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Fig. 1. We investigate active area lighting in inverse rendering to capture the BRDF material and geometry of real-world objects (left). Area lighting can be
efficient as it samples a broader range of BRDF angles, reducing the number of photos required thanks to better material roughness estimation. For rendering,
we compare MC methods to differentiable linearly transformed cosines (LTC). While both can produce high-fidelity relighting (right), LTC can be faster.
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In 3D object reconstruction from photographs, estimating material proper-
ties is challenging. We propose an inverse rendering method that uses active
area lighting: as this provides a wider range of lighting angles per photo than
point lighting, material reconstruction can be more accurate for the same
number of photos. We compare area light shading with point lighting. With
either mesh or 3D Gaussian splatting pipelines, area lighting can improve
BRDF reconstruction and leads to +3 dB relighting PSNR over point lights, or
need only 15 of the input photos for the same quality. We also compare area
light shading with Monte Carlo ray tracing and with differential linearly
transformed cosines (LTC) plus shadow visibility weighting. LTC can be
faster, improving optimization times by 25%. In SOTA method-level com-
parisons, our approach improves material reconstruction, particularly for
material roughness, leading to superior relighting quality.
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1 Introduction

Inverse rendering is the process of recovering the geometry and
material of the real world from many captured photographs by
modeling light transport. Once recovered, we can render real-world
scenes and objects from arbitrary viewpoints under novel lighting
conditions, and edit physically-based material appearance proper-
ties. This makes it valuable for applications like game production
and extended reality. Inverse rendering is challenging because the
relationship between appearance and physical properties is under-
constrained. Ambiguities often arise between material and lighting,
where color variations caused by lighting can be mistakenly attrib-
uted to material albedo or roughness. This requires many constraints
from many photographs to resolve.

One way to reduce optimization complexity is by reducing the
degrees of freedom (DOF) in the lighting model. For example, using
controlled point lights in a dark room can produce high quality
results. Within this setting, our work investigates area lights as a
setup for object capture in a dark room (Fig. 1), using an ‘active’
setting where the light is attached to the camera to induce different
angular samplings of the surface BRDF.

Per photo, point lights illuminate one angle per surface point, and
previous methods have used (nearly) co-located point lights [Zhang
et al. 2022a], separated point lights [Gao et al. 2020; Kuang et al.
2024], polarimetric point lights [Hwang et al. 2022], or LED arrays
with multiple point lights [Bi et al. 2024a; Ma et al. 2021a]. However,
planar rectangular area lights with flat response are now cheap to
buy, so they are as easy to set up and use as a point light. This
makes it a practical choice for real-world applications. Area lights
illuminate multiple angles per surface point, giving broader cover-
age of the 4-dimensional BRDF function space in a single capture
than point lights. For instance, for specular material regions, an
area light from a fixed viewing direction emits rays that have a
higher probability of producing non-zero specular reflections. This
potentially allows for higher quality material reconstructions or
more efficient capture with fewer input photos for the same quality.

For area light inverse rendering, we also require differentiable
shading, and so a second kind of efficiency—computational—should
also be considered. Shading from area lights is often rendered using
Monte Carlo (MC) integration with importance sampling. But, in the
active lighting setting, most methods ignore indirect lighting from
the object itself for the sake of efficiency. Given this relaxation, the
shading of a surface point under an area light can also be approxi-
mated using Linearly Transformed Cosines (LTC) [Heitz et al. 2016],
which has potential to be fast and noise free given its closed-form
nature. No existing work has investigated differentiable LTC for
multi-view object reconstruction. Our differentiable LTC is imple-
mented in CUDA and accommodates an optimization stability issue
caused by nearly adjacent polygonal light vertices when clipping to
the surface tangent plane. Since LTC can only represent shading and
not shadowing, we add shadowing back using limited ray tracing
to compute per-view area-guided visibility maps. As these use a
mostly-accurate initial geometry, they only rarely require updating
by forward rendering, which is computationally efficient.

We integrate this approach into two inverse renderers for object
reconstruction: a mesh pipeline and a 3D Gaussian Splatting (3DGS)
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pipeline. For meshes, we extend NVDiffRec [Munkberg et al. 2022]
to optimize a SVBRDF textured mesh. For 3DGS, we extend the
recent relightable 3DGS method R3DG [Gao et al. 2023], where each
Gaussian has SVBRDF parameters. First, we affix an LED area light
to the camera and calibrate its relative pose (Fig. 1). Then, we capture
multi-view images and reconstruct an initial coarse geometry using
off-the-shelf photogrammetry tools. Next, we refine the geometry
and optimize the BRDF materials to match the input photographs.

Area lighting shows improved SVBRDF reconstruction quality in
both mesh and Gaussian pipelines, with particular improvements
in material roughness estimation. For an equivalent quality of re-
lighting for rendering captured objects in new scenes, the area light
with LTC approach reduces the number of images needed to 1/5 of
those needed with a point light approach. In comparison to MC,
the closed-form integration of LTC with our area-guided visibility
approach is 25% faster than MC at 16 SPP for comparable quality,
and is 5x faster than other neural inverse rendering methods.

Assumptions and limitations. Our work does not model shading
due to interreflection, nor effects from transmissive materials like
glass or highly specular mirror. Our final quality is dependent upon
the initial geometry which we assume to be mostly accurate; large
defects in this geometry cannot be automatically refined correctly.

