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Fig. 1. By performing heterogeneous computation across both the CPU and GPU cores of Apple’s M-series processors, an XPBD simulator enhanced with our
auto-scheduling method achieves a speedup of 40% to 60% compared to computation using GPU cores alone, as shown in the two above examples.

The concept of the Internet of Things (IoT) has driven the development
of system-on-a-chip (SoC) technology for embedded and mobile systems,
which may define the future of next-generation computation. In SoC de-
vices, efficient cloth and deformable body simulations require parallelized,
heterogeneous computation across multiple processing units. The key chal-
lenge in heterogeneous computation lies in task distribution, which must
account for varying inter-task dependencies and communication costs. This
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paper proposes a novel framework for automated task scheduling to op-
timize simulation performance by minimizing communication overhead
and aligning tasks with the specific strengths of each device. To achieve
this, we introduce an efficient scheduling method based on the Heteroge-
neous Earliest Finish Time (HEFT) algorithm, adapted for hybrid systems.
We model simulation tasks—such as those in iterative methods like Jacobi
and Gauss-Seidel—as a Directed Acyclic Graph (DAG). To maximize the
parallelism of nonlinear Gauss-Seidel simulation tasks, we present an inno-
vative asynchronous Gauss-Seidel method with specialized data synchro-
nization across units. Additionally, we employ task merging and tailored
task-sorting strategies for Gauss-Seidel tasks to achieve an optimal balance
between convergence and efficiency. We validate the effectiveness of our
framework across various simulations, including XPBD, vertex block de-
scent, and second-order stencil descent, using Apple M-series processors
with both CPU and GPU cores. By maximizing computational efficiency
and reducing processing times, our method achieves superior simulation
frame rates compared to approaches that rely on individual devices in isola-
tion. The source code with hybrid Metal/C++ implementation is available at
https://github.com/ChengzhuUwU/libAtsSim.

CCS Concepts: « Computing methodologies — Physical simulation;
Parallel algorithms.

Additional Key Words and Phrases: task scheduling, heterogeneous comput-
ing, asynchronous parallelism
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1 Introduction

Modern computing systems often integrate multiple powerful pro-
cessing units, including CPUs, GPUs, and specialized accelerators
like TPUs and NPUs for Al and data-intensive tasks. An emerging
challenge in improving simulation performance lies in determining
whether cloth and deformable body simulations can be effectively
parallelized across these heterogeneous units. Compared to sim-
ulations on single units, such as a CPU or GPU [Wu et al. 2022],
this area remains significantly understudied. This is understand-
able given the nature of cloth and deformable body simulations,
which involve numerous iterative tasks requiring frequent data syn-
chronization. The isolation of computing units on the board and
the limited bandwidth for data transfer between components often
make the high synchronization costs outweigh the potential benefits
of parallelization.

The growing adoption of Internet-of-Things (IoT) devices has pop-
ularized system-on-a-chip (SoC) designs, particularly in embedded
and mobile systems. SoC processors, such as Apple’s M series and
AMD’s Ryzen series, integrate multiple computing units on a single
chip. This architecture significantly alleviates memory bandwidth
constraints between units, presenting an opportunity to revisit the
challenge of heterogeneous computation for cloth and deformable
body simulations.

A key issue in achieving efficient heterogeneous computation
for these simulations is task scheduling to ensure a balanced work-
load across different computing units. This problem is particularly
challenging due to the varying capabilities and data transfer costs
associated with chips of different architectures. To address this is-
sue, we propose a novel framework for automatically scheduling
iterative tasks, aiming to accelerate the performance of general it-
erative simulation methods. Our approach leverages an enhanced
Heterogeneous Earliest Finish Time (HEFT) [Topcuoglu et al. 2002]
algorithm, tailored to account for the unique communication costs
and dependencies in heterogeneous computing systems. By model-
ing simulation workloads as Directed Acyclic Graphs (DAGs), the
framework facilitates efficient task assignment, reducing idle times
and synchronization delays. This enables seamless collaboration be-
tween different devices, maximizing computational throughput and
achieving performance improvements beyond what either device
can achieve independently. For tasks executed in a Jacobi manner,
our method fully adapts to their inherently parallel nature. For
Gauss-Seidel tasks, where sequential processing is required, we em-
ploy a graph-coloring method to partition tasks into color blocks,
enabling intra-block parallelism. To overcome inter-block sequential
execution, we present an novel asychronous Gauss-Seidel method
adapted to our scheduling framework to optimize the parallel per-
formance of Gauss-Seidel. Furthermore, our method extends to
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support general iterative tasks, including Jacobi, Gauss-Seidel, and
hybrid Jacobi-Gauss-Seidel approaches. We demonstrate the effec-
tiveness of our framework on representative iterative methods such
as Jacobi-preconditioned gradient descent [Wang and Yang 2016],
XPBD [Macklin et al. 2016], Vertex Block Descent (VBD) [Chen et al.
2024], and Second-order Stencil Descent (SOSD) [Lan et al. 2023],
showcasing significant performance improvements. We summarize
main contributions as follows:

e we are the first to apply the HEFT algorithm to schedule
iterative simulation tasks on heterogeneous devices. To en-
hance scheduling performance, we introduce task merging
and Gauss-Seidel rank, ordering.

e we propose a novel inter-interaction parallel asynchronous
Gauss-Seidel method.

o we demonstrate the applicability of our method to various
nonlinear iterative approaches for physics-based cloth and
deformable body simulations.

