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Figure 1: Coke foam. By representing foam geometry using a weighted Voronoi diagram, our particle-based algorithm can efficiently provide
bubble features in existing liquid animation. This example contains up to 100K bubbles and each frame takes less than 20 seconds to simulate.

Abstract

Bubbles and foams are important features of liquid surface phe-
nomena, but they are difficult to animate due to their thin films and
complex interactions in the real world. In particular, small bub-
bles (having diameter <1cm) in a dense foam are highly affected
by surface tension, so their shapes are much less deformable com-
pared with larger bubbles. Under this small bubble assumption, we
propose a more accurate and efficient particle-based algorithm to
simulate bubble dynamics and interactions. The key component of
this algorithm is an approximation of foam geometry, by treating
bubble particles as the sites of a weighted Voronoi diagram. The
connectivity information provided by the Voronoi diagram allows
us to accurately model various interaction effects among bubbles.
Using Voronoi cells and weights, we can also explicitly address the
volume loss issue in foam simulation, which is a common problem
in previous approaches. Under this framework, we present a set
of bubble interaction forces to handle miscellaneous foam behav-
iors, including foam structure under Plateau’s laws, clusters formed
by liquid surface bubbles, bubble-liquid and bubble-solid coupling,
bursting and coalescing. Our experiment shows that this method
can be straightforwardly incorporated into existing liquid simula-
tors, and it can efficiently generate realistic foam animations, some
of which have never been produced in graphics before.
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1 Introduction

Enriching liquid animation with bubbles and foams can significant-
ly improve its realism. However, bubbles and foams are difficult to
simulate due to their different physical properties in the real world,
such as surface tension of the liquid, liquid volume percentage, and
bubble sizes. For example, small bubbles in a microfoam of cof-
fee latte are creamy and liquid-like, while bubbles in a soap foam
are larger and more transparent. Bubbles also have complex inter-
action behaviors, including clustering, coalescing, deforming, and
interacting with liquids or solids. Physical nature of these phenom-
ena has attracted attention of mathematicians, physicists and com-
puter scientists. A considerable amount of research [Brakke 1992;
Gardiner et al. 2000; Weaire and Hutzler 2001; Kim et al. 2007]
was done to form a mathematical description of foam geometry
and to model dynamic foam properties, such as surface evolution
and topological changes in the foam structure. Being physically ac-
curate, these models are often not directly applicable to handle a
large number of bubbles, because of their computational cost.

Alternatively, particle-based approaches [Kück et al. 2002; Green-
wood and House 2004; Cleary et al. 2007] have been proposed in
graphics to efficiently simulate liquid bubbles and foams, assum-
ing that bubble surface deformation is less noticeable in a dense
foam. This is a valid assumption for small bubbles, not only be-
cause of their small scales, but also because of the larger surface
tension effect that can quickly restore bubble shapes from defor-
mation. In order to model inter-bubble dynamics, these methods
typically treat each bubble as a sphere, and then they apply inter-
action forces whenever two spheres intersect. While this approach
is sufficient for standalone bubbles, it fails to properly capture con-
nectivity when bubbles form clusters and is of limited use in mod-
eling surface-tension-based interaction among bubbles on a liquid
surface. How to maintain volume conservation for each individual
bubble is another challenging problem for these techniques, since
foam geometry and bubble shapes are not explicitly represented.

To solve these problems, we propose a simple and efficient particle-
based algorithm that can simulate realistic bubble interactions in
complex foam scenarios, as shown in Figure 1. The basic idea be-
hind this method is to represent bubbles using weighted points and
gather them into a weighted Voronoi diagram. Our work shows that
the algorithm can benefit from using this diagram in three ways.
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First, it explicitly reveals bubble connectivity. From the weighted
Voronoi diagram, we can directly infer which two bubbles share the
liquid film, and which bubbles are potential candidates for tension-
based interaction. The Voronoi diagram allows us to accurately
model the instability of multiple-bubble intersections that is quick-
ly resolved into triple (in 2D) or quadruple (in 3D) intersections in
the real world. Secondly, it provides a simple and natural approxi-
mation to the actual foam geometry, and it can be directly used for
rendering. Finally, the weighted Voronoi diagram can be used to
explicitly calculate bubble volumes, which is a crucial component
in the volume correction process.

Our system pipeline starts each time step with formulating bub-
ble interaction forces, based on the bubble connectivity informa-
tion provided by the weighted Voronoi diagram. The forces are
then used in an implicit integrator to evolve bubble positions and
velocities over time. After that, it calculates the volume of each
bubble using the Voronoi cell, and compensates volume changes by
adjusting the Voronoi weight. Finally, the system handles bursting
and coalescing effects by performing topological changes, and it
reconstructs the weighted Voronoi diagram for the next time step.

In summary, we propose a novel particle-based algorithm to sim-
ulate bubble interactions in a liquid foam, by making the follow-
ing contributions: 1) a weighted Voronoi representation that models
bubble connectivity and foam geometry; 2) a set of bubble interac-
tion forces that can produce various interaction behaviors; and 3) a
volume correction method for particle-based bubbles. We illustrate
our method with animations of typical real-world foam scenarios,
including clustering, stacking, sticking to liquid or solid surfaces,
bursting and coalescing. We also incorporate this method into a
particle level set liquid simulator, and test its capability of adding
realistic bubbles and foams in liquid animation.