2 Related works

Neural inverse rendering decomposes scene appearance into geom-
etry, material, and lighting with neural networks from multiple
observed images, and NeRF [Mildenhall et al. 2021] has spurred
many neural inverse rendering methods. Some methods constrain
the lighting of input images to an environment map [Srinivasan
etal. 2021; Zhang et al. 2021b], while others let input images varying
in lighting environments [Boss et al. 2021a,b; Yao et al. 2022].

Accounting for global illumination, NeILF [Yao et al. 2022] in-
troduces a neural incident light field to model the direct and indi-
rect illumination of the scene. TensolR [Jin et al. 2023] performs
a secondary ray tracing to compute accurate visibility and indi-
rect lighting, which enables accurate physically-based rendering.
The aforementioned NeRF-based methods often struggle to recon-
struct fine geometries. To address this problem, PhySG [Zhang
et al. 2021a] uses a signed distance field (SDF) for scene geometry
and uses sphere tracing for ray-geometry intersections. Other SDF-
based methods [Liu et al. 2023; Wu et al. 2023; Zhang et al. 2023b,
2022b] have investigated global illumination models to improve the
accuracy of material-lighting decoupling.

The recent success of 3DGS has drawn attention from the field of
inverse rendering [Wu et al. 2024], with deferred shading of rasteri-
zation applied for realistic rendering and relighting. GS-IR [Liang
et al. 2024] proposed a depth-based regularizer for normal estima-
tion and a cube map-based baking strategy to model occlusion and
indirect illumination. R3DG [Gao et al. 2023] uses a similar normal
estimation strategy, but associates a set of SH coeflicients with each
Gaussian to represent indirect illumination, then uses physics-based
rendering to compute and blend the radiance of each Gaussian.

Different from these methods, NVDiffrec [Munkberg et al. 2022]
and NVDiffrecMC [Hasselgren et al. 2022] directly optimize a mesh
using a differentiable marching cube method DMTet [Shen et al.



2021]. Meshes are easier to accelerate with GPUs for hardware-
accelerated rasterization [Laine et al. 2020] and ray tracing, and fit
into graphics production workflows. To address noise and aliasing
in differentiable ray tracing, Zhou et al. [2021] introduce a render-
ing technique called vectorization, which analytically computes
2D point-to-region integrals. In contrast, our work investigates the
practical trade-offs of using diffLTC for object reconstruction un-
der active area lighting. Moreover, our visibility map estimation
is more efficient than theirs, which, while accurate, incurs high
computational cost due to convex region splitting and merging.

Inverse rendering with known active lights. This reduces the di-
mensionality of the optimization space and so helps to alleviate
ambiguity. Here, we focus on neural-based methods and will not
introduce traditional methods in detail [Gardner et al. 2003; Ghosh
etal. 2009; Nam et al. 2018; Ren et al. 2011; Riviere et al. 2014; Schmitt
et al. 2020; Wang et al. 2011; Zhou et al. 2013].

The point light assumption restricts the lighting distribution func-
tion to a Dirac delta function, allowing the integral of the rendering
process to be computed with a single sample. This significantly sim-
plifies the rendering, making it one of the most common active light
sources. Bi et al. [2020b] optimize the geometry and SVBRDF of
the object by training a depth estimation network and a reflectance
estimation network. Subsequently, methods combine point lighting
with different scene representations, such as NeRF-based [Bi et al.
2020a], SDF-based [Zeng et al. 2023; Zhang et al. 2022a], hybrid
point-volumetric-based [Chung et al. 2024], and 3DGS-based [Bi
et al. 2024b]. Lu et al. [2024] and Han et al. [2024] proposed methods
to reconstruct the geometry and materials of the human body or
face from images taken with a mobile phone and flashlight.

Beyond point lights, other works have used LED arrays in a
light stage, which could enhance the quality of material decom-
position [Kang et al. 2018, 2019]. Ma et al. [2021b] simplify the
light-stage capturing setup by using only one camera and a collo-
cated RGB LED array. Although the capture setup of this method
is similar to ours, it sums many point light estimates rather than
directly estimating flat area lighting. Zhang et al. [2023a] predict
the SVBRDF of a planar sample from a single image captured under
an RGB LCD area light and a camera without careful calibration.
This method is only applicable to planar objects and requires a large
amount of training data, whereas we consider reconstructing the
material properties of an object from multi-view data and using
direct inverse rendering rather than learning.

3 Efficient Area Light Object Reconstruction

We wish to reconstruct the geometry and BRDF materials of a target
object using a set of photographs captured in a dark room with a
camera equipped with a fixed planar area light source. We assume
that the light source has a constant radiance L and that we know
via calibration its relative pose with respect to the camera [Whelan
et al. 2018]. We make the common assumption for this problem that
we are given an initial geometry that needs only minor refinement.

Overall pipeline. We follow the approach of NVDiffrecMC [Has-
selgren et al. 2022], which is a mesh-based pipeline. We modify
it to incorporate active point and area lighting via ray sampling
and Monte Carlo integration, and to incorporate our differentiable
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Fig. 2. Area lights give more accurate material roughness than point
lights and need fewer views. Reconstructed roughness r. Point lighting
fails to reconstruct roughness where there is no specular hint. The table
reports quantitative relighting PSNR and r MAE on the ‘Hotdog’ synthetic
object from uniform views. Shaded with LTC; results similar for MC.