2 Related Work

Physics-based simulation of cloth and deformable bodies is essential
in computer graphics and animation. Early methods like [Baraff and
Witkin 1998] introduced implicit integration for stable solution of
large sparse linear systems. To improve efficiency, techniques such
as multilevel methods [Chen et al. 2021; Wu et al. 2022], and multi-
grid methods [Tamstorf et al. 2015; Wang et al. 2018; Xian et al. 2019]
have been developed. Quasi-Newton methods [Li et al. 2019; Liu et al.
2017] use approximate Hessian to avoid direct Hessian inversion,
enabling real-time simulation of hyperelastic materials. Although
Newton’s method remains the most accurate for exact collision
handling [Li et al. 2020a, 2021], its computational expense limits its
use in real-time applications like gaming and virtual fashion. Itera-
tive methods, such as PBD [Miiller et al. 2007] and XPBD [Macklin
et al. 2016], provide more efficient solutions by iteratively solving
constraints in a Gauss-Seidel manner. Recent advances, such as
hybrid iterative methods [Lan et al. 2023] and GPU-accelerated tech-
niques [Fratarcangeli et al. 2016; Lan et al. 2022], further enhance
scalability and performance. Other approaches include using the
diagonal of the Hessian as a Jacobi preconditioner with momentum
techniques [Wang 2015; Wang and Yang 2016] and vertex-based
iterative methods in a pure Gauss-Seidel manner [Chen et al. 2024].

Traditional iterative methods like Jacobi and Gauss-Seidel rely on
synchronous updates, where all processing units wait for the slow-
est, limiting performance in multi-processor systems. Asynchronous
methods address this by allowing tasks to execute independently,
using the latest available data without global synchronization, en-
hancing efficiency in heterogeneous systems. Chaotic relaxation,
introduced by [Chazan and Miranker 1969], enabled fully asynchro-
nous computations but relied on potentially stale data, with conver-
gence conditions later generalized by [Baudet 1978] for nonlinear
contracting operators. Subsequent work [Bahi et al. 2007; Bertsekas
and Tsitsiklis 2015; Nishida and Kuang 2005; Zhongzhi and Deren
1997] has improved asynchronous methods, focusing on conver-
gence and scalability for modern parallel architectures. In physics
simulation, asynchronous techniques assign varying time-steps to
regions or vertices based on velocity or material stiffness [Harmon
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et al. 2009; Reinhardt et al. 2017; Thomaszewski et al. 2008; Zhao et al.
2016], reducing computational costs and improving parallelism.

With limited computational resources, researchers have devel-
oped simulation techniques leveraging multi-processor systems for
tasks such as collision detection [Pabst et al. 2010], cloth simula-
tion [Hutter et al. 2014; Li et al. 2020b; Liang and Lin 2018; Selle
et al. 2008], fluid simulation [Chu et al. 2017; Liu et al. 2016], and
material point methods [Wang et al. 2020]. These approaches rely on
high resolutions to offset communication costs, though optimal task
scheduling in such systems is NP-complete [Coffman and Bruno
1976; Ullman 1975]. This complexity intensifies in heterogeneous
environments with varying computational efficiency and dynamic
contact patterns. Modern HPC frameworks like OpenMP [Dagum
and Menon 1998] and OpenCL [Stone et al. 2010] address these chal-
lenges through cross-platform abstractions, while domain(graphics)-
specific-languages (DSLs) [Herholz et al. 2024; Hu et al. 2019; Li
et al. 2024; Yu et al. 2022; Zheng et al. 2024, 2022] enable compiler-
driven optimizations for enhanced performance and multi-backend
deployment such as CUDA, Metal and CPU.

Task scheduling is a key factor for performance optimization
in heterogeneous computing systems, divided into static schedul-
ing and dynamic scheduling. Among static approaches, heuristic-
based methods, such as Heterogeneous Earliest Finish Time (HEFT)
[Topcuoglu et al. 2002], are widely studied. Variants like Predict
Earliest Finish Time (PEFT) [Arabnejad and Barbosa 2013] and other
methods, including Critical Path on a Processor (CPOP) [Topcuoglu
et al. 2002] and High-Performance Task Scheduling (HPS) [Mau-
rya and Tripathi 2018], address challenges such as communication
overhead and workload balancing. Studies [Maurya and Tripathi
2018] show that HEFT and PEFT consistently outperform other
algorithms in robustness and efficiency.

3 Background
3.1 Physics-based Simulation

When a soft body moves forward a time step A from the current
frame ¢ to the next frame t+1, the corresponding implicit Euler
time integration of dynamic simulation of deformable objects can
be formulated as an optimization problem with an incremental
potential objective

Xp41 =arg min &(x) + ¥ (x), (1)
X

w.r.t. the position vector x € R3" of n vertices, in which ®(x) =
%h’ZHM% (x—%)||? is a term relative to kinetic energy, X = x; +
hve + B2M ™,y is a predicted position under the effect of velocity
v € R3 and external force fex; € R3”, M € R¥3" is a diagonal
lumped mass matrix, and ¥(x) is the total potential energy of all
kinds of constraints, including finite-element hyperelastic energy,
discrete bending energy, contact energy, etc.

Optimizing Eq. 1 is challenging due to the high nonlinearity of
¥ (x) w.r.t the variable x. Newton’s method offers rapid quadratic
convergence but is computationally expensive for real-time interac-
tive applications as it requires solving a large sparse linear system
at each iteration. A more efficient alternative is performing a sin-
gle Newton iteration without line-searching [Baraff and Witkin
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Fig. 2. The DAG of coarse-grained simulation tasks in our method includes
two main stages, alongside some data preprocessing tasks: the collision
detection stage, which involves BVH updates and collision detection, and
the asynchronous Gauss-Seidel stage for iterative tasks. Using this DAG,
we perform topological task sorting and rank,, sorting. The sorted tasks
are then assigned to different devices using a greedy strategy aimed at
minimizing the total execution time.

1998; Wu et al. 2022], but this can cause instability with nonlinear
constraints or complex collisions.

3.2 lterative Solvers

Alternatively, nonlinear iterative methods, such as Jacobi and Gauss-
Seidel iterations, can be employed. These methods avoid the over-
head of solving linear systems and significantly reduce the compu-
tational cost associated with evaluating the Hessian. Additionally,
in nonlinear iterative methods, tasks are lightweight, making them
well-suited for efficient scheduling across different devices.

