑖/𝜕𝑥

[𝑘] can be

analytically obtained using stress and distance differential [Sifakis

and Barbic 2012]. As a more convenient implementation, we used

accelerated complex-step finite different (CSFD) [Luo et al. 2019] to

compute the directional derivative.

7.2 Conservative Barrier Update

High-resolution and geometry-complex models often have oscil-

lating collisions that could take many iterations to be smoothed

out. One toy example is visualized in Fig. 8, where a box travels

between two colliders. When the box moves close enough to the

right wall, the barrier activates (as an orange spring in the figure),

which pushes the box to the left at the next iteration. The collider on

the left then triggers similar dynamics for the box, keeping it bounc-

ing back and forth between two strong barriers. Such oscillating

collisions are particularly perilous in vanilla IPC as it often leads to

many close-to-zero TOIs, which in turn freeze global displacement

updates (e.g., see Fig. 3).

Conservative barrier update does not rebuild B immediately af-

ter each regular CCD. Instead, we insert novel confirmed barriers

without removing old barriers. Keeping old barriers in B makes

them visible to the local CCD so that they can be timely triggered

in local updates. As shown in Fig. 8, with the conservative barrier

update, the barriers of both colliders are activated, which quickly

dampens the oscillation. Note that conservative update should not

raise accuracy concerns because barriers have vanished value when

𝑑𝑖 > 𝑑𝑖 .

We use hash functions to fast check if a collision pair is already

in B. In general, we build two one-dimension hashing tables: one

for vertex-triangle pairs and one for edge-edge pairs. Assume that a

vertex-triangle collision pair is identified in a regular CCD for the

𝑚-th vertex and 𝑛-th triangle. The hash function returns:

𝐻 (𝑚,𝑛) = (𝑚 mod 3007) · 3007 + (𝑛 mod 3007). (15)

We then check if the hash table cell at 𝐻 (𝑚,𝑛) is occupied. If so,

we double-check the vertex and triangle indices to confirm the pair

is already in B. Otherwise, ⟨𝑚,𝑛⟩ is inserted at 𝐻 (𝑚,𝑛), and we

append the information to the adjacency list (i.e., Fig. 7). Edge-edge

pairs are processed in the same way but on their own hashing table.

8 EXPERIMENTAL RESULTS

Our implementation platform is a desktop PCwith an Intel i9 11900K

CPU (8 cores), 128 GB memory, and an Nvidia 3090 GPU. All numer-

ical methods were implemented using C++ on the CPU. We chose

Eigen[Guennebaud et al. 2010] and Intel MKL[Wang et al. 2014]

as our primary BLAS library and direct linear solvers on the CPU

for comparative experiments. Our GPU implementation is matrix-

free, and all computations are directly launched on CUDA threads.

We use float precision in our GPU solver for large-scale models.

Double precision on the GPU is about 30% slower than float with

improved robustness for CCD-related computations. Fortunately, as

our method still carries out a regular line search filtering at the end

of each time step, float does not impose any stability issues in our ex-

periments. The CPU benchmark is based on the vanilla open-source

IPC implementation [Li et al. 2020, 2021b]. Each Newton solve in

CPU IPC is handled with multi-threaded Cholesky factorization

fromMKL. We note that TBB MKL is 20 − 50× faster than the LLT

solver shipped with Eigen. We use the neo-Hookean material in

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

10 • Lei Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, and Yin Yang

Fig. 9. Dragging Armadillo. To objectively examine the convergence of our method, we simulate an elastic Armadillo under large deformations in a

collision-free setting using projected Newton (multi-core CPU, MKL), gradient descent (GPU, CUDA), and our method (GPU, CUDA). The model consists of

500K elements and 300K DOFs. Because collisions are ignored, the comparison does not include the warm-start step or local/regular CCD.

most experiments, but our method can be applied to any hyperelas-

tic model. Tab 1 gives detailed timing statistics and breakdown of

experiments reported in the paper.

8.1 Convergence Benchmark

In the first experiment, we aim to compare our method with some

knownGPU-based FEMalgorithms, such as GPU gradient descent [Wang

and Yang 2016]. Since many parts of our method are specially de-

signed for processing barrier functions (e.g., the warm-start step),

the comparison naturally favors our method in a collision-rich sce-

nario. To avoid this bias, we compare convergence and computation

time in a contact-free setting. As shown in Fig. 9, the Armadillo

model consists of 500K elements and 300K DOFs. A sharp dragging

force is applied to the back of the Armadillo, with its ears and feet

fixed, to trigger large stretching and bending on the body. We com-

pare projected Newton[Teran et al. 2005], Jacobi-preconditioned

gradient descent [Wang and Yang 2016], and our method without

processing self-collisions. The convergence criterion is set to 10−4

of the residual L2 norm for all solvers.

Our observation is consistent with the previous analysis. When

time step is small (Δ𝑡 = 1/100), and the material is soft (Young’s

modulus is 5MPa), the first-order method i.e., Jacobi-preconditioned

gradient descent gives the best performance on the GPU, which

only uses 0.88 second for one time step. In this setting, Newton’s

method and our method need 263 seconds and 3.8 seconds respec-

tively. This advantage however, diminishes when the simulation

becomes stiffer under a higher Young’s modulus or a bigger time

step. The total number of the iterations using gradient descent goes

up disproportionately. For instance, if we increase the time step size

from 1/100 to 1/30 second, gradient descent needs 9, 628 iterations

for one step. Further stiffening the Young’s modulus to 30 MPa

makes the iteration count jump to over 20K. On the other hand, the

projected Newton is quite robust against the variation of Young’s

modulus and time step sizes. The total number of Newton’s itera-

tion increases from 19 to 41 when Δ𝑡 goes up from 1/100 to 1/30.

