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Abstract

Modeling and producing lifelike clothed human images has attracted researchers’
attention from different areas for decades, with the complexity from highly articu-
lated and structured content. Rendering algorithms decompose and simulate the
imaging process of a camera, while are limited by the accuracy of modeled variables
and the efficiency of computation. Generative models can produce impressively
vivid human images, however still lacking in controllability and editability. This
paper studies photorealism enhancement of rendered images, leveraging generative
power from diffusion models on the controlled basis of rendering. We introduce
a novel framework to translate rendered images into their realistic counterparts,
which consists of two stages: Domain Knowledge Injection (DKI) and Realis-
tic Image Generation (RIG). In DKI, we adopt positive (real) domain finetuning
and negative (rendered) domain embedding to inject knowledge into a pretrained
Text-to-image (T2I) diffusion model. In RIG, we generate the realistic image corre-
sponding to the input rendered image, with a Texture-preserving Attention Control
(TAC) to preserve fine-grained clothing textures, exploiting the decoupled features
encoded in the UNet structure. Additionally, we introduce SynFashion dataset,
featuring high-quality digital clothing images with diverse textures. Extensive
experimental results demonstrate the superiority and effectiveness of our method
in rendered-to-real image translation.

1 Introduction

Modeling and simulating digital humans and clothing has achieved significant progress [1, 2, 3, 4, 5],
while leveraging these 3D assets for fashion e-commerce still remains a challenging problem. Due
to the imperfection of 3D models and the approximation in rendering algorithms, rendered images
cannot yet replace fashion photos taken by a camera, with deficiency in the realism of rendered human
faces and skin, clothing shape and fabric, etc. This paper studies transferring rendered fashion images
into their realistic counterparts, which is inherently an Image-to-Image (I2I) translation problem.

Existing works on improving the realism of rendered images mainly resort to retrieving and blending
real image patches [6], or train a GAN-based network [7, 8, 9] due to lack of paired training data.
Another line of works can tackle this problem as general I2I translation [10, 11, 12, 13]. However,
these methods may still suffer from several limitations: Firstly, their image generation pipelines have
limited power to utilize real image resources for highly-detailed enhancement and may suffer from
instability and mode collapse from adversarial training. Moreover, they either focus on indoor/outdoor
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scene enhancement while keeping coarse object-level semantic layout, or try to maintain face identity
in training through loss constraints on sketches, and thus have difficulty in preserving fine-grained
texture in clothing images.

In this paper, we propose a novel framework based on diffusion models for rendered-to-real fashion
image translation to address above limitations. Our main idea consists of two aspects: Firstly,
we propose to leverage abundant generative prior from pretrained Text-to-Image (T2I) diffusion
models [14], and apply simple adaptation to realistic image generation under the guidance of distilled
rendered prior. Secondly, we adopt a texture-preserving mechanism by extracting spatial image
structure through attention from an inversion pipeline.

To achieve this, we design a diffusion-based method consisting of two stages: Domain Knowledge
Injection (DKI) and Realistic Image Generation (RIG). During DKI, we first finetune a pretrained
T2I diffusion model [14] on real fashion photos with derived captions from BLIP [15], to adapt its
capability in generating high-quality images to our target domain. After this adaptation, we propose
to guide the image generation towards the negative direction of rendered effect. Inspired by Textual
Inversion [16], we distill a general rendered "concept" with thousands of rendered fashion images
by training a negative domain embedding vector based on the adapted base model. During RIG, we
employ a DDIM inversion [17] pipeline to first invert a rendered image into the latent noise map, and
then generate its corresponding real image using the previous embedding as a negative guidance [18].
Similar to recent training-free controls in T2I generation method [19, 20, 21, 22], we discover that
the attention map in the shallow layers of the UNet contains rich spatial image structure and can be
used for fine-grained texture-preserving during the generation. Specifically, we inject query and key
of the self-attention from the rendered image inversion and generation pipeline to the rendered-to-real
image generation pipeline. This largely improves the consistency of intricate clothing texture details.

