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Abstract

We introduce a markerless approach to deform a quality human body template mesh from its original pose to a different pose
specified by a point cloud. The point cloud may be noisy, incomplete, or even captured from a different person. In this approach,
we first build coarse correspondences between the template mesh and the point cloud through a squeezed spectral embedding
technique that exploits human body extremities. Based on these correspondences, we define the goal of non-rigid registration using
an elastic energy functional and apply a discrete gradient flow to reduce the difference between a coarse control mesh and the point
cloud. The deformed template mesh can then be obtained from the deformation of the control mesh using mean value coordinates
afterwards. Our experiments show (see the supplementary video) that the approach is capable of equipping a mesh with the pose of

a scanned point cloud data even if it is incomplete and noisy.

1. Introduction and Previous Work

The flexibility of the human body allows human to perform
many large deformations in the real world. This makes non-
rigid registration of the human body a difficult problem in com-
puter graphics. When the body deforms continuously over time,
the deformation between two consecutive frames is relatively
small, and spatio-temporal coherence can be fully explored to
improve the registration quality. Commonly known as per-
formance capture, continuous non-rigid registration has been
widely studied by researchers and it has been successfully han-
dled by many techniques for human bodies [1} 12, 3] 4] and hu-
man faces [5, 16, [7, 8 [9]].

Compared with performance capture, a more generic yet
challenging problem is how to perform non-rigid registration
between two arbitrary human body shapes. If this problem
can be solved, the resulting technique will be useful in human
model reconstruction and completion, performance capture ini-
tialization, human pose and shape detection, and many other ap-
plications. Existing techniques on this problem can be roughly
classified into two groups: those that require parametric body
models and those that do not.

Model-based Registration. The parametric human body mod-
els [10} [11} [12] and their variations [13} [14] developed by re-
searchers previously can be used as templates for non-rigid reg-
istration of two body shapes under large deformation. Using
these models, aligning a human body model with a novel body
shape in a different pose can be formulated into a parameter op-
timization problem. In general, template-based registration is
robust and fast. But since it must represent human bodies in the
parametric space, it is difficult to handle the detailed body of
each individual person, without using a large number of param-
eters (and data samples). Constructing a large and detailed hu-
man body database and extracting models from it is also com-
plex and time consuming.
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Registration without a Model. Any technique that does not rely
on a parametric human model can be classified into this group,
including those using human body templates. Many of these
techniques [15| [16} [17] require manual intervention to spec-
ify point correspondences. Without using user-specified cor-
respondences, Li et al. [18] handled non-rigid registration be-
tween two incomplete surfaces by nonlinear optimization, if the
deformation is not too large. Other techniques [[19} 20} 21]] are
typically formulated based on isometric constraints, assuming
that the geodesic distances should not change when the body
deforms from one pose to another. Especially, spectral methods
based on Laplace operator has been proved to be powerful tools
for this purpose, see the survey by Zhang et al. [22] for detailed
coverage of them.

In this work, we propose an approach to deform a detailed
human body template from its reference pose to a largely de-
formed pose, represented by a point cloud. Our approach first
establishes a few correspondences between points of the tem-
plate mesh and the point cloud. For these correspondences, we
draw upon spectral based methods that have been shown to be
effective in dealing with non-rigid transformations [23} 24 [25]].
Based on Global Point Signature (GPS), our method first cal-
culates only five correspondences as Figure [Za shows. They
are further extended to more automatically selected points. Our
method then uses the correspondences and the discrete gradient
flow to evolve a coarse control mesh from the reference pose
into the new pose as shown in Figure 2b. Finally, it refines
the alignment by minimizing the difference between the control
mesh and the point cloud, and transfers deformation to the fine
template mesh, as Figure 2k shows.

The main advantage of this automatic approach lies in its ro-
bustness against noise and occlusions as demonstrated by our
experiments. This is due to two unique contributions that we
propose in this paper:

e A spectral based method specifically geared toward estab-
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(a) The template mesh and its control mesh

(b) Mesh posed by 20K points

(c) Mesh posed by 20K points (d) Mesh posed by 19K points

Figure 1: Our method can robustly and automatically deform a template mesh in (a) into different poses as shown in (b), (c), and (d), even when the point clouds
are noisy and incomplete. We color the meshes to indicate the correspondences among them.

lishing correspondences between different human body poses.
The main observation is that the five extremities of human body,
the four arm and leg ends and the head-top can be matched
robustly and reliably by a squeezed spectral embedding even
in the presence of typical occlusions and noise. Furthermore,
we bootstrap the initial five correspondences to a larger match-
ing by registering and uniformly sampling the squeezed embed-
ding.

e A variational approach for human body deformation and
alignment. By formulating an energy functional as the sum of
the elastic energy and the alignment energy, we use a discrete
gradient flow to find the deformed body shape in an iterative
way. Using this approach, we can conveniently adjust the re-
sult quality between better shape size preservation and better
alignment (i.e., non-rigid registration). Experiments with real
data scanned by Kinect depth cameras demonstrate that our ap-
proach is efficient and robust against data noise and incomplete-
ness.