LTC. Given the initial geometry, first we differentiably rasterize
the mesh with textures into a G-buffer. Then, we shade each pixel
from our area light—we will consider both MC and LTC assuming
no interreflection. Finally, we use the rendering loss to end-to-end
optimize the albedo, roughness, metallicity, and geometry (vertex
positions and a normal map with normal offsets) iteratively via gra-
dient descent. We defer the 3DGS-based inverse rendering pipeline
for later (Section 4.2); the principles are the same.

Material representation. We follow previous work in inverse ren-
dering for objects and use the physically-based (PBR) material model
from Disney [Burley and Studios 2012].This lets us easily import
game assets and render our optimized models directly in existing
engines without modifications. It is characterized by three key prop-
erties: albedo a € [0, 1]3, roughness r € [0, 1], and metallicity
m € [0,1]. It combines two components: a diffuse term and an
isotropic specular GGX lobe [Walter et al. 2007]:

(1-m)a D(r)F(m,a)G(r)
4|lwy - nllo; -0l

1)

p(% 0y, 0p) =

where p is the BRDF, x represents the shading point, w, and «;
denote the view (surface-to-camera) and incident light (surface-
to-light) directions, respectively, and n is the surface normal. D is
the normal distribution function (NDF) that depends on roughness,
which uses the GGX model [Trowbridge and Reitz 1975]. F is the
Fresnel term and G models the shadowing effect between micro-
facets. Note that the simplified Disney BRDF does not account for
tint, sheen, or subsurface effects.

3.1 Area Light vs. Point Light for Efficient Object Capture

First, let us validate the benefit of using area lights over point lights
in inverse rendering for efficient capture (Fig. 2). To have ground
truth, we use the ‘Hotdog’ synthetic object [Mildenhall et al. 2021].
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We use the same initial geometry, and vary the input with 25, 49, 100,
144, 225, and 1024 captures uniformly sampled over the hemisphere.
We use relighting as our ‘end goal’ metric.

Figure 2 shows that as the number of views increases from 25 to
144, both point light and area light relighting results improve. How-
ever, even with just 25 views, an area light-based inverse rendering
achieves significantly better relighting quality compared to point
lighting with even 144 views. We can see that the reason for this is
significantly improved material roughness r reconstruction, which
is overestimated from point lights and so causes specular reflections
to disappear. In this particular scene, the plate is smooth and shiny.
For point lighting, we see incorrect roughness on the plate except
for regions with a specular hint; this hint appears only when the
view angle aligns with the specular lobe. Thus, the key improvement
from area lights is on specular objects, for which sampling efficiency
matters. Point lights have fewer highlight hints due to their lower
angular sampling efficiency.

3.2 Area Light Shading via MC and LTC

We assume the reader is familiar with Monte Carlo integration and
is somewhat familiar with linearly transformed cosines (LTC) [Heitz
et al. 2016]; for a review of LTC, please see our supplementary mate-
rial. In physically-based rendering, as we assume no interreflection,
shading with a polygonal area light of constant radiance L requires
computing the illumination integral over the spherical domain #
covered by the area light:

cp(x,wy) =L /7) P (X, wy, wy) cos Oydawy, (2)

where c,, is the color of pixel p, x is the intersection point along
the view direction w,, and cos 0] = w; - n denotes the cosine of the
angle between the incident light direction and the surface normal.

Computing this integral typically requires Monte Carlo integra-
tion, which samples many rays to achieve an accurate result. LTC
efficiently approximates this integral by exploiting the fact that
integrals of cosine distributions have closed-form solutions for a
polygonal light, and this distribution can be linearly transformed via
M to approximate isotropic BRDFs. This results in a fast integration
method without relying on sampling and Monte Carlo integration,
because the transformed integration E(P’) admits a closed-form
analytical solution [Heitz 2017; Lambert 1760]. It equals the sum
of several (signed) areas corresponding to the edges along the light
source boundary:

E(P) =L/ cos 0;dwy
P/

L
:£Z

(pipj)€oP’

Pi XPj

LA A . 3
lIpr %o, ®

acos(p; - pj)

where 9P’ denotes the boundary of #’, and p; and p; are two
consecutive vertices along the boundary.
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Fig. 3. Visibility map w,. Without precomputed visibility, optimization

bakes contact shadows into the albedo, which hurts relighting quality.
The rendered color is given by cﬁ,tc = cf, + cg, The diffuse compo-

nent can be directly obtained by integrating over the cosine distri-

bution without linear transformation:
1-m)a
o = uE(P) . (4)
T
The specular component of a shaded point p requires the fitted
linear transformations M~1(r, §) for a BRDF to compute the closed-
form integration in Eq. 3:

¢} = F(r HE(P"), )

P’ = {M7'(r, p)pi | pi € P}, (6)