We evaluate our method on a public rendered Face Synthetics dataset [1] and our collected SynFashion
Dataset with fine-grained digital clothing and abundant texture variations. Empirical results comparing
to previous works and experimental analysis demonstrate the efficacy of our method. Our main
contributions are three-folds:
(1) We propose a novel framework to address rendered-to-real fashion image translation by utilizing
generative prior from pretrained diffusion models.
(2) We inject rendered-to-real domain knowledge into a pretrained T2I diffusion model through
positive domain finetuning and negative domain embedding, and design a texture-preserving attention
control to preserve fine-grained clothing textures during the translation.
(3) We collect a high-quality rendered fashion image dataset using the professional design software
Style3D Studio, and plan to release the data with our paper to promote research in this important area.

2 Related Works

2.1 Rendered-to-real Image Translation

Improving the realism of rendered images has been a long-standing problem due to the inherent
limitations of rendering pipelines and the rich potential for commercial applications. CG2Real [6]
proposes to retrieve similar images from a large collection of real photos and then applies local style
transfer to upgrade color, tone and texture of the CG image. Deep CG2Real [7] adopts a two-stage
deep learning framework to first transfer OpenGL images to PBR (Physically-Based Rendering)
images, and then translates PBR to real images, disentangling lighting and texture in a CycleGAN-
like [23] framework. [8] enhances photorealism under the guidance of a set of input G-buffers and
learns the network with a perceptual discriminator. [9] proposes to learn a rendered image generator
for human faces, which can encode the same face identity but different "style" from a real face image
generator, based on StyleGAN [24, 25]. These methods all utilize limited data for generative training,
while we propose to adapt diffusion models pretrained on large datasets for better image generation
quality. Besides, applying these methods to fashion images often leads to the failure to preserve
fine-grained clothing textures.

2.2 Image-to-image Translation

Transferring a rendered fashion image into its realistic counterpart is inherently an image-to-image
(I2I) translation problem, which has attracted wide interest in different realms of research [26, 27, 28,
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Figure 1: The overall pipeline of our proposed method.

29, 30, 31]. Pix2Pix [32] utilizes a conditional-GAN [33, 34] and applies pixel-wise regularization
based on paired training data, which is unavailable in many problem settings. Cycle-GAN [23]
proposes to utilize cycle consistency [35, 36, 37, 38] and optimizes a two-sided mapping between
input source domain and output target domain. CUT [10] addresses the computational redundancy
and over-restriction in this framework by simplifying it to one-sided [39, 40, 11] and introduces
a patch-wise contrastive loss [41, 42, 43] for refined local constraints. UNSB [12] proposes an
iterative refinement method based on Schrödinger bridge to overcome potential mode collapse in
GAN generation, while still has difficulty in faithfully translating high-resolution images. Different
from general I2I tasks and domain adaptation, our method focuses on photorealism enhancement
and can utilize more target-domain real photos for high-quality generation training, and thus can
deal with imbalanced source-target training set. Style transfer [44, 45, 46] is a specific type of I2I
task and can manage to transfer input source image to an arbitrary style [13, 47, 48, 49, 50] given
one/few-shot target domain images as reference. These methods mainly focus on transferring style
attributes like semantics, brushstrokes, colors, or material, while rendered-to-real requires preserving
and enhancing complicated fine-grained details. Human/portrait relighting [51, 52] modifies the
nuanced lighting condition in the input image, while does not focus on enhancing realism and should
leave geometry and materials untouched. Super-resolution methods [53, 54, 55, 56, 57, 58] address
detail enhancement, while their success largely relies on synthesizing pseudo low-resolution images
to obtain training pairs [59, 60], which is non-trivial for rendered-to-real problem.

2.3 Diffusion-based Image Synthesis

Recent progress in Text-to-Image (T2I) generation [14, 61, 62] based on diffusion models [63,
64, 65] opens up new opportunity for advancing rendered-to-real image translation. Many works
have explored the possibility of utilizing abundant generative prior in pretrained diffusion models.
Some [66, 16] apply the adaptation of generation for a new concept with a few images, through
either finetuning the base model [66], or optimizing a text embedding [16]. Others [67, 68] leverage
text as guidance to edit a given image. However, rendered-to-real translation lies in the nuance
of changes, which is too subtle to define as a "concept" or to capture with a few images. [69, 70]
leverage diffusion models for texture estimation or PBR synthesis, while mainly focusing on the
generation of certain variables for the rendering pipeline, rather than subtle modification of preset
variables in a given input image. Additionally, [19, 20, 21, 22] discover that the attention in the SD
UNet captures rich image features and can apply to content preservation and modification. In our
work, we utilize self-attention in shallow layers from the rendered image inversion, to impose the
consistency of fine-grained texture in image translation.