2. Computing Correspondences

We are given a complete template surface mesh M of a hu-
man body and a scanned point cloud P of another body possibly
in a different pose and with occlusions and noise. Our goal is
to establish a few reliable correspondences between the points
of M and those of P first which are bootstrapped further. In
particular, we look for identifying the extremities such as the
end points of hands, legs, and the top of the head. One could
choose to do so in the model spaces of M and P directly using
heat kernel signature (HKS) [23] 24| 26]. However, separat-
ing these specific extremities from others in the model space is
hard. We take the advantage of a squeezed spectral embedding
to detect them. Also, the presence of occlusions and noise make
the HKS approach challenging. More serious is the problem
posed by the symmetry present in the human body. Although
spectral matchings are good in factoring out the isometric de-
formations [27, 23], they sometimes provide wrong correspon-
dences in presence of human body symmetries. For example,
the left foot extremity in one model may match to that of the
right foot in another model leading to catastrophic result when

(a) Two eigenfunctions (b) Three eigenfunctions

Figure 3: Squeezed embedding of shapes in the GPS domain. Red point cloud
is the embedding of the template mesh. Green point cloud is the embedding of
input scan.

such a coarse matching is attempted to be extended to the whole
body. Taking the cue from [27], we try all possible matchings
between only a very few extremities and settle on the one that
provides the best overall matching in a spectral embedding.

2.1. GPS Embedding

We use the Global Point Signature (GPS) proposed by Rus-
tamov [28]] for spectral embedding of M and P.

Let 10 = 0 < 41 < A, < --- denote the eigenvalues of
the Laplace-Beltrami operator of a surface in R3. Let the corre-
sponding eigenfunctions be ¢g, @1, @2, - - - . The GPS embedding
maps a point p of the shape to:

&1(p) da(p) ¢3(p) )

The above eigenspace embedding builds upon the principles
that eigenfunctions are invariant under isometric deformation
and are orthogonal to each other. In our case, the model M and
the point cloud P are derived from surfaces of human bodies.
Thus, they are close metric-wise in most cases though may not
be exactly isometric. The spectra of such surfaces are known
to be close [29]. Notwithstanding this positive aspect, we face
with two difficulties when dealing with two representations M
and P of the same or different human bodies. The first diffi-
culty concerns with the scale. To bring the GPS embeddings of

GPS(p) = ( )
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(a) Initial correspondences

(b) Initial alignment

(c) Final alignment (d) Deformed mesh

Figure 2: Intermediate results of our method.

the two representations into the same scale, we rigidly scale the
embedding of P by the ratio of M’s A, to that of P.

The second difficulty is more serious which primarily moti-
vates our squeezed embedding approach. Since we deal with
noisy and incomplete data, the eigenfunctions of the two rep-
resentations are not readily comparable. In particular, there
can be extra or missing eigenfunctions due to occlusion and
noise. To alleviate this problem, we consider only the first three
eigenfunctions ¢;, ¢, and ¢3 corresponding to the first three
non-zero eigenvalues. The GPS embedding only with the first
eigenfunction ¢; squeezes the human body along the central
symmetry line. Adding the second eigenfunction ¢, flattens
this embedding to a triangular shape capturing the extremities
of the two legs and the top of the head. The third eigenfunc-
tion ¢3 unfolds it to a three dimensional shape that have the
two legs and the two arms laid on planes that are somewhat or-
thogonal. Figure [3illustrates these embeddings. We consider
GPS embedding with the three eigenfunctions that capture the
arms, legs, and head-top extremities and call it a squeezed GPS
embedding. Such a small number of eigenfunctions also saves
time spent on eigen decomposition.