2 Previous Work

Foam Physics. Real-world foams exhibit significantly different
structures and dynamic behaviors due to their physical properties.
A dry foam, in which the liquid volume is typically less than 1 per-
cent of the whole volume, can form a specific structure under laws
discovered by the Belgian physicist Joseph Plateau. Taylor [1976]
later proved that this structure minimizes the bubble surface area
under volume constraints. Different from the dry foam, a wet foam
has more complex structures due to its liquid volume, and it has
been studied in multiple ways [Weaire et al. 1993; Herzhafta et al.
2005; Piazza et al. 2008]. Foam structures can also be classified ac-
cording to their bubble sizes, such as monodisperse foam [Kraynik
et al. 2003] that contains uniformly sized bubbles and polydisperse
foam [Kraynik et al. 2004], in which the bubble size can vary. Com-
pared with foam structure, foam dynamics is a less studied prob-
lem due to the difficulty in observing dynamic behaviors, including
drainage, rheology, coarsening, and merging. A comprehensive s-
tudy on both foam structure and foam dynamics can be found in
Weaire and Hutzler’s book [2001]. In this paper, we focus on simu-
lating rheological and merging behaviors of polydisperse foams, in
both dry and wet cases for graphics applications.

Due to the similarity between the weighted Voronoi diagram and
foam geometry, physicists studied using the diagram to model stat-
ic foam structures [Redenbach et al. 2012] in the past. Although
they also used the diagram to initialize foams in dynamic simula-
tion, they chose to solve bubble dynamics using more sophisticat-
ed models [Kraynik et al. 2004; Brakke 1992] instead, since only
a small set of bubbles were considered in their typical examples.
In contrast, we found the weighted Voronoi diagram can be used
directly in dynamic simulation as well, and it provides a good ap-
proximation to foam structure for a great number of bubbles.

Foam Simulation. The simulation of bubbles and foams in-
volves two aspects: the deformation of individual bubble surfaces,
and the interactions among bubbles, liquids and solids. An ear-
ly example of deformable bubbles is proposed by Brakke [1992].
Durikovic [2001] used a spring mesh to represent bubble surfaces
and approximated interaction forces using an intermolecular Van
der Waals force model. To facilitate topological changes, Kim et
al. [2011] developed a 2D algorithm using the immersed bound-
ary method. Kelager [2009] introduced the ghost bubble technique
to the vertex-based dry foam simulation. Implicit representations,
such as Volume-of-Fluid (VOF), can also be used to simulate de-
formable bubbles, as Hong et al. [2003] and Mihalef et al. [2006]
showed. Zheng et al. [2006] proposed a regional level set method to
implicitly model liquid foams as multi-manifold surfaces. Kim et
al. [2007] addressed the volume loss in the regional level set method
using a volume control technique. While these methods can handle
surface deformation of individual bubbles, they need considerable
computational time to handle a large number of bubbles.

By ignoring surface deformation, particle-based techniques are
specifically developed for handling bubble interactions with the en-
vironment. Durian [1995] first proposed to use a mass-spring model
to animate bubble interactions in 2D. Kück et al. [2002] extended
this idea to 3D, and also developed a way to render Plateau bor-
ders and curved films between contacting bubbles. Greenwood and
House [2004] incorporated the Kück model into a particle-level-
set-based liquid simulator. Bubble interactions may also be approx-
imated by Smoothed Particle Hydrodynamics (SPH) as in [Cleary
et al. 2007; Thürey et al. 2007; Hong et al. 2008], though they
typically do not consider internal foam geometry. While we also
represent bubbles as particles in our system, we improve simula-
tion accuracy by the use of weighted Voronoi diagrams, and we can
handle more bubble interaction behaviors.

Fluid Simulation. Fluid simulation is an important research top-
ic in computer graphics, and various techniques were proposed
for animation purposes, including Eulerian approaches [Foster and
Metaxas 1996; Stam 1999; Enright et al. 2002; Chentanez and
Müller 2011], Smoothed Particle Hydrodynamics (SPH) [Müller
et al. 2003; Adams et al. 2007], Lagrangian-based methods using
meshes [Bargteil et al. 2007; Thürey et al. 2010; Wicke et al. 2010],
and simplified or hybrid algorithms [Losasso et al. 2004; Bargteil
et al. 2006; Wang et al. 2007; Losasso et al. 2008]. Some of these
approaches [Brochu et al. 2010; Sin et al. 2009] also leveraged
Voronoi diagrams for simulation. Since our system provides addi-
tional foam features to liquid animation, it can be straightforwardly
incorporated into any liquid simulator.

3 Bubbles and Foams

A spherical bubble is a three-dimensional ball B(x, r) of radius r
centered at the point x. These spherical bubbles come together to
form a foam. Therefore, the space of the foam is the pointwise u-
nion of a set of balls: ∪Bi. Each spherical bubble Bi in a foam
takes a share of this space, which is called the bubble of Bi. The
center and the radius of a bubble are simply taken as those of its
spherical counterpart. The boundary of a bubble is a set of curved
surface patches called films. These films are formed in a way so
that the total surface area over all bubbles is minimized under vol-
ume constraints, as Taylor [1976] and Sullivan [1998] pointed out.
In particular, the geometry of dry foam, whose liquid volume is
typically less than 1 percent, can be described by Plateau’s laws:

1. Films meet in threes along Plateau borders at angles of 2π/3.
2. Plateau borders meet in fours at angles of cos−1(−1/3).
3. Each bubble film has constant mean curvature.
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(a) Two bubbles resting in the
Plateau equilibrium. The interfacial
film between bubbles is a spherical
patch with radius ri j.