3 Method

3.1 Preliminaries

Latent Diffusion Models. In diffusion framework, the forward diffusion process begins by generating
noisy images xt from clean images x0 sampled from a specified data distribution, accompanied by
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their respective noise labels ε. These pairs are used to train a score estimator [71] εθ usually based
on the UNet architecture. The score estimator can serve as an effective approximation of the score
function ∇ log p(x) which directs the inverse denoising process to generate new data samples.

With distinguished capabilities in synthesizing images, the Latent Diffusion Model (LDM) [14] is
selected as the backbone of our method. The LDM employs a pre-trained AutoEncoder to transform
the diffusion process from pixel space to latent space and integrates a conditional branch, facilitating
faster training and more flexible embedding of conditions. Specifically, the pre-trained Encoder
E(·)first encodes images into latent space z = E(x). Following this, the score estimator network εθ
is trained by taking the latent z, step t and conditions c as input to predict the noise labels:

min
θ

Ez=E(x),ε∼N (0,I),t∼U(1,T ) ‖ε− εθ (zt, t, c)‖22 (1)

For text to image generation task, condition c is usually the text embedding generated from text
prompt y through a tokenizer and a pretrained CLIP [72] model c = τ(y). The intermediate noisy
latent zt is generated through the formula [64]:

zt =
√

ᾱ(t)z0 +
√

1− ᾱ(t)ε, ε ∼ N(0, I) (2)

ᾱ is the cumulative product of the noise coefficients at each step. During the sampling process, the
trained score estimator takes random Gaussian noise as input, along with text embedding as condition.
It progressively predicts the noise added at each step, completing the denoising process to obtain ẑ0.
The final image is obtained by the pretrained decoder x̂0 = D(ẑ0).

Textual Inversion. Textual inversion [16] introduces a new paradigm to T2I generation models,
allowing the model to learn a new concept by setting a placeholder token "[C]" and obtaining the
corresponding text embedding v̂ as a learnable vector. This vector is then trained and optimized using
a few images represent this new concept:

v̂ = argmin
v

Ez=E(x),ε∼N (0,I),t∼U(1,T ) ‖ε− εθ(zt, t, v)‖22 (3)

During training, the network parameters are all fixed, only the embedding is optimized.

DDIM Sampling and Inversion. Inversion is an effective method for finding the corresponding
noise map of an image and achieving training-free control during the generation process. DDIM
inversion is widely used due to its clear principles and easy implementation. The DDIM sampling
process is [17]:

zt−1 =
√
ᾱt−1

zt −
√
1− ᾱtεθ (zt, t, c)√

ᾱt
+
√
1− ᾱt−1εθ (zt, t, c) (4)

By simply assuming zt−1 ≈ zt and rewriting the sampling process in reverse direction, the following
DDIM Inversion [17] formula is given:

zt =
√
ᾱt

zt−1 −√
1− ᾱt−1εθ (zt−1, t, c)√

ᾱt−1
+
√
1− ᾱtεθ (zt−1, t, c) (5)

Unlike direct noise addition, the DDIM Inversion allows for the original information of the image to
be well preserved, enhancing the stability in the subsequent generation process.

3.2 Overall Pipeline

Given a computer-rendered fashion image xcg, the goal of our method is to transform it into a
corresponding realistic image xr while preserving the garment’s detailed textures. Defining realism
and helping model understand what is "realistic" remains an open question. The challenge can be
divided into two sub-tasks: one is making the fashion image appear realistic by enhancing aspects
like wrinkles, lighting and color, which reflect true-to-life expressions. Another one is to maintain
the texture details of the garment to achieve fine-grained, controllable generation.

As shown in Fig. 1, our method comprises two stages: Domain Knowledge Injection (DKI) and
Realistic Image Generation (RIG). During the DKI phase, we infuse the model with information from
both the rendered and realistic domains through fine-tuning and domain inversion. In the subsequent
generation phase, we utilize negative domain embedding vnd to stimulate the model’s potential for
generating realistic images and employ self-attention control to preserve texture details. For a better
understanding, details will be further elaborated in Section 3.3 and Section 3.4.
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3.3 Domain Knowledge Injection

Target Domain Knowledge Injection To enhance the ability of the base SD model εθ to generate
realistic images, especially concerning the appearance of garments and models, we use real studio-
shot images xtr to fine-tune the base model. This process injects real domain information into the
model, thereby increasing its potential to generate authentic visual details, the fine-tuning process
can be formulated as:

ε∗θ = argmin
εθ

Ez=E(xtr),ε∼N (0,I),t∼U(1,T ) ‖ε− εθ(zt, t, vtr)‖22 (6)

where εθ is the pretrained SD model, vtr is the embedding of the text description of the xtr.