It takes 581.3 seconds to complete a 1/100 step on average using

Newton’s method. Setting the Young’s modulus to 30 MPa, Newton

iteration count reaches 67, and one-time-step computation takes

945.1 seconds.

Compared with gradient descent, our method is locally second-

order exhibiting stronger convergence. When Δ𝑡 increases to 1/30

second, our method surpasses the gradient descent with faster per-

step computation (15.3 seconds vs 19.7 seconds). The iteration count

of our method does increase for stiffer instances, but the growth rate

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

Newton

Ours

GD

0.19

0.21

0.23

0.25

0.27

0.29

0.31

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

Newton

CD

GD

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

Newton

CD

GD

5 MPa 15 MPa 30 MPa

Fig. 10. Convergence plots. We plot the convergence curves of Newton’s

method, gradient descent, and our method for the dragging Armadillo

(Fig. 9) under different material stiffness. The curves visualize the variation

of total energy at a chosen representative frame of the simulation.

0

20

40

60

80

100

120

140

160

180

200
4

,6
1

9

5
,5

5
6

8
,0

0
2

1
0

,2
5

8

1
1

,8
0

7

1
2

,9
2

0

1
6

,7
5

8

2
6

,6
0

1

3
3

,2
0

2

3
7

,0
8

7

5
1

,2
6

7

5
8

,7
3

9

7
6

,8
2

9

8
4

,3
9

7

9
2

,6
3

1

1
2

1
,8

6
6

1
2

5
,3

3
4

1
2

9
,6

3
6

1
4

6
,1

9
2

1
5

9
,4

4
1

1
6

5
,0

1
2

1
7

0
,9

6
1

1
7

1
,9

9
6

1
9

3
,4

7
3

1
9

9
,0

8
0

2
1

2
,1

3
8

2
4

1
,5

3
4

2
5

3
,4

3
9

2
5

9
,5

5
7

2
6

1
,7

2
4

2
6

8
,2

3
7

2
7

7
,3

5
8

6
4

3
,6

3
6

9
1

0
,1

4
4

#
 I

te
ra

ti
o
n

Condition number

Fig. 11. Iteration count vs condition number. We plot the total number

of stencil descent iterations when the Hessian matrix has different condition

numbers under large deformations.

is milder compared with the first-order approach ś from 24 to 73

when Δ𝑡 is changed from 1/100 to 1/30. Such iteration counts keep

CCD manageable when barriers need to be taken care of. With the

existence of collisions, our method outperforms gradient descent or

other first-order methods by a much bigger margin (i.e., 3× ś 10×).

We also plot the convergence curves of three solvers in Fig. 10,

where we visualize the variation of the total energy (Eq. (1)) of one

frame that needs the most iterations when the Young’s modulus is

set as 5 MPa, 15 MPa, and 30 MPa. Clearly, the first-order method

like gradient descent is sensitive to the stiffness of the simulation.

On the other hand, our method uses local curvature information at

each stencil making it more resilient to stiffer problems. To further

validate this, Fig. 11 shows how iteration counts vary when the

system matrix has different condition numbers. We evenly sample

100 frames during the simulation of Fig. 9, and corelate the variation

of the iteration counts and the corresponding matrix condition

number.

Our method produces consistent results under different tessella-

tions. As shown in Fig. 12, we simulate a rectangular beam model

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

Second-order Stencil Descent for Interior-point Hyperelasticity • 11

Fig. 12. The beam model with different tessellations. The rectangular

beam model with different tessellations is bent under gravity. Our solver

delivers consistent results with different mesh qualities.

discretized with different meshes. From right to left, the ratios be-

tween the longest and the shortest edges are 0.7, 0.45, 0.2, and 0.1

respectively. The final equilibrium shapes of the beam however are

very similar to each other.

8.2 Ablation Study

Next, we show an ablation study to explain how each module along

our pipeline contributes to the overall performance improvement.

The study is based on a representative scenario with a dragon hitting

a U-shape collider (Fig. 13). The dragon has one million elements

and 100K faces on the surface. If we use a Jacobi-style sweep, which

solves all stencils in parallel and averages the shared DOFs after-

wards, 249 iterations are needed for one step. We also implement

Vivace [Fratarcangeli et al. 2016], the state-of-the-art GPU-based

Gauss-Seidel coloring, to update the global Δ𝑥 . Vivace converges

faster than the Jacobi sweep using 168 iterations. Nevertheless, our

hybrid sweep strategy only needs 97 iterations. In this test, we

pre-compute three complementary color schemes, and there are 15

colors in each scheme. We call Jacobi or Gauss-Seidel sweep here to

only suggest different strategies to integrate stencil-wise displace-

ments to the global displacement. They should not be confused with

linear Jacob or Gauss-Seidel solvers [Fratarcangeli et al. 2016; Wang

2015], which would otherwise need several thousands of iterations

for one time step.

The total calculation of our hybrid sweep is heavier than a Gauss-

Seidel iteration because we relax stencils in other colors too. Fortu-

nately, those extra computations mostly run at unoccupied CUDA

threads. Therefore, we only observe a 3% − 5% slowdown compared

with a Gauss-Seidel sweep.

The adoption of local CCD saves the overall CCD time by 25%.

More importantly, local CCD eases the TOI locking induced by small

global TOI (i.e., see Fig. 3), which gives 20% overall speedup. Finally,

the warm-start step further pushes the computational time to a

single digit (6.7 sec). In this example, the warm start only needs

three iterations, which takes 88 ms on the GPU. This lightweight

process offers a 70% performance jump. As a baseline, the original

CPU IPC takes 390 sec to complete one time step for this test, and

our method is 58× faster.