F(r,p) = Fofi(r, p) + (1 = Fo) fo(r. ), 7

where r is the material roughness, f is the dot product of the view
direction w, and the surface normal n, Fy == 0.04(1 — m) + ma is

the basic reflectance, and fi (r, f), f2(r, f) compensates for energy
loss caused by the shadowing term and the omission of the Fresnel
term (including albedo and metallicity) in the fitting of M. M, fi, f2
can be precomputed and stored as 2D look-up tables (LUTs).
Shadowing via area-guided visibility. The LTC-rendered color cgc
ignores occlusion caused by geometry, so we use an area-guided
visibility weighting inspired by Heitz et al. [2018]. A shadowed color

¢p can be decomposed into a color without visibility, which can be

calculated using LTC clf¢

, multiplied by a visibility map wp:
¢p(x,0y) =L /P V(x, wp) p(X, 0y, wp) cos Oydwy 8)

= wp (X, 00)¢p (X, 00) ~ Wp(x, 05)Cp (X, @5),  (9)

/7) V(x, wp) p(X, wy, wp) cos Oydwy

wp (X, wy) = , (10)

/P (X, Wy, y) cos ;dwy;
where V(x, w;) is the visibility of incident light at the shading point
x. The visibility map reduces the weight of shadowed areas, which
largely eliminates issues like baked shadows in albedo (Fig. 3).

Cost analysis: Sampling and denoising. We review the cost of ren-
dering components within a forward and backward pass of MC and
LTC by adapting NVDiffrecMC with our implementations (Tab. 1).
Recall that we ignore global illumination and so use one bounce
ray tracing. Recall also that NVDiffrecMC is not a pure MC ray
tracer: the camera ray hit point is determined by a rasterizer (NVD-
iffrast [Laine et al. 2020]) and only the shading—the inner integral
in the rendering equation—is computed using MC integration. In
complex lighting environments, such as when using a passive envi-
ronment map as NVDiffrec originally does, we sample and denoise
for efficiency. NVDiffrecMC uses a bilateral denoiser that dominates
forward and backpropagation time (Tab. 1). But, in a dark room
with known area light position, no denoiser is required: Along with
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Fig. 4. Object reconstruction with differentiable LTC shading. We optimize object geometry and BRDF materials using a set of images captured in a dark
room and an initial geometry, where the geometry is rasterized into a G-Buffer for efficiency following NVDiffrecMC [Hasselgren et al. 2022].

Table 1. Time (ms) for one iteration with a batch of 8 800x800 images from ‘Hotdog’ object in NVDiffrecMC, including with our LTC shading modifications.

Method Forward Rendering Back Propagation Total
Build BVH Evaluate normal Rasterize Shade Denoise Composite Total Denoise Total

LTC 0.0 12 1.5 2.1 0 27 50 0 77 173

MC 1 SPP 2.4 12 1.5 2.4 100 27 150 117 197 390

MC 16 SPP 2.4 12 1.5 26.0 100 27 175 117 302 514

MC 1,024 SPP 2.4 12 1.5 1685.0 100 27 2143 117 7163 9326

speeding execution, removing the denoiser improves quality at 16
and 1,024 SPP. There are two reasons: First, next-event estimation is
more efficient under area lighting than under environment lighting,
and the noise is substantially suppressed by importance sampling.
Second, a denoiser inevitably smooths details by accident. As such,
we do not use a denoiser for NVDiffrecMC with area lighting via
ray sampling and MC integration. LTC shading is noise-free via its
closed-form integration, reducing total backpropagation time from
295 ms to 77 ms with our CUDA implementation.

Cost analysis: Visibility maps. Soft shadows from area lights re-
quire accurate visibility estimation. Computing visibility maps by
ray tracing wp for each pixel in each of 200 input views using 1,024
rays w; on the spherical domain P takes 15 seconds. Recomputing
this at each optimization iteration for the images in the batch is
prohibitively slow. Consider that, in the active lighting setting, the
shadow/visibility maps wy depend upon the initial geometry and
the camera’s view. As the initial geometry is assumed to be largely
accurate, and as LTC separates visibility map computation from
shading, then efficiency can be improved if we simply do not up-
date the maps often. The trade-off is a slight quality loss. If we ray
trace visibility at the beginning of optimization and update it every
1,000 iterations then, on the ‘Hotdog’ object (random 200 views),
reconstruction takes a quarter of the time for -0.5 db in relighting
quality (32.56 db to 31.95 db), compared to computing the visibility
map at every iteration.

Since our precomputed visibility maps depends on initial geom-
etry, we evaluate the effect of initial geometry error and update
frequency. We added perturbations to the initial geometry using the
displace modifier in Blender and varied this interval. 1) Perturbing
the initial geometry degrades final quality as the added perturbation
was not fully ameliorated through our optimization. 2) Visibility
update frequently has the expected slight impact on quality.

We could also use the same area-guided visibility trick for MC.
In this case, we only intersect light rays with the light itself, and
instead weight the output with the pre-computed visibility map. This

obviates the need for frequent BVH updates and shadow tests, which
would incur per-iteration costs of 2.4 ms and 7 ms, respectively, at 16
SPP. As shown in Tab. 1, the impact on overall runtime is negligible.
However, this method results in a slight reduction in relighting
quality, with a drop of 0.8 dB (from 31.53 dB to 30.69 dB). The use
of a visibility map introduces bias no matter how it is computed
as it is an approximation. In our experiments, computing per-ray
visibility at every iteration with 16 SPP and updating visibility maps
every 1,000 iterations at 1,024 SPP results in comparable runtimes.
Consequently, applying the visibility trick to 16-SPP MC does not
lead to a meaningful speedup.