(b) A weighted Voronoi diagram
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Figure 2: Bubble and foam configuration.

Any dry foam geometry not following Plateau laws is unstable, and
the surface tension force will rearrange those bubbles back into the
Plateau equilibrium. Given a pair of contacting bubbles as shown in
Figure 2a, the interfacial film between them is not necessarily pla-
nar and it can be modeled as a patch of sphere whose radius ri j is
calculated as: 1

ri j
= 1

r j
− 1

ri
, in which ri and r j are the radii of the two

bubbles respectively and ri ≥ r j. We can verify that this configura-
tion corresponds to the Plateau equilibrium. We also notice that ri j
becomes larger when the two radii get closer. In particular, the film
is planar when the two radii are identical. For multiple intersec-
tions, films between bubbles may not be spherical. Instead they can
be approximated by a mean curvature proportional to the pressure
difference across the film. When pressure difference is nonzero, the
film is curved towards the bubble with a lower pressure.

3.1 Foam Representation

We define a foam as a tessellation of the space occupied by a union
of balls. A well known data structure called space-filling diagram
exists in computational geometry, which also tessellates such a s-
pace. Observing this analogy, we represent a foam as the space
filling diagram. Simply stated, a space filling diagram is the inter-
section of a union of balls with the weighted Voronoi diagram (also
called power diagram) which is a generalization of the well known
Voronoi diagram [Aurenhammer 1987]. Although it does not ex-
actly model curved interfacial films in the real world, it provides a
sound approximation to bubble structures and foam geometry. A
Voronoi diagram is sufficient in representing monodisperse foams,
in which bubbles have the same size. To further handle polydisperse
foams with different bubble sizes, we need the weighted Voronoi
diagram. Specifically, an original spherical bubble Bi = B(xi, ri)
is represented as the intersection between Bi and the weighted
Voronoi cell of xi with weight ri. A detailed definition of these
concepts is given below.

Voronoi Diagram and Delaunay Triangulation. Let P be a
point set in R3. For any point p ∈ P, the Voronoi cell Vp of p is
defined as the locus of points in R3 having p as their nearest neigh-
bor in P: Vp = {x ∈ R3, for ∀q ∈ P : |x−p| ≤ |x−q|}. Each Voronoi
cell is convex and its boundary consists of lower-dimensional con-
vex faces. The collection of Voronoi cells and their faces forms a
cell complex tessellating R3, called the Voronoi diagram of P. Its
dual complex is called the Delaunay triangulation of P.

Weighted Counterparts. Voronoi diagrams and Delaunay tri-
angulations can also be constructed using non-Euclidean metric-
s. Specifically, we can associate each point p ∈ P with a real-
valued weight r (r ≥ 0). This is equivalent to representing each
weighted point p as a ball with radius r centered at p. The squared

weighted distance of any point x ∈ R3 from p ∈ P is given by
d2(x, p) = |x − p|2 − r2. The weighted Voronoi diagram and its d-
ual weighted Delaunay triangulation are then defined in the same
way as the original ones, except that they replace Euclidean dis-
tances with squared weighted distances. Figure 2b shows a weight-
ed Voronoi example with its Delaunay triangulation.

Space-Filling Diagrams. After we construct the Voronoi dia-
gram by treating each spherical bubble as a weighted point, we rep-
resent the bubble of Bi = B(xi, ri) in a foam as the intersection
of Bi with the Voronoi cell for xi. Films between two bubbles are
defined as the intersection of balls with Voronoi polygons. Such
decomposition of the union of balls into convex cells is known as
a space-filling diagram. It should be noted that we do not need an
explicit representation of the foam geometry during simulation. In-
stead, we use the connectivity information among bubbles, which
is captured by the dual of the space filling diagram called the al-
pha complex [Edelsbrunner 2001]. For example, Figure 2b shows
the dark edges and shaded triangles in a 2D alpha complex. The
edges are dual to Voronoi edges which correspond to the common
intersection of two bubbles and the triangles are dual to the Voronoi
vertices which correspond to the common intersection of three bub-
bles. The edges of the alpha complex provide information about
which bubbles are in contact.

4 Foam Dynamics

Various factors contribute to the motion of bubbles. For example,
two bubbles in contact can experience both repulsion and attraction
forces, which try to bring them back to the Plateau equilibrium.
Meanwhile, bubbles on a liquid surface are likely to form clusters,
caused by weak interaction forces even before they contact. In this
section, we present a set of bubble forces to model various foam ef-
fects in our system. These forces can be roughly grouped into three
categories based on the type of their interactions: bubble-bubble
interaction, bubble-liquid interaction, and bubble-solid interaction.

The interactions between two bubbles can be triggered either by a
strong or a weak interaction force as we will see later. The strong
interaction happens only between bubbles that are in contact while
the weak interaction happens only between bubbles that are Voronoi
neighbors but are not in contact. We distinguish the latter from the
former by testing Delaunay edges that are not alpha complex edges.