To compute the eigenvalues and the eigenfunctions from the
point cloud P, we consider the standard Graph Laplacian on
the adjacency graph of P. The sparse matrix L = (a,, ,) of the
Graph Laplacian is defined as:

a = Wp, g >0 ifllp—qll <r
P q 0 otherwise

ap,p= —XWp g
q

where r is a small threshold distance used to connect points in
P. We take r as the average distance to the 20th neighbor for 10
randomly chosen points, so each point has about 20 neighbors
within the radius. Entries of L are Gaussian weighted based on
the Euclidean lengths of the connections. More specifically,

Wp’qz W and h = %

Practically, we resample M to a point cloud of 25K points to
build its matrix.

2.2. Extrema Correspondence

As M and P do not represent exactly the same shape, we
cannot expect that their squeezed GPS embedding aligns prop-
erly. Incompleteness and/or noise in data may contribute more
to this misalignment. For example, for embeddings in Figure[3]
a rotation is needed to properly register the two squeezed GPS
embeddings. Traditional ICP can not be used here because
it can be easily trapped in local minimum. We exploit the 5
extrema to guide the registration. We detect them as local max-
ima with respect to their Euclidean distance to the origin in the
squeezed embedding. The maximum at the smallest distance is
taken as head and are matched first. Then, we try all 4! possible
extrema correspondence for limbs, compute the corresponding
rotation matrix for each and choose the one that generates the
smallest error.

2.3. Extending Correspondences

Our goal is to deform the mesh M to the pose of the point
cloud P. To actuate this deformation we need a handful of cor-
respondences between the vertices of M and the points in P.
The initial correspondence of 5 extrema as described in the pre-
vious subsection is not sufficient for this purpose. We extend
this correspondence further to a few more points, usually 60
points, that uniformly sample the squeezed embeddings.

Let m and p denote the points in M and P respectively to
which this correspondence is extended. We build the sets m and
p incrementally as follows. Each set is initialized with the five
extrema. Then, we continue inserting new vertices in m that
are furthest from the existing points in m where the distance
is calculated in the squeezed GPS embedding of M. Similarly
we build p. The furthest point strategy is availed to sample the
squeezed GPS embedding more or less uniformly.

Our next step is to establish a correspondence between the
sets m and p. For each vertex v in m (similarly for p), we
compute a 5-element descriptor vector as follows. Let d;(v),
i=1,..,5, be the five distances of v to the five extrema in the



Figure 4: Aligned embedding of two shapes in the GPS domain. Red balls and
blue balls are matched points of the template mesh and the input point cloud,
respectively.

squeezed GPS embedding of M. Each d;(v) is taken as the dis-
tance between v and the corresponding ith extremum. Our aim
is to match points in m and p by comparing these distance vec-
tors. For this we need to scale them appropriately. For each
extremum i, we have d;(v) for all points of m divided by the
distance between i and its farthest neighbor in m. The cor-
respondence between points in m and p is determined by the
Manhattan distance between their descriptors. Figure [] shows
aligned embeddings and the matched points of M and P.

3. Posing Template Mesh

Subsequent to establishing the correspondences, we actuate
the deformation of the template mesh M to the pose of the point
cloud P. We observe that simulating the deformation for all ver-
tices in M is costly. We sidestep this difficulty by considering a
coarse mesh, which we call the control mesh.

3.1. Control Mesh Representation

We simplify M into a surface mesh M, with about roughly
1000 triangles and then deform M, instead of M. We call M,
the control mesh for M because we deform the smaller mesh M,
and recover M from it by exploiting the mean value coordinate
of [31]]. Each point of M can be represented as the weighted
sum of the coordinates of the vertices of M. The weight matrix
which remains fixed across the deformation of M, can be pre-
computed. In practice, we observe that taking M, as a volume
mesh rather than a surface mesh preserves volume and surface
area better during deformation. Therefore, M, is further con-
verted into a tetrahedral mesh using TetGen [32]. We choose
the option in TetGen that does not introduce any extra vertex
on the surface while producing the volume mesh M,. There ex-
ist deformation methods with good performance, such as [33].
However, twisting can happen for large deformation at joints,
and local geometry may be distorted by inaccurate correspon-
dence caused by noise and occlusion. We apply the invertible
finite volume method [34] to invert the flipped tetrahedra and
preserve the volume of the mesh.

(b) Mesh posed by a 7K point cloud captured by Kinect

Figure 5: Left: the original model. Middle: template mesh deformed by small
K. Right: template mesh deformed by large K),.