0

10

20

30

40

50

60

70

80

90

100

P
er-step

 co
m

p
u

tatio
n

 tim
e (sec)

Jaco
b

i sw
eep

 +
 reg

u
lar C

C
D

G
au

ss-S
eid

el sw
eep

 +
 reg

u
lar C

C
D

H
y

b
rid

 sw
eep

 +
 reg

u
lar C

C
D

H
y

b
rid

 sw
eep

 +
 lo

cal C
C

D

H
y

b
rid

 sw
eep

 +
 lo

cal C
C

D

+
 w

arm
 start

88.3

64.6

45.7

32.4

6.7

Fig. 13. Dragon in U. We conduct an ablation study. The dragon model

has one million elements and falls onto a U-shape collider. CPU-based IPC

uses 390 sec to simulate one time step (Δ𝑡 = 1/100 sec). A Jacobi-like sweep

using stencil descent will need 88.3 sec. Switching to Vivace [Fratarcangeli

et al. 2016] lows the time to 64.6 sec. Our hybrid sweep strategy further

reduces the computation time to 45.7 sec. With the help from local CCD

and warm start, we manage to improve the performance to 6.7 sec, which

is 13× faster than the naïve implementation.

Fig. 14. A barbarian ship. A soft barbarian ship with 487K elements falls on

the spiral stair. The ship has complex and concave geometry. Its interaction

with the stair produces interesting animations. Being an interior-point-

based method, our simulation guarantees all triangles on the surface are

free of intersection and is 91× faster than the vanilla IPC.

8.3 Efficient Simulation for Complex Collisions

Our method is based on the interior-point method and inherits

all the merits of IPC including the algorithmic guarantee of be-

ing interpenetration-free. Two such examples are reported here. In

Fig. 14, a soft barbarian ship slides down along a spiral stair. The

complex geometry of the ship constantly collides and interacts with

the handrails of the stair (with 58K triangles on the surface). It even-

tually gets stuck on the stair by frictional contacts. The barbarian

ship has 487K elements, and our method takes 12.5 sec to simulate

one step while Newton-based IPC needs about 20 mins on average.

This is an over 90× speedup.

Another challenging example is shown in Fig. 15, where a puffer

ball falls into an elastic chain net. The net is made of 616 rubber

rings, which are mutually coupled via contacts. Each ring has 559

elements and 220 triangles on the surface. Such a network of elastic

bodies further interacts with the puffer ball, which has 610K ele-

ments and 162K surface triangles. During the simulation, the soft

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

12 • Lei Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, and Yin Yang

Fig. 15. A puffer ball meets an elastic chain net. Contacts and collisions between a soft puffer ball and a dense elastic chain net are difficult to be processed

robustly. Many close-to-zero TOIs are generated during the simulation, which cause TOI locking and make CPU IPC cumbersome. Our method delivers both

quality and efficiency for this hard simulation problem. In this experiment, the puffer ball has 610K elements, and the net has 344K elements on 616 elastic

rings. Our method uses 117 sec on average to simulate one step, while the original IPC needs over 2 hours.

Fig. 16. Codimensional stencil descent. Our algorithm is versatile, and can robustly handle codimensional simulations. To validate the capability, we

simulate high-resolution interactions between a piece of tablecloth (155K triangles) and two bone dragons (145K elements per dragon) on the spiky surface.

The cloth is modeled as a neo-Hookean shell. Under a strong wind field, it gets in contact with the skeleton of the dragon tightly, yielding detailed wrinkles. In

this experiment, our method runs 72× faster than codimensional IPC [Li et al. 2021b].

strings on the puffer ball densely entangle the rings on the net. Such

interweaving contacts frequently lead to TOI locking and make

global displacement update less effective. On the other hand, our

method is both robust and efficient. In this example, our method is

58× faster than IPC.

8.4 Versatility for Heterogeneous Models

The good convergence of our method makes it an ideal choice for

hybrid models with heterogeneous materials. In Fig. 1, we increase

the stiffness of the ship body and add another barbarian ship into

the test. If one chooses to use gradient descent [Wang and Yang

2016], the average iteration number will go up by at least one order

(well above ten thousand iterations). On the other hand, our method

only needs about 100 iterations on average. As we can see from

the figure, the animation is of high-quality with an acceleration

of two orders (129×) compared with CPU IPC. For this test, our

method is even faster than medial IPC [Lan et al. 2021] by about

30%, which is a reduced simulation algorithm. We find that the

conversion between subspace and fullspace coordinates is a major

bottleneck for reduced models. However, model reduction simplifies

the collision processing and much fewer iterations are needed.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

Second-order Stencil Descent for Interior-point Hyperelasticity • 13

Fig. 17. Scalability test. As a stress test, we simulate a large-scale scenario with five falling puffer balls. The total number of elements exceeds three million,

and there are over two million simulation DOFs. The simulation of this scale becomes practically impossible using direct solvers even with 128G CPU memory.

Therefore, we have to use AMGCL for each Newton solve. On the other hand, our method can deal with this stress test without any problems. On average, our

method uses less than five minutes to complete one time step while AMGCL could needs days.

Fig. 18. Hybrid simulation. Our method can well handle simulations with

both rigid and deformable objects. In this experiment, the chain net is

nearly rigid, and each ring is modeled as a stiff affine body. The material on

the helicopter is also heterogenous with (20×) stiffer rotor blades and soft

cabins. Our method brings a speedup of over 122× faster than CPU based

solvers [Lan et al. 2022a].