4.1 Bubble-Bubble Interaction

Bubbles in a dry foam (such as soap foam), whose liquid volume
is typically less than 1 percent, form a specific geometric structure
that minimizes the total surface area under volume constraints. For-
mulated in the 19th century by the Belgian physicist Joseph Plateau,
Plateau’s laws describe this structure using three conditions as we
described before. Soap bubbles not in this configuration are un-
stable, and the surface tension force quickly rearranges them back
into the Plateau equilibrium. In particular, when two separate bub-
bles touch each other, a strong attraction force tries to move them
closer into the Plateau configuration. Meanwhile, if bubbles are
closer than necessary, the force will become repulsive due to both
surface minimization and volume constraints. Given two spherical
bubbles with radii ri and r j respectively, we can reach the Plateau
equilibrium when the distance li j between two bubble centers sat-
isfies: l2

i j = r2
i + r2

j − rir j. Figure 2a shows such an example, in
which bubble films form 2π/3 angles according to Plateau’s laws.
This condition also provides a reasonable approximation for mul-
tiple bubble cases. However, it becomes less valid for wet foams,
in which the extra liquid in interfacial films can affect the surface
tension. Unfortunately, the geometric structure of wet foam is more
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Figure 3: Liquid bubbles (c and d), surface bubbles (f and g), and
air bubbles (a, b, and e). They are classified according to their
signed distances to the liquid surface.

complex, and no clear conclusions have been made to this problem
yet. Here we introduce a wetness coefficient λ (1 ≤ λ ≤ 1) to
account for different wetness conditions:

l2
i j = r2

i + r2
j + (3λ − 1)rir j. (1)

For example, setting λ = 0 allows us to mimic a completely dry
foam, where bubbles form a polyhedral structure. Making λ close
to 1 models a wet foam, where bubbles have almost spherical shape
and merely touch each other in the equilibrium state.

Compared to the static foam geometry, bubble-bubble interaction in
dynamic environment is more difficult to measure and study. Sim-
ilar to [Kück et al. 2002; Greenwood and House 2004], we use a
simple spring model to handle the force between two contacting
bubbles. Let xi and x j be the centers of two intersecting bubbles
neighboring in the weighted Voronoi diagram, we define a strong
interaction force applied on xi using the resting length li j:

fsint
i = −k

∑
j

(
xi − x j − li j

xi−x j

|xi−x j|

)
, (2)

in which k is a constant stiffness coefficient.

4.2 Bubble-Liquid Interaction

To simulate bubble-liquid interaction, we classify bubbles into three
types based on their positions with respect to a liquid volume. Let
ϕ be the signed distance function to a liquid surface, a bubble cen-
tered at xi with radius ri is named as a liquid bubble, if ϕ(xi) < −ri.
When −ri ≤ ϕ(xi) ≤ ri, we define the bubble as a surface bubble,
if and only if it is not isolated from the liquid surface by other bub-
bles. The rest of bubbles are called air bubbles. Figure 3 shows
an example, in which bubbles e, f, and g all satisfy the condition:
−ri ≤ ϕ(xi) ≤ ri. However, bubble e is still an air bubble, since
it is separated from the liquid by bubble f and g. We detect this
separation by sampling ϕ over the bubble’s spherical boundary. If
there exists a negative sample that is not covered by other bubbles,
it signifies a surface bubble, otherwise it is an air bubble. Since air
bubbles do not directly interact with the liquid, we will only con-
sider liquid bubbles and surface bubbles next.

Liquid Bubble. A liquid bubble within a liquid volume is sub-
ject to two forces in our system. Similar to [Cleary et al. 2007]
and [Hong et al. 2008], we first define a liquid drag force depend-
ing on the bubble velocity relative to the fluid:

fdrag
i = cdragr2

i (u(xi) − vi)|u(xi) − vi|, (3)

in which cdrag is a drag coefficient, u(xi) is the liquid velocity at the
bubble center xi, and vi is the bubble velocity. The other force is
the buoyant force that lifts the bubble up to the surface. Assuming
liquid bubbles are incompressible in the liquid volume, we have:

fbuoy
i = −Viρg = − 4

3πr3
i ρg. (4)

where g is the gravity acceleration, ρ is the liquid density, and Vi is
the bubble volume.

f lad

f lad

(a) A surface bubble in
equilibrium

(b) An immersed sur-
face bubble

(c) A lifted surface
bubble

Figure 4: A surface bubble in different states. Its equilibrium state
can be reached by the use of a liquid adhesion force.

f wint f wint

(a) Bubbles before being attracted (b) Bubbles after being attracted

Figure 5: Bubble clustering caused by surface tension. We use a
weak interaction force to obtain this effect.

Surface Bubble. Surface bubble motion is highly influenced by
surface tension. While modeling surface tension directly on bubbles
are difficult and computationally expensive, we define two interac-
tion forces here, both of which are formulated to achieve specific
surface bubble behaviors. Like other surface tension effects, sur-
face bubbles move in a way such that the liquid surface area can
be minimized. Therefore, a surface bubble is able to reach an equi-
librium on the liquid surface, under both the buoyant force and the
surface tension force, as Figure 4a shows. When the bubble gets
immersed (in Figure 4b), the buoyant force becomes larger while
the surface tension force becomes weaker, so the total force will
push the bubble to its equilibrium state. Meanwhile, a lifted surface
bubble (in Figure 4c) receives a larger surface tension force than the
buoyant force, so it will be pulled back. Since it is difficult to accu-
rately calculate both forces in this case, we define a liquid adhesion
force flad to help the surface bubble stay on the liquid surface:

flad
i = −σladϕ(xi)∇ϕ(xi), (5)