3.2. The Variational Deformation Framework

Given the correspondences (m, p) established in Section E
our next goal is to pose the control mesh M, to the point cloud,
such that their difference becomes small. Mathematically, we
define this as an energy minimization problem:

Eotal = Eelastic + Ealign, )

in which E.j,gc 1 the internal elastic energy of the control mesh
and Eqjg, is the alignment energy that measures the difference
between the control mesh and the point cloud. The solution that
minimizes Ey, can then be found by solving mesh evolution
over time, in which the movement of a vertex x; with mass m;
can be given as:

@ _ _i OE ol

dt
according to the discrete gradient flow formulation given by
Eckstein et al. [35]]. Intuitively, Equation[3|can be considered as
total

3

m; 6xi ’

an elastostatic simulation process, where gives the force

applied on vertex x;. According to Equationl there are two
forces: an elastic force and an alignment force. Here we use the
invertible FEM method developed by Irving et al. [34] to com-
pute the elastic force in each tetrahedron of the control mesh.
Our experiment shows that inverted tetrahedra can be common
in joint regions (such as elbows and knees), where large body



deformation exists. To allow the body to deform more freely,
we use a relatively small tensile stiffness but a large Poisson ra-
tio in the constitutive model, so that the body volume change
can be reduced. For simplicity, we choose an explicit time in-
tegrator to evolve M, over time using Equation [3] Since the
control mesh is in low resolution, we did not notice any nu-
merical instability issue even when using large time steps. In
the rest of this section, we will discuss how to formulate the
alignment energy and its force.

3.3. Initial Alignment

To improve the convergence speed of our system, we use an
initial alignment process to get the control mesh quickly aligned
with the point cloud, before performing detailed alignment in
Subsection Given a pair of correspondences X,, and Xx,, in
(m, p), we would like to make the Euclidean distance ||xm -X ,,”
as small as possible. But since x,, may not exist in the control
mesh M., we find the control mesh vertex x.. closest to x,,, and
then define the energy Eqjig, as:

Ealign =K; Z ”Xc - Xp”2- 4

(m,p)

The resulting force can be intuitively considered a spring force
connecting between X, and x,, where K; adjusts the spring stiff-
ness.

3.4. Point Cloud Alignment

The point correspondences are sparse and not sufficient to
get the control mesh aligned with the point cloud in details. So
in this subsection, we define the alignment energy Eqjig, using
the difference between the control mesh and the point cloud
immediately:

Z K. lepléIl} [[xc - xp”2 + Z K, xlclg\ldlc [[xc - Xp||2, (5)
X.EM. x,€P

in which K. and K, are the stiffness of two types of springs,
similar to K; used in Equation@ Howeyver, there are two issues
when using Equation [5] to formulate our alignment forces for
surface evolution. The first problem is due to the incomplete-
ness of a point cloud. When a point cloud has missing regions,
the difference between a control mesh vertex and its nearest
point does not correctly reflect the difference between the two
underlying shapes. To solve this problem, we define K. using

a Gaussian falloff: K, = de™¥, in which d = l’l’liII} ”Xc - Xp”2
X,€

and A is a constant coefficient. We still define the other stiffness
K, as a constant. The second problem is that Equation|[5]cannot
be differentiated directly. One possible solution is to derive an
approximation of Equation [5| which is similar to the pseudo-
Hausdorff distance and its gradient flow given by Eckstein and
colleagues [33]]. Our solution instead is to simply find the near-
est point of each vertex (or the nearest vertex of each point),
and assume that it remains as the nearest through each surface
evolution iteration. As a result, we can still formulate the align-
ment forces as spring forces between control mesh vertices and
points in the point cloud.

Figure 6: Process of posing by depth camera data. Top row, from left to right:
pose is captured by three cameras from different views, captured pose in 3D,
captured pose is down sampled to about 20K points for deformation. Bottom
row: posed template overlapped with captured pose, posed template.

Figure[5]demonstrate the effect of using different stiffness co-
efficients in our system, when the point cloud is captured from
a person with a different body size. If the stiffness is small, the
elastic energy makes the result more volume preserving, and
if the stiffness is large, the alignment energy makes the mesh
more aligned with the point cloud.

4. Results

We tested our system on a workstation with 16GB memory
and an Intel Xeon 3.5GHz CPU. Most of our algorithms are
implemented in C++, while the eigen-decomposition process
is done by MATLAB.

In our experiment, we selected a watertight SCAPE mesh
in a rest pose as our template mesh. Its control mesh con-
tains 3.5K tetrahedra and 1K surface triangles. The datasets we
used include: low-quality point cloud data captured by three
Kinect cameras, the raw SCAPE dataset [[10], and the synthetic
TOSCA dataset [36]]. The results of using different datasets are



Figure 7: Mesh posed by depth camera data, with intermediate result shown.
Top row, from left to right: input scans, control mesh after initial alignment,
posed template overlapped with input, posed template. Bottom row: extrema
correspondence in both squeezed GPS space and model space.

shown in Figure 1. See the supplementary video for more de-
tailed results.