In the experiment of Fig. 18, we make the chain net nearly rigid

using affine body dynamics (ABD). The helicopter model also mixes

stiff (rotor blades) and soft (the body of the helicopter) components.

The blades are 50× stiffer. Each helicopter consists of 280K elements,

and there are six helicopters in the test. Our method simulates such

hybrid scenario of both rigid and deformable objects efficiently

without any interpenetration. In this example, our method is 122×

faster than ABD [Lan et al. 2022a] and 15× faster than GPU gradient

descent.

Our method can also robustly handle codimensional geometry

like thin shell and cloth. As demonstrated in Fig. 16, two bone drag-

ons drop on the spiky terrain. Each bone dragon has 145K elements.

After that, we cover the scene with a wind piece of tablecloth with

156K triangles. A strong wild field is then applied pushing cloth

tightly in contact with the bone dragon. In this example, we use

the full neo-Hookean membrane model for the cloth. Because the

simulation involves both tetrahedral and triangular elements, we

expand each triangle on the cloth with a virtual vertex so that the

local system is still 12-dimension. Doing so balances the compu-

tation at threads. In this example, our method is 72× faster than

codimensional IPC [Li et al. 2021b].

8.5 Scalability Test

Our method can be conveniently implemented on GPU (or any

parallel platforms) in a matrix-free manner. This feature makes it

quite scalable. Hereby, we report a stress test of five falling puffer

balls (Fig. 17). The total number of elements in this example is over

3.1M. The direct Cholesky factorization becomes extremely slow

for this test, which needs dozens of hours to simulate one time

step. Therefore, we have to resort to the multigrid method (e.g.,

AMGCL [Demidov 2019]) for the global Newton solve, which still

consumes over 30G CPU memory during the simulation. On the

other hand, our solver can right fit into 24G GPU memory of 3090.

Under the default AMGCL setting, our method is over 500× faster.

This is just an estimation as we are never able to finish this exper-

iment on the CPU using AMGCL. When puffer balls collide with

each other, AMGCLwill need several days to finish the computation

of one time step, while our method only needs minutes.

8.6 CPU-GPU Comparison

The speedup of our method does not come from material simplifi-

cation or early termination of the optimization. In order to justify

the accuracy of our method, we carefully compare the result of

our method with CPU IPC frame-by-frame and side-by-side. In the

example shown in Fig. 19, a long strand of noodle drops into a glass

bowl. The noodle has over 342K elements, and it entangles with

itself during the falling. As we use a local 𝑑 at each colliding pair

(i.e., Eq. (11)), the contact behavior our method is slightly different

from the original IPC. The results using both methods are of high

quality and free of any interpenetration. Another similar experiment

is reported in Fig. 20. Despite small differences of the final contact

between the puffer ball and the bottom of the bowl, the resulting

animations using our method and CPU IPC are nearly identical.

Lastly, we show a quantitative comparison between our method

and CPU IPC to compress a Voronoi cube. The cube embeds an

irregular grid. When being compressed, a lot of self-collisions occur.

We slowly push the top of the cube downward and compare our

simulation with the results obtained using the Newton’s method

frame by frame. Per-vertex displacement difference is visualized

when the maximum compression (60%) is reached (see Fig. 21, right).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

14 • Lei Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, and Yin Yang

Frame 50 Frame 100 Frame 150 Frame 200 Frame 250 Frame 300

C
P

U
 I

P
C

O
u

r
m

e
th

o
d

Fig. 19. A long noodle. A long strand of noodle drops into a transparent bowl. The noodle has 342K elements. Due to the modification of 𝑑 , our simulation

(bottom) is slightly different from the original IPC simulation (top). Both animations are plausible and free of any interpenetration. Our method is 25× faster.

C
P

U
 I

P
C

O
u

r
m

e
th

o
d

Bottom view

Fig. 20. A puffer ball in the bowl. Another side-by-side comparison be-

tween CPU IPC and our method. The resulting animations of two falling

puffer balls (610K elements) are nearly the same using both methods. From

the bottom view, we can see the final contact patterns, when the puffer ball

comes to a stop, are slightly different.

Fig. 21. Compression comparison.We quantitatively compare the simula-

tion accuracy using our method with Newton’s method when compressing

a Voronoi cube. Many self-collisions are generated during the compression,

and they are accurately captured by barrier functions. The compression

ratio is 60%, and the relative error is visualized using the colormap.

Our result is nearly identical to Newton’s solution: The maximum

relative error is smaller than 10−3 but our method is 35× faster.

9 LIMITATION AND CONCLUSION

In this paper, we show that the interior-point method can be well

handled and accelerated on the GPU. In elastic body simulation,

CCD must be followed after each displacement update to ensure

barrier functions are well-defined. Therefore, the GPU interior point

calls for a different strategy for convergence-efficiency trade-off. We

observe that local second-order methods are effective in relaxing

barrier-in-the-loop simulations. While this computation is more

costly than the first-order approaches, its improved convergence

outweighs this drawback in collision-rich tasks. Based on this par-

allelization modality, we systematically customize the simulation

pipeline including the hybrid sweep scheme that can better harvest

the capacity of the modern GPU, the local CCD mechanism that

avoids TOI locking, and the warm start that softens barriers before

the optimization kicks in.

Our method also has some limitations that lead to several inter-

esting future research directions. First, we note that the first-order

method is still competitive when collisions are not massively active.