in which σlad is an adhesion coefficient, and ∇ϕ(xi) is the liquid sur-
face normal at xi. Surface tension can also cause two separated bub-
bles to move toward each other, in order to minimize the overall liq-
uid surface area as Figure 5 shows. So for any two non-contacting
surface bubbles that are neighbors in the weighted Voronoi diagram,
we define a weak interaction force using the approximated sine val-
ue of the surface inclination angle θi j:

fwint
i j = α sin θi j

x j−xi
|x j−xi |

, sin θi j =
r j

|xi−x j |
, (6)

in which α is a force magnitude parameter. It should be noted that
inter-bubble interactions, including both strong and weak interac-
tion, rely on the topology of the weighted Delaunay triangulation
(or its dual weighted Voronoi diagram). Delaunay edges that belong
to the alpha complex indicate strong interaction forces for contact-
ing bubbles, while the remaining Delaunay edges help us formulate
weak interaction forces for surface bubbles.

4.3 Bubble-Solid Interaction

In order to model the hydrophilicity of certain solid objects, we use
an adhesion force to prevent bubbles from leaving solid surfaces:

fsad
i = −σsadψ(xi)∇ψ(xi), (7)

in which σsad is an adhesion coefficient and ψ(xi) gives the signed
distance from the bubble center xi to the solid. The adhesion force
acts on each bubble that has ever touched the solid. In addition, we



define a solid attraction force to move surface bubbles closer to the
solid, due to a similar surface minimization reason we discussed
before in Subsection 4.2:

fsat
i = −β∇ψ/|ψ|, (8)

in which β is a solid attraction coefficient.

5 Foam Simulation
Based on foam representation and foam dynamics presented in Sec-
tion 3 and 4 respectively, we develop a foam simulator to update
bubbles and foams in each time step. It first uses an implicit inte-
grator to evolve bubble positions and velocities, according to foam
dynamics. It then applies a volume conservation constraint to com-
pensate the bubble volume loss during simulation, especially when
bubbles are heavily squeezed. Finally, we perform topological up-
dates on the foam structure and reconstruct the weighted Voronoi
diagram, to ensure that it remains valid for further simulation.

5.1 Time Integrator

We use the implicit solver proposed by Baraff and Witkin [1998] to
evolve bubble particles over time. Given bubble positions {xt

i} and
velocities {vt

i} at time t, the solver uses the backward Euler method
to compute bubble velocities {vt+1

i } at the next time step:(
M − ∆t∂ft/∂v − ∆t2∂ft/∂x

)
vt+1 = Mvt + ∆tft, (9)

in which M is a mass matrix, ∆t is the time step, and f, x and v
are vectors of bubble forces, positions, and velocities respectively.
The force vector f is made of the gravity force, the air damping
force, and the total interaction force. The gravity force fgrav

i = mig
on bubble i is independent of bubble position and velocity, so its
Jacobian matrices ∂fgrav/∂x and ∂fgrav/∂v are both zero matrices.
We define the damping force using two damping coefficients (cvis
and clap) and a normalized Laplacian matrix L: fdamp = −cvisv −
clapLv. Its Jacobian matrix can be written as:

ci j =


−(cvis + clap)I, for i = j

clap

(
|Ni|

∣∣∣N j

∣∣∣)−1/2
I, for i , j and i ∈ N j

0, otherwise
(10)

in which ci j is a 3×3 sub-matrix, and Ni is the 1-ring contact neigh-
borhood of vertex i, given by the weighted Voronoi diagram. The
overall interaction force is the sum of three interaction forces dis-
cussed in Section 4. Most interaction forces are comparably small,
so they can be treated explicitly by simply ignoring their Jacobian
matrices. The only exception is the strong bubble interaction force
modeled by a stiff spring in Equation 2. Similar to the formula pro-
posed by Choi and Ko [2002], we use Taylor expansion to find the
Jacobian matrix of fsint respect to x. We also drop the geometric
term when the spring is compressed, to ensure numerical stability.

The linear system in Equation 9 is guaranteed to be symmetric pos-
itive definite. We solve it using the Preconditioned Conjugate Gra-
dient (PCG) method with an incomplete Cholesky preconditioner.
Since interaction forces in our method depend on bubble connec-
tivity that may vary over time, the whole system is not uncondi-
tionally stable. Fortunately, our experiment shows that the system
can robustly handle large time steps (∆t ∈ [0.005s, 0.02s]) for most
examples without any oscillation artifacts.

5.2 Volume Correction

The weighted Voronoi diagram changes when bubble move. As
a result, some bubbles represented by the cells of the space-filling

(a) Without volume correction (b) With volume correction
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Figure 6: A 2D cluster. This example visualizes a cluster of uniform
bubbles with (a) and without (b) volume correction. The plot shows
that the maximum relative error of bubble volumes can be greatly
reduced, after using our volume correction method.

diagram may experience considerable volume changes. To preserve
the bubble volume, we perform a volume correction step.