3.2.1 Nonlinear Jacobi. Instead of computing the full Hessian and
solving a large sparse linear system, the Hessian can be approxi-
mated by its (block) diagonal, leading to the Jacobi-preconditioned
gradient descent method [Wang and Yang 2016]. This approach is
also applied in Projective Dynamics (PD) [Bouaziz et al. 2014], a non-
linear method that minimizes the incremental potential objective
in Eq. 1 using a Local/Global strategy. The local step handles con-
straints via nonlinear projection, while the global step solves a linear
system with a constant weighting matrix. On GPUs, the global step
can be efficiently performed using a single Jacobi iteration [Wang
2015], with Chebyshev weights accelerating convergence.

3.2.2  Nonlinear Gauss-Seidel. Constraint-based methods like Position-

based Dynamics (PBD) [Miiller et al. 2007] and its extension XPBD
[Macklin et al. 2016] iteratively process constraints using a sequen-
tial Gauss-Seidel approach. XPBD improves upon PBD by accurately
handling material stiffness with Lagrangian multipliers, making it
widely used for simulating simple garment behavior. Derived from
compliant constraints [Tournier et al. 2015], XPBD represents total
potential energy as the sum of quadratic constraint energies. In

SIGGRAPH Conference Papers 25, August 10-14, 2025, Vancouver, BC, Canada.



4« Chengzhu He, Zhendong Wang, Zhaorui Meng, Junfeng Yao, Shihui Guo and Huamin Wang

Vertex Block Descent (VBD), Chen et al. [2024] introduced a Gauss-
Seidel method with block-diagonal preconditioning, assigning each
vertex to a non-overlapping block for efficient computation.

3.2.3 Hybrid Jacobi-GS. Jacobi methods are fully parallelizable but
have slow convergence, while Gauss-Seidel methods converge faster
but are less parallel-friendly, even with graph coloring. To balance
these, Second-Order Stencil Descent (SOSD) [Lan et al. 2023] com-
bines both approaches. SOSD represents constraints as stencils, each
involving a few vertices, and solves compact stencil-wise linear sys-
tems using PCG. It employs a hybrid Jacobi-Gauss-Seidel strategy
to enhance convergence and parallelism.

3.3 HEFT-based Task Scheduling

3.3.1 DAG Representation and Task Sorting. The HEFT method rep-
resents tasks as nodes in a Directed Acyclic Graph (DAG), with edges
capturing dependencies and weighted by communication costs. Each
node includes computation times on different devices and maintains
lists of predecessor and successor nodes for efficient dependency
management. A topological sorting algorithm determines execution
order by iteratively selecting nodes with zero in-degree, ensuring
acyclic dependencies. Tasks are then executed sequentially, with
computation times recorded in computation matrices and commu-
nication costs stored in communication matrices. In non-unified
memory architectures, communication time depends on data size,
while unified memory architectures assume a fixed delay (e.g., 0.2
ms) for CPU-GPU synchronization.

3.3.2  Rank Calculation. HEFT employs a breadth-first approach to
calculate the rank of each node, starting from the terminal nodes and
propagating backward through the DAG. The rule for computing
the rank, of a task i is

ranky[i] = avg(costs) + max  (ranky[i][j] + comm[i][j]),

JE€successors
in which avg(costs) is the average computation cost of the task
across devices and comm|[i][j] is the communication cost between
the task i and its successor task j. This process assigns lower rank
values to nodes closer to the terminal nodes. Once task ranks are cal-
culated, HEFT sorts tasks in descending order of rank and employs
a greedy algorithm for scheduling.

3.3.3  Greedy Task Assignment. For each task in the sorted order,
the algorithm calculates the earliest start time based on the latest
finish times of its predecessors. It then identifies the optimal inser-
tion point in each processor’s queue and selects the slot with the
shortest expected finish time. To reduce synchronization overhead,
consecutive tasks on the same device are grouped with a shared
start and end time, minimizing inter-device synchronization events
and overall execution time.

4  Our Method

In this paper, we propose a unified scheduling method for simula-
tion tasks within the framework of iterative methods for nonlinear
cloth and deformable body simulations. To optimize efficiency, we
introduce an asynchronous Gauss-Seidel approach that maximizes
parallelism in iterative simulation tasks.
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Fig. 3. Task merging in topology sorting. Green and blue boxes represent
different blocks of stretching and bending iteration tasks respectively. (a)
Without merging small bending tasks, 8 consecutive tasks are assigned to
the CPU, resulting in a total execution time of 8¢z, leaving the more efficient
GPU idle. (b) With task merging, two large bending tasks are assigned to the
GPU because 4ty > t.+4t;. The total execution time becomes t.+8t; < 815,
significantly improving the scheduling efficiency. The total execution time
becomes t. + 81 < 81, significantly improving the scheduling efficiency.

4.1 Simulation Tasks Scheduling

To apply HEFT for scheduling simulation tasks on CPUs and GPUs,
a DAG is constructed to represent task dependencies. In nonlin-
ear iterative physics-based simulations, the smallest units, such as
calculating forces for a single triangle or handling collisions, are
impractical to track due to their sheer number of nodes and perfor-
mance measurement challenges. Instead, tasks are abstracted at a
higher level, like "update AABB" or "calculate stretching deforma-
tion for all triangles." For example, an XPBD simulation involves
over 30 tasks, including stretching constraints, bending constraints,
collision detection, and collision handling. As shown in Fig. 2, a
DAG of coarse-grained tasks is used in our method.