4 Optimization Details

Differentiable LTC (Fig. 4). The 2D LUT tables for M~!, fy, fi
enables us to compute the derivative of these quantities with respect
to the roughness r and f§ through numerical gradients using forward
differences. These derivatives can be used in the chain rule for
the derivative computation in Eq. 5 to obtain the derivative of the
specular components ¢$, with respect to r and f. Since the vertex
positions are used to calculate the f, the derivatives of c3, can be back-
propagated back to the vertex positions through f. The derivative
chain can be analyzed for cg in a similar way, and the derivatives to
albedo a and metallicity m are obtained through the basic reflectance
Fy in the specular and diffuse components. We show the derivative
chain for differentiable LTC in the supplementary material.

Merging nearby light corners after clipping. During rendering, we
clip each area light polygon to the point’s tangent plane. Thus, it is
possible for two clipped vertices to become close, as shown in Fig. 5.
Two close vertices can cause problems when analytically integrating
the cosine distribution over the domain of the clipped polygon using
Eq. 3. First, in the forward process, the cross product in the denomi-
nator of Eq. 3 can be near zero. Second, in the backward process, the
gradient of the arccos function near 1 approaches infinity, which can
cause instability. To resolve this issue, we propose merging adjacent
points p; and p; that are too close (p; - pj > 1 — 107*) during both
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Transformed Clipped
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Integral Integral
Hemisphere Hemisphere
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Fig. 5. Light source clipping. In LTC, we clip the transformed polygon
to the surface tangent plane before projecting it onto the integral sphere.
When a new vertex P, generated from clipping is too close to another vertex
Py, it causes unstable optimization. We merge such vertices to mitigate this.

Table 2. Ablation of initial geometry and visilibily map update fre-
quency. We show relighting PSNR on "hotdog’ object.

Update every Initial geometry Initial geometry Runtime
n iteration without perturbation  with 5% perturbation

1 32.56 31.55 40mins
100 32.33 31.15 18mins
1000 31.95 30.56 11mins
3000 31.80 30.27 10mins

forward rendering and back-propagation. This causes only a minor
effect because the contribution from the small edge between close
points to the overall rendering is small.

4.1 Mesh-based optimization pipeline

We use a triangular 3D mesh with textures to represent object ge-
ometry, albedo, roughness, and metallicity maps. We optimize the
vertex positions, normal map as offset from the geometry normal,
material albedo a, roughness r, metallicity m, and radiance L of the
area light. For initialization, we set albedo to 1.0, metallicity to 0.0,
and we randomly initialize roughness and the light radiance.

Losses. We define a loss £ as the weighted combination of the
image loss and a set of regularizer terms:

L = Liender + Aarm Larm + Ap Lp + AnLn + Anm Lonm + Anc Lne, (11)

where A is the weight of each term. We set Aarm = 0.1, Ay = 0.025,
Anm = 1.0 and Ape = A = 0.1.

The rendering loss L ender measure the difference between cap-
tured pixel colors cgt and rendered pixel colors ¢,. Given the error
introduced by visibility approximation and significant indirect light-
ing in the shadowed regions, we modulate the color loss with the
visibility map wj, to reduce the gradient from these regions:

0, if cgt < ép and czgf is overexposed,
Lrender = gt A 2 h .
Zp wp||cp —&pll3  otherwise.
(12)
To handle overexposure, where colors are clamped to the maximum
value of the image format, we detect overexposed pixels by checking
if their color values reach the format’s maximum (e.g., 255).

To enhance the ill-posed roughness-metallicity optimization, we
introduce a metallicity binary loss. Inspired by a suggestion from
Unreal [Epic Games 2024] for the Disney Principled BRDF, we add
a binary loss encouraging metallicity to be either 0 or 1 for pure
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surfaces such as pure metal, pure stone, or pure plastic:

Ly= ) my-(1-my), (13)
P

where m,, is the screen-space metallicity of pixel p.

Next, we apply smoothness priors for albedo, specular, metallicity
(Larm), surface normal (L), and normal map textures (Lnm). Addi-
tionally, we apply the smoothness prior to Ly to enforce normal
consistency across randomly sampled adjacent triangles.

4.2 3DGS-based optimization pipeline

Optimizing mesh geometry without a plausible initialization can be
challenging due to issues with changing topology and avoiding self-
intersections. In contrast, 3DGS [Kerbl et al. 2023] uses 3D Gaussian
primitives as its primary rendering entity, which can be optimized
from random initialization. As a proof of concept, we integrate
our area light inverse rendering using LTC into the relightable 3D
Gaussian (R3DG) pipeline [Gao et al. 2023]. Specifically, we shade
each Gaussian under area lighting with LTC and derive the pixel
color by splatting the Gaussian points onto the screen.

5 Experiments

Datasets. We use a synthetic dataset and a real captured dataset.
The synthetic data consists of four synthetic scenes (ficus, lego, ar-
madillo, and hotdog) from TensolR [Jin et al. 2023] and five scenes
(coffee, helmet, musclecar, teapot and toaster) from Shiny Blender
Dataset [Verbin et al. 2022] to demonstrate the benefit of area lights
on specular objects. We use Blender’s Cycles renderer to produce
200 training images and 200 testing images. The poses for the train-
ing and testing views are identical to those in the NeRF-synthetic
dataset [Mildenhall et al. 2021]. For evaluation, we render the train-
ing and testing data under point, area, and environment lighting.