We consider two ways to adjust the bubble volume: to change the
bubble position xi, or to change its weight ri. By modifying the
weight alone we can implicitly increase or decrease the volume
of an individual bubble. However, it may affect the volume of its
neighbors. One may try to iterate the process to rectify the volumes
of all bubbles. But, this does not work because the total volume
of the union of all bubbles changes only by the modifications of
the bubbles on the boundary of the union. The intended changes
for interior bubbles are not reflected in this sum. We need posi-
tion changes along with weight changes to overcome this constraint.
Unfortunately, explicit adjustment of positions without causing ar-
tifacts in bubble dynamics is difficult. We solve this dilemma by
adjusting weights alone and then letting the simulation adjust the
positions. The resting length li j between two neighboring bubbles
depends on their radii. If ri increases relative to r j, the bubble at
x j is pushed away from xi decreasing the overlap and thus increas-
ing the bubble’s volume. Figure 6 shows the effect of this volume
correction. The maximum relative error is 25 percent after vol-
ume correction in contrast to a 75 percent error without it. Smaller
time steps and multiple iterations can be used to reduce this error
further, if necessary. Another potential method to perform volume
correction is to introduce it as a force; however, this approach is
complicated by necessity of computing the volume derivatives.

In order to know how much volume needs to be compensated
for each bubble, we store its initial volume V0

i . At each time
step, we calculate the volume Vi of its Voronoi cell in the space-
filling diagram, using the method proposed by Cazals et al. [2011].
We then multiply the current bubble radius ri by a factor of 1 +
γ((V0

i /Vi)−1/3 − 1)∆t, where γ is a parameter to control the correc-
tion amount. Since we do not consider bubble surface deformation
caused by liquid, we do not differentiate liquid bubbles, surface
bubbles, and air bubbles in volume calculation. However, bubbles
attached to a solid boundary have their volumes occupied by a solid,
so we compensate their calculated volume Vi by a factor of 2. Fig-
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ure 6 plots out maximum relative volume errors over 100 simulated
frames, with and without using our volume correction method.

5.3 Bursting and Coalescing

Liquid drainage may cause foam topology to change over time. In
particular, bubbles on the boundary of a foam cluster may burst,
while bubbles inside the foam may merge with other bubbles. To
model this process, we maintain an age variable ei for each bubble.
At each time step, we randomly remove bubbles based on their ages
and radii. The probability for bubble i to get removed is defined as:

Pi = 1 − e−τriei , (11)

in which τ is the bursting speed coefficient. Intuitively, Equation 11
means younger and smaller bubbles have better chances to survive,
while older and larger bubbles are likely to disappear. When delet-
ing a bubble inside of a foam, we distribute its volume to its closest
neighbor and we set the neighbor’s position as the weighted average
of their original positions before deletion.

6 Results

The supplementary video submitted along with this paper demon-
strates our animation results. We implemented our foam simula-
tion model and tested it on an Intel Core i5-2500K 3.3GHz CPU.
To demonstrate interaction with liquid flows and solid surfaces, we
coupled the foam model with a particle level set fluid simulator [En-
right et al. 2002], running on a 643 uniform Cartesian grid. We used
adaptive time steps in bubble simulation, which can vary from 0.02s
to 0.005s, depending on fluid flows and bubble velocities. Our sys-
tem uses standard units. The gravity acceleration is 9.8m/s2, and
the liquid density is 103kg/m3. A list of parameters and their ranges
is summarized in Table 1 for convenience.

We use the Coke foam example to study the complexity and compu-
tational cost of our system as Figure 1 and Figure 7 show. In this ex-
ample, 100K bubbles are added into the scene, and >500K bubble-
bubble springs are created to handle strong interaction forces. Bub-
ble sizes vary from 0.15mm to 3mm. The total number of polygons
in the weighted Voronoi diagram is more than 1M. This example
shows that the computational cost increases with the scene com-
plexity as expected. The simulation time spent on animating bub-
bles is approximately one third of the time spent on constructing the
Voronoi diagram in each time step. For 100K bubbles, our system
simulates each rendered frame in 13 to 17 seconds (excluding flu-
id simulation time). It may seem that a dynamic Voronoi diagram

Figure 8: Soap foam. Soap bubbles pile up in a water container.

(a) Transparent bubbles (b) Opaque bubbles

Figure 9: Pouring water. Water bubbles emerge on the liquid sur-
face, but quickly burst due to their instability in the real world. We
model this effect by using a larger bursting speed coefficient.

construction would be more efficient, but a good practical solution
for updating a 3D Voronoi diagram dynamically is still elusive un-
fortunately. In practice, it may suffice to compute a local Voronoi
diagram for a sufficiently large neighborhood of each bubble.

Our animations were rendered at 30Hz, using the GPU-based
micro-polygon ray tracing method [Hou and Zhou 2011]. We mod-
eled bubbles as semi-transparent objects with thin films separately
from the scene, in order to avoid a large number of reflection and
refraction rays if doing ray tracing on bubbles directly. We then
incorporated transparent appearances of bubbles into the scene, by
modifying corresponding rays. To speed up the rendering process,
we also maintained a separate bounding volume hierarchy for bub-
bles, since their intersections with rays should be determined first.

Soap Foam. Bubbles in a soapy liquid made by dish detergent
or hand soap tend to pile up, creating dense and complicated foam
structures. In this example, we created such a scene with up to 4K
bubbles, as Figure 8 shows. The bubble size varies from 0.25 to
1cm, and the water container is 16cm×16cm×16cm. At the end
of the animation, bubbles can form at least ten layers in the foam.
To prevent foam piles from sudden motion, we reduced the burst-
ing coefficient τ, especially for those close to solid walls. We also
varied the wetness coefficient λ according to the distance from the
liquid surface, so bubbles on the top are drier than liquid surface
bubbles. Each frame of this example took 0.6 to 2.0s to simulate.