Combining first-order relaxation with second-order ones at different

stages of the simulation seems to be a promising idea. Similar to

IPC [Li et al. 2020], our method is a primal interior-point implemen-

tation. It is known that primal-dual interior point could be more

effective for heterogenous systems [Macklin et al. 2020]. We will in-

vestigate GPU-based primal-dual interior-point solutions to further

enhance the solver’s performance. For highly stiff instances, our

methodmay still need a large number of iterations. Subspace precon-

ditioning should be a good remedy to this issue. Our method is more

effective and beneficial for large-scale simulations with hundreds

of thousands or millions of DOFs. The advantage of our method be-

comes less obvious for smaller problems. For instance, our method

is only about twice faster than CPU IPC for simulations of 10K

DOFs. We also note that local relaxation is mathematically equiva-

lent to (nonlinear) convolution, which suggests its close connection

to learning-based methods. The potential of using the emerging

neural processing unit (NPU) [Yin et al. 2017] for simulation is a

worthy future topic.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

Second-order Stencil Descent for Interior-point Hyperelasticity • 15

ACKNOWLEDGMENTS

We thank reviewers for their detailed and constructive comments.

Yin Yang is partially supported by NSf under grant numbers of

2301040, 2008915, 2244651, 2008564. Chenfanfu Jiang is supported

in part by NSF CAREER 2153851, CCF 2153863, ECCS-2023780.

REFERENCES
Mihai Anitescu and Florian A Potra. 1997. Formulating dynamic multi-rigid-body con-

tact problems with friction as solvable linear complementarity problems. Nonlinear
Dynamics 14, 3 (1997), 231ś247.

David Baraff. 1989. Analytical methods for dynamic simulation of non-penetrating
rigid bodies. In Proceedings of the 16th annual conference on Computer graphics and
interactive techniques. 223ś232.

David Baraff and AndrewWitkin. 1992. Dynamic simulation of non-penetrating flexible
bodies. ACM SIGGRAPH Computer Graphics 26, 2 (1992), 303ś308.

David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings
of the 25th annual conference on Computer graphics and interactive techniques. 43ś54.

Jernej Barbič and Yili Zhao. 2011. Real-time large-deformation substructuring. ACM
transactions on graphics (TOG) 30, 4 (2011), 1ś8.

Jernej Barbič and Doug L James. 2005. Real-time subspace integration for St. Venant-
Kirchhoff deformable models. In ACM Trans. Graph. (TOG), Vol. 24. ACM, 982ś990.

Jan Bender, Matthias Müller, and Miles Macklin. 2017. A survey on position based
dynamics, 2017. Proceedings of the European Association for Computer Graphics:
Tutorials (2017), 1ś31.

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. 2003. Sparse matrix solvers
on the GPU: conjugate gradients and multigrid. ACM transactions on graphics (TOG)
22, 3 (2003), 917ś924.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective dynamics: Fusing constraint projections for fast simulation. ACM trans-
actions on graphics (TOG) 33, 4 (2014), 1ś11.

Robert Bridson, Ronald Fedkiw, and JohnAnderson. 2002. Robust treatment of collisions,
contact and friction for cloth animation. In Proceedings of the 29th annual conference
on Computer graphics and interactive techniques. 594ś603.

Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002a.
Interactive skeleton-driven dynamic deformations. In ACM Trans. Graph. (TOG),
Vol. 21. ACM, 586ś593.

Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002b. A
multiresolution framework for dynamic deformations. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics symposium on Computer animation. 41ś47.

Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A simple geometric
model for elastic deformations. ACM transactions on graphics (TOG) 29, 4 (2010),
1ś6.

Kwang-Jin Choi and Hyeong-Seok Ko. 2005a. Research problems in clothing simulation.
Computer-aided design 37, 6 (2005), 585ś592.

Min Gyu Choi and Hyeong-Seok Ko. 2005b. Modal warping: Real-time simulation of
large rotational deformation and manipulation. IEEE Trans. on Visualization and
Computer Graphics 11, 1 (2005), 91ś101.

Jinhyun Choo, Yidong Zhao, Yupeng Jiang, Minchen Li, Chenfanfu Jiang, and Kenichi
Soga. 2021. A barrier method for frictional contact on embedded interfaces.
arXiv:2107.05814 [math.NA]

Michael B Cline and Dinesh K Pai. 2003. Post-stabilization for rigid body simulation
with contact and constraints. In 2003 IEEE International Conference on Robotics and
Automation (Cat. No. 03CH37422), Vol. 3. IEEE, 3744ś3751.

Peter A Cundall and Otto DL Strack. 1979. A discrete numerical model for granular
assemblies. geotechnique 29, 1 (1979), 47ś65.

Ian J. Davis. 1992. A fast radix sort. The computer journal 35, 6 (1992), 636ś642.
Denis Demidov. 2019. AMGCL: An efficient, flexible, and extensible algebraic multigrid

implementation. Lobachevskii Journal of Mathematics 40, 5 (2019), 535ś546.
Evan Drumwright. 2007. A fast and stable penalty method for rigid body simulation.

IEEE transactions on visualization and computer graphics 14, 1 (2007), 231ś240.
Kenny Erleben. 2007. Velocity-based shock propagation for multibody dynamics

animation. ACM Transactions on Graphics (TOG) 26, 2 (2007), 12śes.
Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M Kaufman. 2021. Guaranteed

globally injective 3D deformation processing. ACM Trans. Graph.(TOG) 40, 4 (2021).
Charbel Farhat, Michael Lesoinne, and Kendall Pierson. 2000. A scalable dual-primal

domain decomposition method. Numerical linear algebra with applications 7, 7-8
(2000), 687ś714.

François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K Pai. 2011. Sparse
meshless models of complex deformable solids. In ACM Trans. Graph. (TOG), Vol. 30.
ACM, 73.