Our real captured data consists of eight objects with varying
materials (Fig.1 and Fig.8). We capture with a consumer-grade DSLR
camera paired with an LED area light. We set the color temperature
of the area light to 5000K, which is typically considered neutral
white light. The relative pose between the camera and the area
light is calibrated by attaching an AprilTag [Olson 2011] to the LED
light and taking photos in front of a plane mirror [Whelan et al.
2018]. The size of the area light follows the specifications of our
lighting device (15cm X 10.6cm). Camera poses are computed using
RealityCapture [CapturingReality 2016].

Geometry. Like our comparison methods, our pipeline relies on
initial geometry. Neural implicit methods like NeuS [Wang et al.
2021] and TensoSDF [Li et al. 2024] can produce satisfactory ge-
ometry with an active lighting setup, so we use the geometry re-
construction stage of TensoSDF [Li et al. 2024] for initial geometry.
For NVDiffrecMC [Hasselgren et al. 2022], we replace its original
DMTet-based geometry initialization [Hasselgren et al. 2022] with
the better TensoSDF geometry. For the SOTA method-level com-
parisons, as DPIR [Chung et al. 2024] uses points as primitives, we
use its original point cloud initialization based on the visual hull.
IRON [Zhang et al. 2022a] bases its neural geometry on NeuS [Wang
et al. 2021]. After initial geometry reconstruction, we extract the
mesh and simplify it to 100-300k faces using Quadric Error Met-
ric (QEM) simplification [Garland and Heckbert 1997], then apply
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Table 3. Quantitative comparisons show area light improves NVS and relighting on synthetic data. ‘+ D’ is with MC denoiser, showing a drop
in reconstruction quality. We scale each RGB channel of albedo, novel view synthesis, and relighting results by an optimal global scalar, as NVDiffrecMC
[Hasselgren et al. 2022]. We evaluate roughness on 5 / 9 objects (hotdog, armadillo, ficus, musclecar and teapot), which have well-defined roughness in the

principled BSDF. The other 4 have materials that are not parameterized with roughness, such as mixed BSDF. We evaluate normal in world space by rasterizing
it into image space for each test view and then normalizing it. For runtime, we use a single RTX3090 GPU and do not include the time spent on geometry
initialization. Since the material model in IRON is referenced from Mitsuba [Jakob et al. 2022], we render its reconstruction using that. DPIR uses points as its
primitive, each with a basis BRDF attached [Lawrence et al. 2006]; we use their built-in pipeline to render test data. DPIR does not parameterize roughness.

DPIR has no open-source relighting code. As the points in DPIR are not only at the surface, but also inside the object, we do not report its chamfer distance.

Vi - - B
Method Light model Novel View Synthesis Relighting Albedo Roughness Normal —Chamfer Dist Runtime
PSNRT SSIMT LPIPS| PSNRT SSIMT LPIPS| PSNRT SSIMT LPIPS| MAE|  MAE| mm |

NVDiffrecMC [Hasselgren et al. 2022]  Static env. map 29.24 0.9348 0.09069 26.52 0.9204 0.09775 27.22 0.9417  0.06774 0.05543 0.02552 0.04623 65mins

Active point 29.48 0.9565  0.04245 26.61 0.9228 0.07874 27.90 0.9226  0.07059 0.07170 0.01673 0.04586 12mins

Active area (16 SPP+D) 29.05 0.9565 0.04225 27.56 0.9288 0.07053 28.32 0.9236 0.07362 0.02588 0.01777 0.04589 34mins

NVDiffrecMC (Our modification) Active area (16 SPP) 29.19 0.9565 0.04027 27.77 0.9350 0.06528 28.35 0.9201 0.07485 0.03929 0.01755 0.04587 16mins

Active area (1024 SPP) 29.11 0.9571 0.03890 27.97 0.9334 0.06186 28.88 0.9380  0.06398 0.02461 0.01708 0.04587 350mins

Active area (LTC) 29.37 0.9568 0.03924 28.29 0.9373 0.05791 29.10 0.9421  0.06229 0.02477 0.01704 0.04589 12mins

TensoSDF [Li et al. 2024] Static field MLP 29.68 0.9538 0.05242 25.66 0.9277 0.07526 25.28 0.9245  0.08663 0.03524 0.01833 0.04732 396mins

IRON [Zhang et al. 2022a] Active point 22.59 0.9188 0.09783 23.23 0.8937 0.1053 24.24 0.9000  0.09728 0.05333 0.02935 0.07609 571mins

DPIR [Chung et al. 2024] Active point 25.16 0.9386 0.08627 - - - 27.50 0.9214  0.08945 - 0.06866 - 223mins
Laplacian smoothing [Vollmer et al. 1999]. Next, we generate a Metallicity

1024 x 1024 texture map for both the material and normal maps.
Objects with highly metallic areas (Bust, Luckycat) or metallic and
low reflectance areas (Bottle cap) are known to be difficult. For these,
to define the initial geometry, we capture a set of images under fixed
environment lighting (no active area lighting); this is a limitation.
The quality of the initial geometry is shown in Table 3 as the
TensoSDF row. The refined geometry after optimization produces a
slight improvement only; this is expected as the initial geometry is
already mostly accurate. As such, we will not discuss it further.