Coke Foam. We simulated another Coke foam example that con-
tains up to 16K bubbles with varying sizes, as shown in Figure 1
and 10. The largest bubble in this example has a size of 1.25mm,
while the smallest bubble is 0.375mm big. It shows how the bubble
size can affect bubble behaviors, such as bubble-bubble attraction
and bursting. We use the same wetness coefficient λ = 0.4 for al-
l bubbles, since they do not pile up. For testing purpose, we also
animate the same scene by only using strong interaction forces for



Notation Name Usage Unit Range
λ Wetness coeff. To determine the resting distance between two bubbles (in Equation 1) 1 [0, 1]
k Stiffness coeff. To model the strong interaction force (in Equation 2) N/m [1.0, 8.0]

cdrag Drag coeff. To model the drag force for a liquid bubble (in Equation 3) kg/m3 [0.05, 0.5]
σlad Liquid adhesion coeff. To model the liquid adhesion force for a surface bubble (in Equation 5) N/m [10.0, 20.0]
α Bubble attraction coeff. To model the weak interaction force caused by tension (in Equation 6) kg ·m/s2 [0.2, 0.6]
σsad Solid adhesion coeff. To model the solid adhesion force for any bubble (in Equation 7) N/m [15.0, 30.0]
β Solid attraction coeff. To model the solid attraction force caused by solid (in Equation 8) kg ·m2/s2 [2.0, 6.0]

cvis, clap Damping coeff. To dissipate the kinetic energy over time (in Equation 10) 1 [10−5, 10−4]
γ Volume correction coeff. To determine the amount of volume compensation in each time step 1 1
τ Bursting speed coeff. To specify how fast bubbles burst (in Equation 11) m−1 s−1 [0.0125, 0.2]

Table 1: Parameters used in our system.

(a) Bubbles (b) Floating particles

Figure 10: Coke foam. Images in (a) show that with our interac-
tion forces, coke bubbles form clusters and are attracted to the mug
walls. With interaction forces limited to basic collision responses,
we can also simulate them as floating plastic particles in (b).

collision responses. This allows us to simulate bubbles as if they
were floating plastic particles. The simulation time of each frame
varies from 0.5 to 2.8s.

Pouring Water. Our system is also able to simulate bubbles in a
complex liquid scene, such as the pouring water example shown in
Figure 9. There were 3.4K bubbles (with sizes of 0.75mm to 2.5m-
m) generated from the escaped air particles in the particle level set
fluid simulator. Bubbles traveled with the water flow and emerged
on the liquid surface due to the buoyant force. We increased the
bursting speed coefficient τ in this example to account for the insta-
bility of water bubbles in the real world. Each frame in this example
took 0.3 to 5.2s to simulate.

7 Limitations

Like other particle-based approaches, our method does not handle
bubble surface deformation and it is not suitable for large bubbles
(whose diameters are greater than 1cm). For numerical stability, we
formulate bubble interaction forces using a linear stiffness model.
However, interaction forces in the real world can be highly nonlin-
ear, and they can be affected by many other conditions that our sys-
tem does not model so far, such as drainage and coarsening effects.
When dealing with bubble-liquid interactions, we do not consider
how bubble motions can affect the liquid flow. Accurately preserv-
ing volumes in our system requires a smaller time step, which in-
creases the computational cost. Finally, our implicit integrator is

not unconditionally stable due to its dependency on bubble connec-
tivity, although it barely affects the system performance.

8 Conclusion and Future Work

In this paper, we showed that a weighted Voronoi diagram can be
used to approximate the actual foam geometry in a sound manner,
for both dry and wet foams containing small bubbles. Based on this
representation, we demonstrated that a particle-based system can
efficiently and realistically handle bubble interactions, even without
explicitly modeling surface deformation or surface tension. Our ex-
periment further tested its compatibility with existing liquid simula-
tors, and revealed its capability of generating natural bubble effects,
such as clustering, stacking, bursting, coalescing, and bubble-liquid
and build-solid interactions.

Besides solving those limitations listed in Section 7, we plan to ac-
celerate our system by the use of GPU-based algorithms. Since we
define most parameters in our system based on effects rather than
physics, finding optimal values for them becomes a challenging and
time-consuming task in practice. We are interested in carrying out
both experimental and numerical study on this issue in the future.

Acknowledgments

We thank Qiming Hou, Mingming He, Kun Zhou and the Graph-
ics and Parallel Systems Lab at Zhejiang University for their sup-
port and helpful suggestions in rendering. This work was support-
ed in part by the NSF grant CCF 0830467 and the NSF of China
grant No. 61003048. We also thank NVIDIA for additional sup-
port through equipment and funding.

References

Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adap-
tively sampled particle fluids. ACM Transactions on Graphics
(SIGGRAPH) 26 (July).

Aurenhammer, F. 1987. Power diagrams: properties, algorithms
and applications. SIAM Journal on Computing 16, 78–96.

Baraff, D., andWitkin, A. 1998. Large steps in cloth simulation.
In Proc. of SIGGRAPH ’98, E. Fiume, Ed., Computer Graphics
Proceedings, Annual Conference Series, ACM, 43–54.

Bargteil, A. W., Goktekin, T. G., O’brien, J. F., and Strain, J. A.
2006. A semi-Lagrangian contouring method for fluid simula-
tion. ACM Transactions on Graphics 25 (January), 19–38.

Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007.
A finite element method for animating large viscoplastic flow.
ACM Transactions on Graphics (SIGGRAPH) 26 (July).