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,
Chenfanfu Jiang, Denis Zorin, Danny M Kaufman, and Daniele Panozzo. 2021.
Intersection-free rigid body dynamics. ACM Transactions on Graphics 40, 4 (2021),

183.
Susan Fisher and Ming C Lin. 2001. Fast penetration depth estimation for elastic bodies

using deformed distance fields. In Proceedings 2001 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the
Next Millennium (Cat. No. 01CH37180), Vol. 1. IEEE, 330ś336.

Marco Fratarcangeli and Fabio Pellacini. 2015. Scalable partitioning for parallel position
based dynamics. In Computer Graphics Forum, Vol. 34. Wiley Online Library, 405ś
413.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A practical
gauss-seidel method for stable soft body dynamics. ACM Transactions on Graphics
(TOG) 35, 6 (2016), 1ś9.

Marco Fratarcangeli, Huamin Wang, and Yin Yang. 2018. Parallel iterative solvers for
real-time elastic deformations. In SIGGRAPH Asia 2018 Courses. 1ś45.

Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Dinesh K Pai. 2011. Frame-
based elastic models. ACM Trans. Graph. (TOG) 30, 2 (2011), 15.

Eitan Grinspun, Petr Krysl, and Peter Schröder. 2002. CHARMS: A simple framework
for adaptive simulation. ACM transactions on graphics (TOG) 21, 3 (2002), 281ś290.

Gaël Guennebaud, Benoit Jacob, et al. 2010. Eigen. URl: http://eigen. tuxfamily. org
(2010).

Shoichi Hasegawa, Nobuaki Fujii, Katsuhito Akahane, Yasuharu Koike, and Makoto
Sato. 2004. Real-time rigid body simulation for haptic interactions based on contact
volume of polygonal objects. Transactions of the Society of Instrument and Control
Engineers 40, 2 (2004), 122ś131.

Kris K Hauser, Chen Shen, and James F O’Brien. 2003. Interactive Deformation Using
Modal Analysis with Constraints.. In Graphics Interface, Vol. 3. 16ś17.

Florian Hecht, Yeon Jin Lee, Jonathan R Shewchuk, and James F O’Brien. 2012. Updated
sparse cholesky factors for corotational elastodynamics. ACM Trans. Graph. (TOG)
31, 5 (2012), 123.

Thomas JR Hughes. 2012. The finite element method: linear static and dynamic finite
element analysis. Courier Corporation.

Tommy R Jensen and Bjarne Toft. 2011. Graph coloring problems. John Wiley & Sons.
Couro Kane, Jerrold E Marsden, Michael Ortiz, and Matthew West. 2000. Variational

integrators and the Newmark algorithm for conservative and dissipative mechanical
systems. International Journal for numerical methods in engineering 49, 10 (2000),
1295ś1325.

DannyM Kaufman, Timothy Edmunds, and Dinesh K Pai. 2005. Fast frictional dynamics
for rigid bodies. In ACM SIGGRAPH 2005 Papers. 946ś956.

Theodore Kim and Doug L James. 2009. Skipping steps in deformable simulation with
online model reduction. In ACM Trans. Graph. (TOG), Vol. 28. ACM, 123.

Theodore Kim and Doug L James. 2012. Physics-based character skinning using mul-
tidomain subspace deformations. IEEE transactions on visualization and computer
graphics 18, 8 (2012), 1228ś1240.

Laurent Labous, Anthony D Rosato, and Rajesh N Dave. 1997. Measurements of
collisional properties of spheres using high-speed video analysis. Physical review E
56, 5 (1997), 5717.

Lei Lan, Danny M Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022a. Affine
body dynamics: Fast, stable & intersection-free simulation of stiff materials. arXiv
preprint arXiv:2201.10022 (2022).

Lei Lan, Ran Luo, Marco Fratarcangeli, Weiwei Xu, HuaminWang, Xiaohu Guo, Junfeng
Yao, and Yin Yang. 2020. Medial Elastics: Efficient and Collision-Ready Deformation
via Medial Axis Transform. ACM Transactions on Graphics (TOG) 39, 3 (2020), 1ś17.

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang.
2022b. Penetration-free projective dynamics on the GPU. ACM Transactions on
Graphics (TOG) 41, 4 (2022), 1ś16.

Lei Lan, Yin Yang, Danny Kaufman, Junfeng Yao, Minchen Li, and Chenfanfu Jiang.
2021. Medial IPC: accelerated incremental potential contact with medial elastics.
ACM Transactions on Graphics (TOG) 40, 4 (2021), 1ś16.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020. Incremental potential
contact: Intersection- and inversion-free, large-deformation dynamics. ACM trans-
actions on graphics 39, 4 (2020).

Minchen Li, Ming Gao, Timothy Langlois, Chenfanfu Jiang, and Danny M. Kaufman.
2019. Decomposed Optimization Time Integrator for Large-Step Elastodynamics.
ACM Transactions on Graphics 38, 4 (2019).

Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021b. Codimensional In-
cremental Potential Contact. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 170
(2021).

Xuan Li, Yu Fang, Minchen Li, and Chenfanfu Jiang. 2021a. BFEMP: Interpenetration-
free MPMśFEM coupling with barrier contact. Computer Methods in Applied Me-
chanics and Engineering (2021), 114350.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-newton methods for
real-time simulation of hyperelastic materials. Acm Transactions on Graphics (TOG)
36, 3 (2017), 1ś16.

Ran Luo,Weiwei Xu, Tianjia Shao, Hongyi Xu, and Yin Yang. 2019. Accelerated complex-
step finite difference for expedient deformable simulation. ACM Transactions on
Graphics (TOG) 38, 6 (2019), 1ś16.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

https://arxiv.org/abs/2107.05814

16 • Lei Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, and Yin Yang

Miles Macklin, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Stefan Jeschke,
and Tae-Yong Kim. 2020. Primal/dual descent methods for dynamics. In Computer
Graphics Forum, Vol. 39. Wiley Online Library, 89ś100.

Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Transactions on
Graphics (TOG) 32, 4 (2013), 1ś12.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based
simulation of compliant constrained dynamics. In Proceedings of the 9th International
Conference on Motion in Games. 49ś54.

Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong Chentanez, Stefan
Jeschke, and Matthias Müller. 2019. Small Steps in Physics Simulation. In Eurograph-
ics/ ACM SIGGRAPH Symposium on Computer Animation, Christopher Batty and Jin
Huang (Eds.). ACM. https://doi.org/10.1145/3309486.3340247

Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross.
2010. Unified simulation of elastic rods, shells, and solids. In ACM Trans. Graph.
(TOG), Vol. 29. ACM, 39.

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-based elastic materials. In ACM SIGGRAPH 2011 papers. 1ś8.

Sanjay Mehrotra. 1992. On the implementation of a primal-dual interior point method.
SIAM Journal on optimization 2, 4 (1992), 575ś601.

Ullrich Meier, Oscar López, Carlos Monserrat, Mari C Juan, and M Alcaniz. 2005. Real-
time deformable models for surgery simulation: a survey. Computer methods and
programs in biomedicine 77, 3 (2005), 183ś197.

Brian Mirtich and John Canny. 1995. Impulse-based simulation of rigid bodies. In
Proceedings of the 1995 symposium on Interactive 3D graphics. 181śff.

MatthewMoore and JaneWilhelms. 1988. Collision detection and response for computer
animation. In ACM Siggraph Computer Graphics, Vol. 22. ACM, 289ś298.

Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara Cut-
ler. 2002. Stable real-time deformations. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. 49ś54.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109ś118.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.
Meshless deformations based on shape matching. In ACM Trans. Graph. (TOG),
Vol. 24. ACM, 471ś478.

Matthias Müller, Miles Macklin, Nuttapong Chentanez, Stefan Jeschke, and Tae-Yong
Kim. 2020. Detailed rigid body simulation with extended position based dynamics.
In Computer Graphics Forum, Vol. 39. Wiley Online Library, 101ś112.

Alexander Naitsat, Yufeng Zhu, and Yehoshua Y. Zeevi. 2020. Adaptive Block Coordinate
Descent for Distortion Optimization. Computer Graphics Forum 39, 6 (2020), 360ś
376.

Rahul Narain, Matthew Overby, and George E Brown. 2016. ADMM ⊇ projective
dynamics: fast simulation of general constitutivemodels.. In Symposium on Computer
Animation, Vol. 1. 2016.

Alex Pentland and John Williams. 1989. Good vibrations: Modal dynamics for graphics
and animation. In SIGGRAPH Comput. Graph., Vol. 23. ACM.

V Popescu, Grigore Burdea, and Mourad Bouzit. 1999. Virtual reality simulation
modeling for a haptic glove. In Proceedings Computer Animation 1999. IEEE, 195ś
200.

Siyuan Shen, Yang Yin, Tianjia Shao, He Wang, Chenfanfu Jiang, Lei Lan, and Kun
Zhou. 2021. High-order Differentiable Autoencoder for Nonlinear Model Reduction.
arXiv preprint arXiv:2102.11026 (2021).

Jonathan Richard Shewchuk et al. 1994. An introduction to the conjugate gradient
method without the agonizing pain.

Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids:
a practitioner’s guide to theory, discretization and model reduction. In ACM SIG-
GRAPH 2012 Courses. ACM, 20.

Horst D Simon. 1992. Parallel computational fluid dynamics-implementations and results.
Technical Report. National Aeronautics and Space Administration, Moffett Field,
CA (United

Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. 2015. Smoothed aggregation
multigrid for cloth simulation. ACM Trans. Graph. (TOG) 34, 6 (2015), 245.

Min Tang, Dinesh Manocha, Miguel A Otaduy, and Ruofeng Tong. 2012. Continuous
penalty forces. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1ś9.

Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust
quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation. 181ś190.

Demetri Terzopoulos and Kurt Fleischer. 1988. Deformable models. The visual computer
4, 6 (1988), 306ś331.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically de-
formable models, In Proceedings of the 14th annual conference on Computer graph-
ics and interactive techniques. ACM Siggraph Computer Graphics 21, 4, 205ś214.

Demetri Terzopoulos, Andrew Witkin, and Michael Kass. 1988. Constraints on de-
formable models: Recovering 3D shape and nonrigid motion. Artificial intelligence
36, 1 (1988), 91ś123.

Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger, Gabriel Zachmann, Laks
Raghupathi, Arnulph Fuhrmann, M-P Cani, François Faure, Nadia Magnenat-
Thalmann, Wolfgang Strasser, et al. 2005. Collision detection for deformable objects.
In Computer graphics forum, Vol. 24. Wiley Online Library, 61ś81.

Quoc-Minh Ton-That, Paul G Kry, and Sheldon Andrews. 2022. Parallel block Neo-
Hookean XPBD using graph clustering. Computers & Graphics (2022).

Quoc-Minh Ton-That, Paul G Kry, and Sheldon Andrews. 2023. Parallel block Neo-
Hookean XPBD using graph clustering. Computers & Graphics 110 (2023), 1ś10.

Takuya Umedachi, Vishesh Vikas, and Barry A Trimmer. 2013. Highly deformable
3-D printed soft robot generating inching and crawling locomotions with variable
friction legs. In 2013 IEEE/RSJ international conference on Intelligent Robots and
Systems. IEEE, 4590ś4595.