Figure [6] shows the process of posing by data captured by
depth camera such as Kinect. We used three cameras with 120
degree separation to capture poses, then fed down sampled in-
put scans to our method. Figure [7] shows another posed mesh
and its intermediate result. Note that the five extrema corre-
spondence is reliable even in the presence of noise and occlu-
sion. Although extended correspondence is disturbed by noise
and occlusion, and limbs do not have the same number of ex-
tremum, the deformation framework works robustly against this
anomaly. Our method works well even under the rough guid-
ance of correspondence. Figure[8|shows more meshes posed by
depth camera data.

On average, it took 10 to 30 seconds for our system to run
the whole process, including eigenfunction computation. The
exact timing of each test case can vary, depending on the size
of the point cloud and the magnitude of the deformation. We
notice that mesh alignment is usually the performance bottle-
neck of our system, which can be accelerated by using implicit
co-rotational FEM simulation [37] in future.

Although our method can handle noisy and incomplete point
clouds, it cannot handle point clouds with self body contacts,
i.e., topological changes. Based on this condition, we tested
more than 200 point clouds (without topological changes) from
the three datasets.

Given sufficiently large alignment stiffness, the average dif-
ference between the deformed mesh and the point cloud can be-
come small (less than 10mm) in most cases. However, we did
notice large difference occasionally in our experiment, due to a
twisting problem as the right hand shown in Figure [5] Fortu-

Figure 8: Mesh posed by scans captured by depth cameras. For each row, from
left to right: input scans, posed template overlapped with input, posed template.

nately, such problems are not common (less than 5 percent) and
most of them can be fixed by adjusting alignment parameters.

To quantitatively understand the influence of the point cloud
noise on our results, we create a synthetic example by randomly
perturbing the point positions in a point cloud with a certain
radius. In this example, we use a small elastic energy term
to reduce the error caused by body size variation. Figure [J]
shows one deformed result from this test, with noise magni-
tude of 8mm. Figure [T0] shows that the average distance be-
tween the body and the point cloud is proportional to the noise
magnitude. This is not surprising, since the alignment process
tends to deform the body mesh to the middle, when the noises
cause the points to form a layer on the body surface. However,
large maximum distances (due to the twisting problem men-
tioned previously) are more likely to occur. In our experiment,
we noticed 2 out of ten such cases, when the noise magnitude
is above 20mm.

We compared our method with SCAPE [10] and observed



Figure 9: Mesh deformed by a noisy 26K point cloud sampled from a male
TOSCA model. Left: deformed template mesh. Middle: noisy input. Right:
deformed template mesh colored by its distance to the model.
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Figure 10: Error plot. This plot visualizes the relationship between the random
noises added on a synthetic human body example and the average point-body
distance.

our result is competitive with SCAPE. Figure [T1] compares
the result of our method with the registration result provided
by SCAPE, which is based on a probabilistic correspondence
model [19] and non-rigid ICP [38]. It shows that when the in-
put point cloud is incomplete, our method can faithfully retain
the template mesh details, even if they are not well aligned with
the data. In contrast, the method used by SCAPE is more sen-
sitive to this issue as these three examples show.

Limitations. Like other non-rigid registration approaches, our
method relies on the point cloud quality. If the point cloud has
severe occlusions or if the human point cloud is mixed with
other points from the environment, our method cannot handle
it. For the same reason, our method cannot accurately align
the body details, such as fingers and faces, if the point cloud
does not contain such information. Our method cannot robustly
handle topological change either.

5. Conclusions and Future Work

In summary, we proposed an automatic approach to align a
detailed human body template mesh with human point clouds
in different poses. This approach can robustly handle noise and
partial occlusion issues in the point cloud data, but not topolog-
ical change. A recent result in [39] addressing the topological
noise may turn out to be useful.

Our immediate plan in the future is to make the system more
efficient. We expect 5x to 20x speedups from our system opti-

gy

Figure 11: Comparison of our results with SCAPE data. Left column: incom-
plete scans; middle column: deformed template mesh based on our method;
right column: morphed template by SCAPE.

mization. Although default parameters in our system work well
most of the time, we would like to study whether they can be
automatically determined based on the alignment process. We
are also interested in making our method more robust against
severe occlusion issues, for example, the absence of the whole
upper or lower body. Finally, topological change is a challeng-
ing yet interesting problem that we would like to address.
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