Brakke, K. A. 1992. The Surface Evolver. Experimental Mathe-
matics 1, 2, 141–165.

Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid sim-
ulation elements to surface geometry and topology. ACM Trans-
actions on Graphics (SIGGRAPH) 29 (July), 47:1–47:9.

Cazals, F., Kanhere, H., and Loriot, S. 2011. Computing the
volume of a union of balls: a certified algorithm. INRIA 2009 no
7013 Technical report, August, 1–19.

Chentanez, N., and Müller, M. 2011. Real-time Eulerian water
simulation using a restricted tall cell grid. ACM Transactions on
Graphics (SIGGRAPH) 30 (Aug.), 82:1–82:10.

Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM
Transactions on Graphics (SIGGRAPH) 21 (July), 604–611.

Cleary, P. W., Pyo, S. H., Prakash, M., and Koo, B. K. 2007.
Bubbling and frothing liquids. ACM Transactions on Graphics
(SIGGRAPH) 26 (July).

Durian, D. J. 1995. Foam mechanics at the bubble scale. Physical
Review Letters 75 (Dec), 4780–4783.

Durikovic, R. 2001. Animation of soap bubble dynamics, cluster
formation and collision. Computer Graphics Forum 20, 3, 67–.

Edelsbrunner, H. 2001. Geometry and Topology for Mesh Gener-
ation. Cambridge University Press, England.

Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation
and rendering of complex water surfaces. ACM Transactions on
Graphics (SIGGRAPH 2002) 21 (July), 736–744.

Foster, N., and Metaxas, D. 1996. Realistic animation of liquids.
Graphical Models and Image Processing 58 (September), 471–.

Gardiner, B., Dlugogorski, B., and Jameson, G. 2000. The steady
shear of three-dimensional wet polydisperse foams. Journal of
Non-Newtonian Fluid Mechanics 92, 151–166.

Greenwood, S. T., and House, D. H. 2004. Better with bubbles:
enhancing the visual realism of simulated fluid. In Proc. of SCA.

Herzhafta, B., Kakadjianb, S., and Moanc, M. 2005. Measure-
ment and modeling of the flow behavior of aqueous foams using
a recirculating pipe rheometer. Colloids and Surfaces A: Physic-
ochem. Eng. Aspects 263, 153–164.

Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid.
Computer Graphics Forum 22, 3, 253–262.

Hong, J.-M., Lee, H.-Y., Yoon, J.-C., andKim, C.-H. 2008. Bubbles
alive. ACM Transactions on Graphics 27 (August), 48:1–48:4.

Hou, Q., and Zhou, K. 2011. A shading reuse method for effi-
cient micropolygon ray tracing. ACM Transactions on Graphics
(SIGGRAPH Asia) 30 (Dec.), 151:1–151:8.

Kelager, M. 2009. Vertex-based simulation of dry foam. In Master
Thesis, University of Copenhagen, Denmark.

Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simu-
lation of bubbles in foam with the volume control method. ACM
Transactions on Graphics (SIGGRAH) 26 (July).

Kim, Y., Seol, Y., Lai, M.-C., and Peskin, C. S. 2011. The im-
mersed boundary method for two-dimensional foam with topo-
logical changes. Communications in Computational Physics.

Kraynik, A. M., Reinelt, D. A., and van Swol, F. 2003. Structure
of random monodisperse foam. Physical Review E 67.

Kraynik, A. M., Reinelt, D. A., and van Swol, F. 2004. Structure
of random foam. Physical Review Letters 93, 20.

Kück, H., Vogelgsang, C., and Greiner, G. 2002. Simulation and
rendering of liquid foams. In Proc. of Graphics Interface, 81–88.

Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water
and smoke with an octree data structure. ACM Transactions on
Graphics (SIGGRAPH) 23 (Aug.), 457–462.

Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-
way coupled SPH and particle level set fluid simulation. IEEE
Transactions on Visualization and Computer Graphics 14 (July).

Mihalef, V., Unlusu, B., Metaxas, D., Sussman, M., and Hussaini,
M. Y. 2006. Physics based boiling simulation. In Proc. of SCA.

Müller, M., Charypar, D., and Gross, M. 2003. Particle-based
fluid simulation for interactive applications. In Proc. of SCA.

Piazza, L., Gigli, J., and Bulbarello, A. 2008. Interfacial rheology
study of espresso coffee foam structure and properties. Journal
of Food Engineering 1984, 3, 420–429.

Redenbach, C., Shklyar, I., and Andr, H. 2012. Laguerre tes-
sellations for elastic stiffness simulations of closed foams with
strongly varying cell sizes. International Journal of Engineering
Science 50, 1, 70 – 78.

Sin, F., Bargteil, A. W., and Hodgins, J. K. 2009. A point-based
method for animating incompressible flow. In Proc. of SCA,
ACM, New York, NY, USA, SCA ’09, 247–255.

Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH ’99, Computer
Graphics Proceedings, Annual Conference Series, 121–128.

Sullivan, J. M. 1998. The geometry of bubbles and foams. Foams
and Emulsions (NATO ASI volume E) 354, 379–402.

Taylor, J. E. 1976. The structure of singularities in soap-bubble-
like and soap-film-like minimal surfaces. Annals of Mathematics
103, 3 (May), 489–539.

Thürey, N., Sadlo, F., Schirm, S., Müller-Fischer, M., and Gross,
M. 2007. Real-time simulations of bubbles and foam within a
shallow water framework. In Proc. of SCA, 191–198.
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