4.1.1 Task Merging in Topology Sorting. To ensure an execution
order that respects task dependencies, topological sorting is per-
formed, arranging tasks so that later tasks may depend on earlier
ones but not vice versa. In nonlinear iterative simulations, tasks
are often fine-grained; for example, computing stretching deforma-
tion is typically divided into 5-8 sequential blocks. Let ¢; and t»
represent GPU and CPU computation times (t; < fz), and t. the
communication cost of switching tasks between devices. As shown
in Fig. 3(a), if the first bending block is assigned to the CPU and
ty < t¢ + t1, all bending blocks are assigned to the CPU, leaving
the GPU idle. Conversely, if the first block is assigned to the GPU
and t; < t; + t, all blocks are assigned to the GPU, leaving the
CPU idle. Both cases waste resources. To address this, we propose
merging consecutive small tasks into larger coarse-grained tasks.
As illustrated in Fig. 3(b), merging every four bending tasks into
one satisfies 4t > t. +4t1, allowing the merged tasks to be assigned
to the GPU. This reduces the total execution time to ¢, + 8¢, signifi-
cantly improving scheduling efficiency compared to the 8t required
in Fig. 3(a).

4.1.2  Gauss-Seidelrank,. In our asynchronous Gauss-Seidel method,
tasks within each iteration follow the Gauss-Seidel sequential order,
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Fig. 4. The convergence of the relative energy error of key strategies in
our method is demonstrated in the Dress example over 100 iterations. The
relative energy error is calculated as y* = (EX — E*)/(E® — E*), where E
is the objective energy function being optimized. (a) Asyn-GS+Rank: Asyn-
chronous Gauss-Seidel with specific rank,, ordering outperforms Serial-GS
and Asyn-GS without rank,, the latter failing to converge. (b) Asyn-Serial
Collision: Inter-iteration and intra-iteration asynchronization with collision
constraints at the end surpasses other strategies. (c) PartSync+AvgDisp:
Partial CPU strategy combined with average displacement for data syn-
chronization achieves the best overall performance. (d) Our method applied
to various iterative simulation methods consistently outperforms their tra-
ditional counterparts.

but tasks across iterations may not, as shown in Fig.9, potentially
leading to suboptimal results as demonstrated in Fig. 4(a). To resolve
this, we propose synchronous Gauss-Seidel rank,, assigning smaller
rank;, values to tasks from later iterations, ensuring proper sequen-
tial order. As demonstrated in Fig.9, this rectified rank, sorting
improves convergence.

4.2 Asynchronous Gauss-Seidel

In multi-device setups, such as a CPU and GPU in Apple’s M series
with unified memory, the traditional Gauss-Seidel (GS) method is
not directly applicable. GS typically uses graph coloring to enable
parallelism within color blocks while ensuring sequential execution
across blocks. To leverage multiple devices, tasks are distributed
across them to balance completion times. Each device executes tasks
in a Gauss-Seidel manner, while tasks across devices run indepen-
dently in a Jacobi manner without inter-device communication.

o B o] [=
M

e =]
HEE mﬁﬁm

EL S, EN

ENEER

CPU | W,

Fig. 5. Asynchronous communication strategies. (a) A CPU task T fetches
data from its previous CPU task T and the most recently completed GPU
task T, while a GPU task T, does the reverse. (b) To improve convergence,
a CPU task Ty drops the data from its previous CPU task Ty, if it receives
the data from a GPU task T,. This dropping operation is not applied on
GPU tasks. (c) To maintain data consistence after dropping operations, a
GPU task Ty may receive data from multiple CPU tasks, such as T, and
Tf. (d) The data of a CPU task T, can affects GPU tasks multiple times due
to dropping operations on CPU tasks. This localized influence benefits for
convergence.

After all tasks are completed, results are synchronized through
weighted averaging.

The lack of inter-device communication reduces the convergence
rate of the Gauss-Seidel method. To address this, we propose an
asynchronous Gauss-Seidel approach with data synchronization
between devices, enhancing convergence while utilizing multiple
devices effectively. As illustrated in Fig. 5, when a GPU task T, com-
pletes and task T, is about to execute, T, retrieves the latest data
from T, and the most recently completed CPU task Tj,. The strategy
for combining data from T and Tj, is crucial for ensuring optimal
convergence. Designing an asynchronous Gauss-Seidel method in-
volves two key considerations: the asynchronization strategy and
the data communication mechanism. In this paper, we explore both
aspects in detail within our proposed method.

4.2.1 Inter-Iteration Asynchronization. To improve Gauss-Seidel
parallelism, two asynchronization strategies are considered: intra-
iteration, where tasks within the same iteration overlap, and inter-
iteration, where tasks across iterations overlap. These strategies
can be combined in various ways. Our method uses inter-iteration
asynchronization combined with intra-iteration synchronization. As
shown in the DAG in Fig. 2, there are four Gauss-Seidel iterations.
Within each iteration, stretching and bending tasks can execute
concurrently, while obstacle and cloth collision tasks must follow
sequentially. Tasks from different iterations can overlap, including
the overlap of stretching and bending tasks on collision tasks, but
the execution order of the same task type across iterations must be
maintained to prevent mixing. Generally, n-iteration concurrency
(n > 2) can be used, with n = 1 corresponding to traditional Gauss-
Seidel. We select n = 2 as it provides sufficient tasks for HEFT to
maximize parallelism while maintaining convergence in our ex-
periments. We evaluate the convergence performance of various
strategies, as shown in Fig. 4(b). Our adopted strategy, inter-iteration
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and intra-iteration asynchronization with collision constraints at
the end (Asyn-Serial Collision), outperforms all other approaches.