Juraj Vanek, Jorge A Garcia Galicia, and Bedrich Benes. 2014. Clever support: Efficient
support structure generation for digital fabrication. In Computer graphics forum,
Vol. 33. Wiley Online Library, 117ś125.

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and
Yajuan Wang. 2014. Intel math kernel library. In High-Performance Computing on
the Intel® Xeon Phi™. Springer, 167ś188.

Huamin Wang. 2015. A chebyshev semi-iterative approach for accelerating projective
and position-based dynamics. ACM Transactions on Graphics (TOG) 34, 6 (2015),
1ś9.

HuaminWang. 2018. Rule-free sewing pattern adjustment with precision and efficiency.
ACM Transactions on Graphics (TOG) 37, 4 (2018), 1ś13.

Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on the
GPU. ACM Trans. Graph. (TOG) 35, 6 (2016), 212.

Xinlei Wang, Minchen Li, Yu Fang, Xinxin Zhang, Ming Gao, Min Tang, Danny M
Kaufman, and Chenfanfu Jiang. 2020. Hierarchical optimization time integration
for cfl-rate mpm stepping. ACM Transactions on Graphics (TOG) 39, 3 (2020), 1ś16.

Rachel Weinstein, Joseph Teran, and Ronald Fedkiw. 2006. Dynamic simulation of
articulated rigid bodies with contact and collision. IEEE Transactions on Visualization
and Computer Graphics 12, 3 (2006), 365ś374.

Dominic JA Welsh and Martin B Powell. 1967. An upper bound for the chromatic
number of a graph and its application to timetabling problems. Comput. J. 10, 1
(1967), 85ś86.

Louis J Wicker and William C Skamarock. 2002. Time-splitting methods for elastic
models using forward time schemes. Monthly weather review 130, 8 (2002), 2088ś
2097.

Stephen J Wright. 2015. Coordinate descent algorithms. Mathematical Programming
151, 1 (2015), 3ś34.

Botao Wu, ZhendongWang, and Huamin Wang. 2022. A GPU-based multilevel additive
schwarz preconditioner for cloth and deformable body simulation. ACMTransactions
on Graphics (TOG) 41, 4 (2022), 1ś14.

Longhua Wu, Botao Wu, Yin Yang, and Huamin Wang. 2020. A Safe and Fast Repulsion
Method for GPU-based Cloth Self Collisions. ACM Transactions on Graphics (TOG)
40, 1 (2020), 1ś18.

Xiaofeng Wu, Rajaditya Mukherjee, and Huamin Wang. 2015. A unified approach for
subspace simulation of deformable bodies in multiple domains. ACM Transactions
on Graphics (TOG) 34, 6 (2015), 1ś9.

Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A scalable galerkin multigrid
method for real-time simulation of deformable objects. ACM Transactions on Graph-
ics (TOG) 38, 6 (2019), 1ś13.

Hongyi Xu, Yili Zhao, and Jernej Barbič. 2014. Implicit multibody penalty-
baseddistributed contact. IEEE transactions on visualization and computer graphics
20, 9 (2014), 1266ś1279.

Yin Yang, Dingzeyu Li, Weiwei Xu, Yuan Tian, and Changxi Zheng. 2015. Expediting
precomputation for reduced deformable simulation. ACM Trans. Graph. (TOG) 34, 6
(2015).

Yin Yang, Weiwei Xu, Xiaohu Guo, Kun Zhou, and Baining Guo. 2013. Boundary-aware
multidomain subspace deformation. IEEE transactions on visualization and computer
graphics 19, 10 (2013), 1633ś1645.

Shouyi Yin, Peng Ouyang, Shibin Tang, Fengbin Tu, Xiudong Li, Leibo Liu, and Shaojun
Wei. 2017. A 1.06-to-5.09 TOPS/W reconfigurable hybrid-neural-network processor
for deep learning applications. In 2017 Symposium on VLSI Circuits. IEEE, C26śC27.

Cem Yuksel. 2022. A Fast & Robust Solution for Cubic & Higher-Order Polynomials. In
ACM SIGGRAPH 2022 Talks. 1ś2.

Xin-Yuan Zhao, Defeng Sun, and Kim-Chuan Toh. 2010. A Newton-CG augmented
Lagrangian method for semidefinite programming. SIAM Journal on Optimization
20, 4 (2010), 1737ś1765.

Jun Zheng, Suhail S Saquib, Ken Sauer, and Charles A Bouman. 2000. Parallelizable
Bayesian tomography algorithms with rapid, guaranteed convergence. IEEE Trans-
actions on Image Processing 9, 10 (2000), 1745ś1759.

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient
multigrid method for the simulation of high-resolution elastic solids. ACM Trans.
Graph. (TOG) 29, 2 (2010), 16.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2023.

https://doi.org/10.1145/3309486.3340247

	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm Overview & Principal Design
	4 Second-order Stencil Descent
	4.1 Projection-free Stencil-wise Newton-CG
	4.2 Local CCD & Inversion Search

	5 Parallelization
	5.1 Hybrid Sweep
	5.2 Complementary Coloring

	6 Warm Start using customized barriers
	7 Implementation Details
	7.1 Parallel Hessian-vector Product via CSFD
	7.2 Conservative Barrier Update

	8 Experimental Results
	8.1 Convergence Benchmark
	8.2 Ablation Study
	8.3 Efficient Simulation for Complex Collisions
	8.4 Versatility for Heterogeneous Models
	8.5 Scalability Test
	8.6 CPU-GPU Comparison

	9 Limitation and Conclusion
	Acknowledgments
	References