Training details. We jointly optimize geometry, material, and
lighting. We initialize white albedo, random roughness, zero metal-
licity and zero normal map perturbation. We use Adam [Kingma
2014] to optimize in PyTorch [Paszke et al. 2019] with peak learning
rates of 1 X 107¢ for vertex positions, 0.01 for albedo, roughness,
metallicity, and normal maps, and 0.03 for area light radiance. We
use 100 warm-up iterations, linearly increasing the learning rate to
its peak. After that, we exponentially decay the learning rate to 10%
of the peak value. Training consists of 3 k iterations, with a batch
size of 8 images, and uses an RTX 3090 GPU. We ignore gradients
from the visibility maps: in our multiview setting (100+ views), we
found no stability issues caused by this (unlike in a single view
setting). For the 3DGS-based pipeline, we use the same training
configuration as in R3DG [Gao et al. 2023].

Metrics. For quantitative comparisons on the BRDF estimation
and relighting results (Tab. 3), we use Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity (SSIM) [Wang et al. 2004], and Learned
Perceptual Image Patch Similarity (LPIPS) [Zhang et al. 2018], using
masks to assess only the object region. To assess geometry quality,
we compare the estimated normal maps with the ground truth
using Mean Absolute Error (MAE) and compute Chamfer distances
between the reconstructed and ground truth meshes. We report
runtime of all methods after geometry initialization.

5.1 Comparisons

We use two kinds of comparisons. The first is to methods with the
same loss built upon the same codebase of NVDiffrecMC [Hasselgren

16 SPP

1024 SPP

Fig. 6. Ray tracing vs. LTC. Area lighting with ray sampling and Monte
Carlo integration at low SPP suffers from instable gradient and fails at
highly specular objects.

et al. 2022]. These are above the line in Table 3, and directly show
the impact of area lights and LTC. The second is to broader SOTA
method-level approaches, shown below the line. These methods use
different codebases and use the losses presented by the original au-
thors. Even using the same loss in these codebases would not be fair
as other implementation differences will impact the comparisons.
For NVDiffrecMC-based comparisons, as expected, both MC and
LTC area lights produce plausible materials. For MC with 16 SPP,
the relighting results are 0.5 db less than LTC quality and LTC is 25%
faster on average. MC at 16 SPP suffers from noise in both rendering
and gradients, which can occasionally cause failures (Fig. 6). As SPP
increases to 1,024, MC approaches LTC quality. Although memory
consumption in MC backpropagation can be adequately mitigated
by path replay [Vicini et al. 2021], training time increases drastically:
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Fig. 7. Relighting is more accurate with area lights, especially in specular regions. We scale each RGB channel of relighting and albedo results by
an optimal global scalar, as NVDiffrecMC [Hasselgren et al. 2022]. We increase the brightness of specular component for better visualization. To visualize
world-space normal, we linearly scale it from [-1,1] to [0,1]. NVDMC (Origin) refers to original NVDiffrecMC that uses static environmental lighting. NVDMC
(Point) refers to NVDiffrecMC modified for point lighting while NVDMC (16SPP) refers to NVDiffrecMC with area lighting via ray sampling and Monte Carlo
integration under 16 SPP. Since the material model in IRON is referenced from Mitsuba [Jakob et al. 2022], we render its reconstruction using that. R3DG
[Gao et al. 2023] leverages 3D Gaussian with material while DPIR [Chung et al. 2024] employs point as geometry primitive and basis BRDF [Lawrence et al.
2006] attached. As they cannot be rendered with Blender, we use their provided code. DPIR has not open-sourced their relighting code.

1,024 SPP is 29X slower than LTC (Tab. 3). Adding the denoiser back
to try to speed this up does not reach the same quality, as discussed;
e.g., 16 SPP with denoising is worse than 16 SPP without.

As broader method-level comparison of SOTA approaches, we
compare to three alternative inverse rendering methods not based
on NVDiffrecMC: IRON [Zhang et al. 2022a] and DPIR [Chung et al.
2024], which use active point lighting, and TensoSDF [Li et al. 2024],
which assume static environmental lighting. For the active lighting
setting, Table 3 shows that our method significantly outperforms
IRON [Zhang et al. 2022a] and DPIR [Chung et al. 2024] in terms of
geometry, material, and the ability to relight under novel environ-
mental conditions. Our inverse rendering method is also an order
of magnitude faster than these neural methods.

Evaluation on real objects. We compare results to TensoSDF [Li
et al. 2024]. As we might expect in this more challenging setting,
performance decreases for all methods than on synthetic objects.
For real objects (Fig. 8), we see that TensoSDF fails to properly
decompose albedo, roughness, and metallicity; our approach fares
better. Additionally, for the albedo, since the color temperature of
the environment lighting is not calibrated, it is baked into the albedo
in TensoSDF. For example, the albedo of the vase object exhibits cool
tones, which are influenced by the environment lighting. Figure 12
shows all eight objects reconstructed by our mesh+LTC approach.