4.2.2  Data Synchronization. The core concept of Gauss-Seidel it-
eration is to use the most recently updated information for the
next computation, which is ensured in sequential execution but
violated in asynchronous Gauss-Seidel (GS). For instance, in Fig. 5,
GPU task T, receives inputs from GPU task T, and CPU task Tg.
Combining these inputs follows a Jacobi-like approach, assuming
a common starting point. In physics-based simulations like XPBD,
this data often represents positions or displacements, which impact
convergence. When using positions, the starting point is implic-
itly ensured. For example, combining positions x, and x. results
in x = (xq + x¢)/2, equivalent to averaging displacements with a
shared starting point xs: x = x5 + (Axg + Axc)/2. However, this
simple averaging can hinder convergence. Using displacements in-
stead requires an explicit starting point since Ax, and Ax. cannot
be meaningfully combined otherwise. To address this, our method
precomputes a data synchronization map using the task scheduling
map, ensuring explicit starting points for synchronization. The data
synchronization map is illustrated by the data communication ar-
rows in the scheduling map in Fig. 10. This enables more advanced
strategies beyond simple averaging, improving the convergence of
asynchronous GS, as demonstrated in Fig. 4(c).

When a CPU task completes, there is a fixed waiting time ¢, for
the GPU to read its output, and similarly, ty for the CPU to access
GPU output, in unified memory architectures. For a GPU task Ty,
to access CPU task T’s data, explicit synchronization is needed.
Dynamically identifying which CPU task to wait for is inefficient, so
we use a scheduling task map to predefine the data synchronization
map. This ensures tasks know in advance which task to wait for,
incorporating ¢ and t; without additional overhead, improving the
efficiency of our asynchronous Gauss-Seidel method. As shown in
Fig. 7, using positions with simple averaging slows convergence,
while our method, employing displacements and explicit starting
points, achieves faster convergence.

As shown in Fig. 10, frequent data communication is observed
between iterative asynchronous Gauss-Seidel tasks in our method.
When a CPU task T, executes, it uses data from the last CPU task Ty
if no GPU data is available; otherwise, it uses data from GPU task
Ty, discarding T;’s data. This ensures each CPU task receives data
from only one GPU task, avoiding interference from outdated infor-
mation. Since Tj’s data already includes information from earlier
GPU tasks like Tz, retaining T;’s data is redundant and may disrupt
convergence. This dropping strategy maintains a consistent data
stream on the GPU, the primary device in our method, with the
CPU serving as support. Actually, frequent data communication
with the dropping strategy is the reason for our method can achieve
better convergence performance than conventional XPBD using
synchronous Gauss-Seidel iterations.

5 Applications

We apply our method to various iterative methods for nonlinear
cloth and deformable body simulation. As illustrated in Fig. 4(d),
our method demonstrates superior convergence compared to con-
ventional approaches.
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(b) Frame 40

(a) Frame 27 (c) Frame 80
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(d) Frame 33

(e) Frame 44 (f) Frame 110

(g) Frame 30

(h) Frame 70 (i) Frame 200

Fig. 6. Deformable pillows (a-c) are dropped onto a hanging cloth, stretching
it before bouncing back and settling by the 80th frame. (d-f) A deformable
sphere pushes three cloth layers through a funnel, with all layers resting
on obstacles by the 110th frame. (g-i) Forty-five deformable letters drop
into a glass bowl, stacking or settling by the 200th frame. Collisions and
deformations are robustly handled using our asynchronous Gauss-Seidel
method within the XPBD framework.

XPBD: constraint-wise Gauss-Seidel. Conventional XPBD [Mack-
lin et al. 2016] updates each constraint iteratively using a sequential
Gauss-Seidel approach. The task scheduling map for asynchronous
XPBD, optimized with our method, is shown in Fig. 10.

VBD: vertex-wise Gauss-Seidel. The conventional Vertex Block
Descent (VBD) method [Chen et al. 2024] updates each vertex iter-
atively by solving small 3 X 3 block linear systems in a sequential
Gauss-Seidel manner. The task scheduling map for asynchronous
VBD, optimized using our method, is shown in Fig. 11.

SOSD: constraint-wise Hybrid Jacobi-GS. Conventional Second-
order Stencil Descent (SOSD) [Lan et al. 2023] is a hybrid Jacobi-
Gauss-Seidel (GS) method that iteratively updates positions using
stencils. The stencils are grouped into n blocks, with stencils within
each block being independent and executable in parallel. However,
blocks must be processed sequentially in a Gauss-Seidel manner. To
optimize GPU performance, the main GS-block is executed while the
other blocks run in a Jacobi manner. Essentially, each computational
unit in SOSD performs a Jacobi iteration, but the key difference
lies in the data synchronization: the displacement from the main
GS-block takes precedence over that from the Jacobi blocks.
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Fig. 7. The data synchronization strategy greatly impacts simulation accuracy. (a) Averaging positions can result

displacements ensures correct collision handling.

penetrations, while (b) averaging

in

Table 1. The statistics of our examples and their performances on an Apple’s M3 Max Chip. We run XPBD simulations with a large frame time step
At =1/60s for all examples, with each frame containing 32 or 64 substeps, and each substep using 8 or 12 nonlinear Gauss-Seidel iterations. Compared to a
GPU-only implementation, our hybrid CPU-GPU implementation achieves over 30% speedup in execution time and 40% in FPS. When compared to CPU-only
implementation, the speedups are even more significant, reaching 80% in execution time and 400% in FPS. All timing are provided in milliseconds.

Example Mesh Setting Frame Setting 4Coll. Avg. Frame Timing Time Speedup | FPS Speedup
#Vert. | #Tri. | #Tet. | #Sub. | #Iter. CPU | GPU | Hybrid | CPU | GPU | CPU | GPU
Dress 104K | 207K 0 32 8 969K | 8159 | 268.6 | 174.5 79% 35% 368% | 54%
Jersey 69K | 138K 0 32 8 78.6 K | 506.1 | 173.1 | 122.2 76% 29% 314% | 42%
Pillows | 176 K | 90K | 493 K 64 8 17.7K | 2.18K | 813.5 | 463.8 79% 43% 369% | 75%
Funnel | 132K | 260K | 2.7K 64 12 225.7K | 2.21K | 935.6 | 528.5 76% 44% 319% | 77%
Letters | 190 K 0 635 K 32 8 74K | 1.49K | 368.9 | 266.0 82% 27% 459% | 38%
Table 2. The performance of various simulation methods, evaluated on an 300 e e————————————
Apple M2 Max chip using the Dress example, is presented. All timings are 250)
reported in milliseconds. ’é\zoo
150 . . ; ;
Methods Avg. Frame Timing Time Speedup | FPS Speedup 100% —GPU - —Hybnd-RgnUme —I:gbrld-Schedglz)lmg =
CPU | GPU | Hybrid | CPU | GPU | CPU | GPU
VBD 3.07K | 6783 355.1 82% 18% 454% | 22% Fig. 8. lllustration of the execution time for 100 frames in the Dress example
SOSD 495K | 1.33K | 103K | 79% 22% 380% | 28% from the XPBD simulation. The runtime performance of our method closely
JPGD 3.00K | 9413 614.1 80% 35% 389% | 53% matches the theoretical scheduling performance predicted before simulation

Gradient Descent: vertex-wise Jacobi. The conventional block-

diagonal preconditioned gradient descent method (JBD) [Wang
and Yang 2016] iteratively updates the nonlinear configuration of
physics-based simulations in a Jacobi manner, allowing for full par-
allelism. However, explicit data synchronization between iterations
must be ensured. When using our method to schedule JBD, we
optimize task assignment and synchronization, ensuring efficient
parallel execution while managing dependencies across iterations.

Table 3. The performance of our examples, evaluated on an Apple M2 Max
chip using XPBD simulation, is presented. All timings are reported in mil-
liseconds.

Example Avg. Frame Timing Time Speedup | FPS Speedup
CPU | GPU | Hybrid | CPU | GPU | CPU | GPU

Dress 122K | 309.4 240.4 80% 22% 407% | 29%
Jersey 706.1 | 205.2 131.8 | 87% 36% 648% | 56%
Pillows | 465K | 1.14K | 816.3 82% 28% 470% | 39%
Funnel | 2.89K | 1.07K | 573.1 80% 47% 406% | 87%
Letters | 3.31 K | 424.9 322.2 90% 24% 928% | 32%

and significantly outperforms the GPU-only performance.

6 Results

We evaluated the effectiveness of our method across various complex
simulation scenarios. As illustrated in Fig. 1, when applied to XPBD,
our method efficiently and stably simulates scenarios such as a
multilayer dress with complex collisions and a basketball jersey
undergoing dramatic motion. In Fig. 6 (a-c), deformable pillows are
dropped onto a hanging cloth. The pillows initially stretch the cloth
as they push against it, then bounce back into the air, and eventually
come to rest statically on the cloth. In Fig. 6 (d-f), a deformable
sphere pushes three layers of cloth through a funnel, with all layers
ultimately coming to rest on ground obstacles. In Fig. 6 (g-1), forty-
five deformable letters are dropped into a glass bowl. During the
drop, the letters are heavily compressed, and by the end, they either
stack together inside the bowl or rest statically on the ground. Across
all these simulations, complex collisions between multilayered cloth
and deformable bodies are robustly handled using our asynchronous
Gauss-Seidel method within the XPBD framework. Our experiments
are conducted on an Apple Mac Studio equipped with an M2 Max
chip, featuring a 3.5 GHz 12-core CPU, a 1.4 GHz 30-core GPU, and

SIGGRAPH Conference Papers *25, August 1014, 2025, Vancouver, BC, Canada.
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(a) Sorting without Gauss-Seidel rank,,
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(c) Scheduling without Gauss-Seidel rank,,
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(d) Scheduling with Gauss-Seidel rank,,

Fig. 9. (a) Without Gauss-Seidel rank,, in task sorting, collision tasks are delayed, as reflected in the corresponding scheduling map (c). (b) With Gauss-Seidel
rank,,, deformation and collision tasks are correctly interleaved. As a result, in the scheduling map (d), deformation and collision tasks communicate earlier,

improving convergence, as shown in Fig. 4(a).

32 GB of unified memory and an Apple MacBook Pro equipped
with an M3 Max chip, featuring a 4.05 GHz 16-core CPU, a 2.75
GHz 40-core GPU, and 128 GB of unified memory. Our method is
implemented in standard C++ for the CPU and Metal for the GPU.

6.1

The parameter settings and detailed performance data for each
example are summarized in Table 1. Our method employs an asyn-
chronous Gauss-Seidel approach to iterate XPBD. To ensure fair
comparisons, baseline CPU/GPU implementations use synchronous
execution, as asynchronous algorithms introduce additional over-
head from data communications. All examples use a timestep of
1/60 seconds. For the Dress, Jersey and Letters examples, we use
32 substeps per frame, while the Pillows and Funnel examples use
64 substeps per frame. Each substep involves 8 Gauss-Seidel itera-
tions for all examples, except the Funnel, which uses 12 iterations
per substep. Compared to a GPU-only implementation, our hybrid
CPU-GPU implementation achieves over 30% speedup in execution
time and 40% in FPS. When compared to CPU-only implementation,
the speedups are even more significant, reaching 90% in execution
time and 300% in FPS.

As shown in Fig. 8, the Dress example from the XPBD simulation
demonstrates that our method’s runtime closely matches theoreti-
cal scheduling predictions and significantly outperforms GPU-only

Performance Analysis

SIGGRAPH Conference Papers ’25, August 10-14, 2025, Vancouver, BC, Canada.

performance. During initialization, each task is executed multiple
times on both the CPU and GPU to record its average execution cost.
To adapt to dynamic contact, we update task execution times every
frame and re-schedule tasks using a computation matrix refined
through runtime smoothing. Our scheduler operates efficiently, tak-
ing under 0.1 ms per frame. Differences in performance, as seen in
Fig. 8, are partly due to data copying and weighting during asyn-
chronous iterations.