Evaluation on 3DGS-based pipeline. We use relightable 3D Gauss-
ian (R3DG) [Gao et al. 2023] to evaluate our differentiable-LTC-based
area lighting. We modify the original environment lighting model in
R3DG to incorporate point lighting and area lighting. As R3DG does
not support metallicity, we do not include comparison on Shiny
Blender Dataset [Verbin et al. 2022] with mostly metal objects. We
observe that our LTC area light approach better estimates complex
materials, yielding better relighting performance (Table 4).
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Data Relighting  Albedo Roughness  Metallicity ~ Normal

Qurs

TensoSDF

Ours

TensoSDF

Fig. 8. Real objects results. Data column shows the objects under environ-
ment lighting. Since we do not capture this environment lighting, we relight
the objects with another HDR environment map and show the relighting
results. Compared to natural environment capture in TensoSDF, our area
light approach more accurately recovers PBR materials.

Table 4. Evaluation on 3DGS-based pipeline. We replace the environ-
ment lighting in R3DG [Gao et al. 2023] with LTC shaded area lighting.

Method Novel View Synthesis Relighting

PSNRT SSIMT LPIPS| PSNRT SSIMT LPIPS |
R3DG [Gao et al. 2023] 30.16 0.9606 0.03714 24.22 0.8950 0.07537
- with point 30.06 0.9480  0.04523 27.49 0.9222  0.06296
- with our area LTC 31.00 0.9549 0.03854 28.18 0.9291 0.05612




Table 5. Ablation of area light size. Evaluated in our NVDiffrecMC LTC
pipeline. We observe similar results with 16 SPP ray tracing, showing that
the quality decrease is due to the area light size rather than LTC.

Side Length (meters) Albedo  Normal Relighting
PSNRT MAE| PSNRT SSIMT LPIPS|
30.28 0.02242 30.40 0.9543  0.04767
2 30.42 0.02182 31.90 0.9610  0.04028
4 (ours) 30.32 0.02216 31.95 0.9617  0.04144
8 29.50 0.02365 29.41 0.9513  0.05598

Lucky Cat Bottle

w/o Overexp.

w/ Overexp.

Fig. 9. Ablations on overexposure loss. For better visualization, we in-
crease the contrast in bottle.

5.2 Ablations

Area light size. We examine the impact of area light size using
the ‘Hotdog’ synthetic object. The area light is square. The object
diameter is 2 m. The camera is 4 m away. The ratio of area light to
object size is similar to our real world examples where the LED panel
is 10 cm, the object diameters are 10-35 cm, and the camera is 35-45
cm away. When the area light is too large or too small, quality suffers
(Tab. 5). When using a small area light, the issue is similar to point
lighting: specular areas appear diffuse under relighting conditions
because point lighting may miss highlight hints due to lower angular
sampling efficiency. When using a large area light, we lack contrast
between regions with and without highlights, decreasing quality. A
best practice would choose an area light size and capture distance
based on the angular coverage of the BRDF lobe, geometric surface
detail, and light brightness (potential overexposure). In practice, we
fix the area light size and set its distance to roughly the diagonal
length of the object’s bounding box.

Overexposure detection in Lender- As shown in Fig. 9, removing
overexposure detection from the rendering loss leads to a decrease
in the accuracy of albedo reconstruction for real captured objects,
particularly in areas with overexposed regions across most views.
Since the overexposed pixels are clamped to 255, which is below their
true value, the predicted albedo tends to darken in these highlight
areas to fit the clamped values.

Metallicity binary loss. Without the metallicity binary loss, our
system sometimes fails to optimize the metallicity correctly. For
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w/o p w/ p

w/o p w/ p

Novel View
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—

Fig. 10. Ablations on metallicity binary loss.

GT NVDMC(LTC) NVDMC(16SPP) Mitsuba(16SPP)

Fig. 11. Relighting results using a different backbone render pipeline.
We obtain comparable results in NVDiffrecMC [Hasselgren et al. 2022] and
Mitsuba [Jakob et al. 2022] pipeline.

example, in Fig. 10, the body of the bottle is made of high-gloss plas-
tic, but without the metallicity binary loss, our method incorrectly
classifies it as metal with high metallicity.

Mitsuba backbone. We also show a preliminary experiment com-
paring NVDiffRecMC to Mitsuba as the rendering backbone for ray
tracing (Fig. 11). Both approaches produce similar relighting quality.
We provide experimental details in the supplemental material.

6 Conclusion

For sample efficiency, area lighting can help to improve object recon-
struction material quality over point lights, particularly for material
roughness, and this is what enables it to reduce the number of views
necessary significantly for a similar quality. For computational ef-
ficiency, we have introduced a differentiable linearly transformed
cosines approach that can reduce optimization time by 25%, with
insight into trade-offs in visibility computation of time and quality.

Looking forward, one opportunity for inverse LTC shading is
efficient pattern lights, e.g., textured or colored. These have potential
to improve normal estimation, but MC sampling here would only
increase noise. By partitioning the pattern into polygons, LTC can
still compute shading efficiently and with low noise.
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Fig. 12. Reconstruction results on real captured objects with area lights and LTC. Example input photographs are at the bottom, along with object
size and input photo number. As discussed in the main body text, highly metallic objects are extremely challenging and so have additional photos under
environment lighting just for initial geometry reconstruction. Please zoom in to see the details.
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