Our method achieves higher performance than the theoretical
speedup limit, as different tasks benefit from varying degrees of
speedup through optimized scheduling. For instance, stretching
deformation tasks see a 70% speedup, while bending tasks achieve
around 30%. Additionally, the separation and scheduling of collision
and deformation tasks provide a significant boost to overall speedup.

6.2 Conclusion

In this paper, we present a novel framework for efficient hetero-
geneous computation in cloth and deformable body simulations,
targeting systems with multiple processing units (CPUs, GPUs, and
accelerators). Our approach uses an enhanced Heterogeneous Ear-
liest Finish Time (HEFT) algorithm to optimize task scheduling,
minimizing idle times and synchronization delays. We address the
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challenges of parallelizing iterative tasks, including Jacobi, Gauss-
Seidel, and hybrid methods, with improvements such as asynchro-
nous Gauss-Seidel for better parallelism. Through experiments on
iterative methods like XPBD, VBD, and SOSD, we demonstrate sig-
nificant performance gains, surpassing traditional single-unit sim-
ulations. Our framework enables high-performance simulation in
modern hybrid CPU-GPU systems, offering a robust solution for
real-time and resource-constrained environments.

7 Limitations and Future Work

While our method significantly improves task scheduling for CPU-
GPU cloth and deformable body simulations, it has several limita-
tions. These include inherent communication overhead between
devices, scalability challenges with multiple accelerators, and re-
duced performance for highly nonlinear simulations or complex
constraints. While our architecture-agnostic scheduler works across
platforms, implementation validation remains limited to specific
GPU configurations. Providing separate implementations for differ-
ent platforms also leads to more manual work. Future directions in-
clude multi-device optimization and adaptive scheduling, nonlinear
simulation enhancements, real-time parallel preconditioning, cross-
platform support and experiment through DSL-implementation like
LuisaCompute [Zheng et al. 2022] and extended benchmarking
across simulation and general computing scenarios.

Acknowledgments

We wish to thank anonymous reviewers for valuable comments.
This work was supported by Key R&D Program of Zhejiang (No.
2024C01069).

References

Hamid Arabnejad and Jorge G Barbosa. 2013. List Scheduling Algorithm for Hetero-
geneous Systems by an Optimistic Cost Table. IEEE Transactions on Parallel and
Distributed Systems 25, 3 (2013), 682-694.

Jacques Mohcine Bahi, Sylvain Contassot-Vivier, and Raphaél Couturier. 2007. Parallel
Iterative Algorithms: from Sequential to Grid Computing. Chapman and Hall/CRC.

David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH °98). Association for Computing Machinery, New York, NY, USA, 43-54.

Gerard M Baudet. 1978. Asynchronous Iterative Methods for Multiprocessors. Journal
of the ACM (JACM) 25, 2 (1978), 226-244.

Dimitri Bertsekas and John Tsitsiklis. 2015. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. (SIGGRAPH) 33, 4, Article 154 (July 2014), 11 pages.

Daniel Chazan and Willard Miranker. 1969. Chaotic Relaxation. Linear algebra and its
applications 2, 2 (1969), 199-222.

Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel. 2024. Vertex Block Descent.
ACM Trans. Graph. 43, 4, Article 116 (jul 2024), 16 pages.

Jiong Chen, Florian Schifer, Jin Huang, and Mathieu Desbrun. 2021. Multiscale Cholesky
Preconditioning for Ill-conditioned Problems. ACM Trans. Graph. 40, 4, Article 81
(July 2021), 13 pages.

Jieyu Chu, Nafees Bin Zafar, and Xubo Yang. 2017. A Schur Complement Preconditioner
for Scalable Parallel Fluid Simulation. ACM Transactions on Graphics (TOG) 36, 4
(2017), 1.

Edward G. Coffman and John Bruno. 1976. Computer and Job-shop Scheduling Theory.

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API for
shared-memory programming. IEEE computational science and engineering 5, 1
(1998), 46-55.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A Practical
Gauss-Seidel Method for Stable Soft Body Dynamics. ACM Trans. Graph. (SIGGRAPH
Asia) 35, 6, Article 214 (Nov. 2016), 9 pages.

David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Eitan Grinspun.
2009. Asynchronous contact mechanics. In ACM SIGGRAPH 2009 papers. 1-12.

Philipp Herholz, Tuur Stuyck, and Ladislav Kavan. 2024. A Mesh-based Simulation
Framework using Automatic Code Generation. ACM Transactions on Graphics (TOG)
43, 6 (2024), 1-17.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.
2019. Taichi: a language for high-performance computation on spatially sparse data
structures. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1-16.

Marco Hutter, Martin Knuth, and Arjan Kuijper. 2014. Mesh Partitioning for Parallel
Garment Simulation. (2014).

Lei Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, and Yin Yang. 2023. Second-Order
Stencil Descent for Interior-Point Hyperelasticity. ACM Trans. Graph. 42, 4, Article
108 (jul 2023), 16 pages.

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang.
2022. Penetration-Free Projective Dynamics on the GPU. ACM Trans. Graph. 41, 4,
Article 69 (jul 2022), 16 pages.

Cheng Li, Min Tang, Ruofeng Tong, Ming Cai, Jieyi Zhao, and Dinesh Manocha. 2020b. P-
cloth: Interactive Complex Cloth Simulation on Multi-GPU Systems using Dynamic
Matrix Assembly and Pipelined Implicit Integrators. ACM Transactions on Graphics
(TOG) 39, 6 (2020), 1-15.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020a. Incremental Potential
Contact: Intersection-and Inversion-Free, Large—Deformation Dynamics. ACM Trans.
Graph. 39, 4, Article 49 (jul 2020), 20 pages.

Minchen Li, Ming Gao, Timothy Langlois, Chenfanfu Jiang, and Danny M. Kaufman.
2019. Decomposed Optimization Time Integrator for Large-Step Elastodynamics.
ACM Trans. Graph. 38, 4, Article 70 (July 2019), 10 pages.

Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental
Potential Contact. ACM Trans. Graph. 40, 4, Article 170 (jul 2021), 24 pages.

Yong Li, Shoaib Kamil, Keenan Crane, Alec Jacobson, and Yotam Gingold. 2024. I MESH:
A DSL for Mesh Processing. ACM Transactions on Graphics 43, 5 (2024), 1-17.

Junbang Liang and Ming C Lin. 2018. Time-Domain Parallelization for Accelerating
Cloth Simulation. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 21-34.

Haixiang Liu, Nathan Mitchell, Mridul Aanjaneya, and Eftychios Sifakis. 2016. A
Scalable Schur-complement Fluids Solver for Heterogeneous Compute Platforms.
ACM Transactions on Graphics (TOG) 35, 6 (2016), 1-12.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for
Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 4, Article
116a (May 2017), 16 pages.

Miles Macklin, Matthias Miiller, and Nuttapong Chentanez. 2016. XPBD: Position-
Based Simulation of Compliant Constrained Dynamics. In Proceedings of the 9th
International Conference on Motion in Games (Burlingame, California) (MIG ’16).
Association for Computing Machinery, New York, NY, USA, 49-54.

Ashish Kumar Maurya and Anil Kumar Tripathi. 2018. On Benchmarking Task Sched-
uling Algorithms for Heterogeneous Computing Systems. The Journal of Supercom-
puting 74, 7 (2018), 3039-3070.

Matthias Miller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
Based Dynamics. J. Vis. Comun. Image Represent. 18, 2 (April 2007), 109-118.

Hiroshi Nishida and Hairong Kuang. 2005. Experiments on Asynchronous Partial
Gauss-Seidel Method. In Advanced Parallel Processing Technologies: 6th International
Workshop, APPT 2005, Hong Kong, China, October 27-28, 2005. Proceedings 6. Springer,
111-120.

Simon Pabst, Artur Koch, and Wolfgang Strafler. 2010. Fast and Scalable CPU/GPU
Collision Detection for Rigid and Deformable Surfaces. In Computer Graphics Forum,
Vol. 29. Wiley Online Library, 1605-1612.

Stefan Reinhardt, Markus Huber, Bernhard Eberhardt, and Daniel Weiskopf. 2017. Fully
asynchronous SPH simulation. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. 1-10.

Andrew Selle, Jonathan Su, Geoffrey Irving, and Ronald Fedkiw. 2008. Robust High-
resolution Cloth using Parallelism, History-based Collisions, and Accurate Friction.
IEEE transactions on visualization and computer graphics 15, 2 (2008), 339-350.

John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel programming
standard for heterogeneous computing systems. Computing in science & engineering
12, 3 (2010), 66.

Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed Aggregation
Multigrid for Cloth Simulation. ACM Trans. Graph. (SSIGGRAPH Asia) 34, 6, Article
245 (Oct. 2015), 13 pages.

Bernhard Thomaszewski, Simon Pabst, and Wolfgang Strafler. 2008. Asynchronous
cloth simulation. In Computer Graphics International, Vol. 2. Citeseer, 2.

Haluk Topcuoglu, Salim Hariri, and Min-You Wu. 2002. Performance-effective and
Low-complexity Task Scheduling for Heterogeneous Computing. IEEE Transactions
on Parallel and Distributed Systems 13, 3 (2002), 260-274.

Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and Francois Faure. 2015. Stable
Constrained Dynamics. ACM Trans. Graph. (SSIGGRAPH) 34, 4, Article 132 (July
2015), 10 pages.

J.D. Ullman. 1975. NP-complete Scheduling Problems. . Comput. System Sci. 10, 3
(1975), 384-393.

SIGGRAPH Conference Papers 25, August 10-14, 2025, Vancouver, BC, Canada.



10 « Chengzhu He, Zhendong Wang, Zhaorui Meng, Junfeng Yao, Shihui Guo and Huamin Wang

5
Misc. 2 4 6 8 10 12 Stretching Obs-Collision
1 3 5 7 9 1 13 Bending " Self-Collision

Fig. 10. The scheduling map of XPBD in the Dress example shows data flow between tasks. Green arrows represent a CPU task fetching data from a GPU task,
while red arrows indicate a GPU task fetching data from a CPU task. Frequent data communication is observed between iterative asynchronous Gauss-Seidel
tasks in our method, which is the reason for our method can achieve better convergence performance than conventional XPBD using synchronous Gauss-Seidel

iterations.

Block 1 Block 3 " Block 5 Block 7 Block 9
1 3 5 7 9 11 Block2 """ Block4 " Block 6 Il Block 8 " Block 10

Fig. 11. The scheduling map of Vertex Block Descent (VBD) [Chen et al. 2024] in the Dress example shows data flow between tasks. Green arrows represent a
CPU task fetching data from a GPU task, while red arrows indicate a GPU task fetching data from a CPU task. Data communication is not as frequent as
XPBD because many CPU tasks have long execution time.
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Fig. 12. The scheduling map of Second-order Stencil Descent (SOSD) [Lan et al. 2023] in the Dress example shows data flow between tasks. Green arrows
represent a CPU task fetching data from a GPU task, while red arrows indicate a GPU task fetching data from a CPU task. The data communication frequency
is similar to that of VBD.
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Fig. 13. The scheduling map of Jacobi-preconditioned Gradient Descent (JPGD) [Wang and Yang 2016] in the Dress example shows data flow between
tasks. Green arrows represent a CPU task fetching data from a GPU task, while red arrows indicate a GPU task fetching data from a CPU task. The data
communication frequency is similar to that of VBD.
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