Source Domain Knowledge Injection For the source domain rendered data, we hope that the
model can understand its characteristics and deviated from the rendered data manifold as much as
possible during the generation process. After the first step fine-tuning, we assume that the model
has already enhanced its representation of the real domain manifold. If we can make the model
deviate from the rendered data manifold, it can better express the characteristics of realistic images.

project

project

Figure 2: The diagram of Texture-preserving Attention Con-
trol (TAC).

Inspired by the concepts of Textual In-
version and Classifier-Free Guidance
(CFG) with negative prompts, we ex-
pand the concept of Textual Inversion
to Domain Inversion. We train a neg-
ative domain embedding on a fine-
tuned base model using a large num-
ber of rendered images. This negative
domain embedding guides the model
to avoid certain content, here is the
rendered domain characteristics, dur-
ing the generation process.

Specifically, given that textual descrip-
tions of what is real and rendered
are limited, it is difficult to guide the
model to generate images with satisfactory realism or to precisely direct it not to produce images
with a rendered feel using text prompts only. Therefore, we consider using negative domain embed-
ding vnd trained on a large number of rendered images for guidance to inject the rendered domain
knowledge to the model. It’s worth nothing that unlike textual inversion, which typically optimizes a
small embedding space with few images to represent a specific concept, such as a particular object in
personalized generation or an easily expressible style. The concept of rendered domain in our task is
much more general. Using a small embedding space corresponding to few images to represent this
would easily lead to over-fitting to the content of the training images. We use the largest available
embedding size to train the negative domain embedding, which is corresponding to the placeholder
token size of 75:

v̂nd = argmin
v

Ez=E(xcg),ε∼N (0,I),t∼U(1,T ) ‖ε− ε∗θ(zt, t, v)‖22 (7)

During the training of negative domain embedding, we freeze the parameters in the fine-tuned model
ε∗θ , and find the vnd through direct optimization with a certain number of rendered images.

3.4 Realistic Image Generation

Negative Embedding Guidance After domain knowledge injection, we can use the negative domain
embedding to guide the model in generating realistic images. During each denoising step, the negative
domain embedding guidance is defined by:

ε̃∗θ (zt, t, vnd) = w · ε∗θ (zt, t, v∅) + (1− w) · ε∗θ (zt, t, vnd) (8)

where v∅ denotes the embedding of Null text. With a guidance scale w larger than 1, the negative
domain embedding becomes effective. Unlike traditional CFG guidance, here we do not use any
positive prompts processed through CLIP to obtain the embedding as conditions. Instead, we directly
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Figure 3: Results on our proposed SynFashion Dataset. (Please zoom in for details.)

employ a Null text embedding. The initial noise latent is obtained through DDIM inversion of the
given rendered image. During the denoising process, we replace the CLIP conditioning branch, since
the negative domain embedding is trained on a fine-tuned model, it can interact more effectively with
the base model’s latent space. This consistency allows for more precise adjustments in the latent
manifold compared to embedding derived from text via CLIP.

Texture-preserving Attention Control (TAC) Inspired by previous work [19, 22], the attention
features in the diffusion UNet, which includes both cross attention and self attention, hold rich
information critical for generating the new images. Cross attention typically handles the attributes
and semantics of the generated image, while self-attention maps play a crucial role in preserving

geometric shapes and intricate details. The initial noise latent Ẑt derived from the DDIM inversion of
the original rendered image can be used in unconditional generation and extract the texture related
attention features as shown in Fig. 2. However, directly replacing all self-attention maps can lead
to a decrease in the realism of the generated images. We argue that this is because the attention
map contains both the texture details of the garment and the general rendered domain characteristics.
Therefore, we propose to control the self attention feature only in the shallow layers of the denoising
UNet to decouple the texture details feature from the general rendered domain features. During
the implementation, we also find that in the deep feature spaces with higher downsampling rates, it
becomes challenging to identify features related to the texture details. Thus, our TAC is defined as:

Q̂t, K̂t = TAC
(
Qt

cg,K
t
cg, Q

t
r,K

t
r, t

)
=

{
Qt

cg,K
t
cg if t < γT, f > F

Qt
r,K

t
r otherwise

(9)

where γ is the parameter that indicates how many steps before the TAC should be applied and f is
the feature size of different layers, only those layers exceeding the specified size F undergo TAC,
particularly in the shallow layers. Specifically, the cg-domain self-attention features are derived from
the reverse sampling process starting from the noisy latent, which is obtained by performing DDIM
inversion on the input image latent. In contrast, the r-domain self-attention features differ due to the
incorporation of negative domain guidance and the self-attention injection.
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Figure 4: Results on the Face Synthetics dataset. (Please zoom in for details.)

4 Experiments

4.1 Datasets

To evaluate our method and conduct comprehensive comparisons, we introduce a high-quality
rendered fashion image dataset, named Synthetic Fashion (SynFashion), with the professional garment
design software Style3D Studio. SynFashion consists of 10k rendered images in 20 categories,
including pants, T-shirt, lingerie and swimwear, half skirt, hoodie, coat, jacket, set, home-wear,
hat, Hanfu, jeans, shorts, down jacket, vest and camisole, shirt, suit, dress, sweater and trench coat.
For each category, we use Style3D Studio to build 10 to 40 projects in different 3D geometry with
corresponding texture and design, and then randomly sample several new textures to change its
appearance. There are overall 375 projects in 3D and 500 additional texture collected from Internet.
For each textured 3D geometry, we render four views, including front, back, and two randomly
sampled views. After rendering, we crop the enlarged garment area of each image and resize it to 768
× 1024. Due to legal issues, some of the images contain a digital human figure but not the complete
face. To supplement the evaluation on rendered human faces, we also conduct experiments on the
public available Face Synthetics dataset [1] with its first 10k images.

4.2 Implementation Details

Implementation. We implement our method with pretrained Stable Diffusion (SD) model and
finetune the base model with 2500 realistic images at a 1024× 1024 resolution for source domain
knowledge injection. The finetuning uses images from iMaterialist (Fashion) 2019 FGVC dataset [73],
based on the publicly available SD v1.5, and is conducted on 2 RTX 4090 with a batch size of 6.
Based on the finetuned model, we train our negative domain embedding with 2500 rendered images
on a single RTX 4090 with a batch size of 1. The rendered images are resized to the resolution of
512× 512. The placeholder embedding size is 75 and the learning rate is 5e-4. During sampling, we
perform DDIM sampling with default 50 denoising steps with a denoising strength of 0.3 as default.
The γ is set to 0.9 as default, which means that the TAC is performed on the first 90% of sampling
steps. Only the attention maps in the first and second shallow layers are used for TAC. Note that the
denoising strength and γ may be changed to obtain different level of image translation. We compare
our method with three state-of-the-art unpaired image-to-image translation method, CUT, SANTA
and UNSB, and one diffusion-based style transfer method VCT. For CUT, SANTA and UNSB, we
train the models for about 400 epochs following the official code with same training data.
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Table 1: Quantitative comparisons on Face Synthetics and SynFashion datasets.

Dataset Face Synthetics SynFashion
KID↓(std) LPIPS↓(std) SSIM↑(std) KID↓(std) LPIPS↓(std) SSIM↑(std)

CUT [10] 80.553 (2.447) 0.365 (0.073) 0.664 (0.079) 59.238 (1.599) 0.170 (0.060) 0.847 (0.067)
SANTA [11] 90.390 (2.929) 0.387 (0.079) 0.618 (0.104) 61.636 (1.628) 0.294 (0.067) 0.741 (0.082)
VCT [13] 74.445 (2.273) 0.096 (0.027) 0.807 (0.072) 59.489 (1.499) 0.178 (0.058) 0.807 (0.085)
UNSB [12] 76.389 (2.465) 0.229 (0.069) 0.818 (0.070) 59.496 (1.453) 0.130 (0.040) 0.891 (0.054)
Ours 73.871 (1.973) 0.121 (0.035) 0.831 (0.068) 54.720 (1.362) 0.067 (0.025) 0.881 (0.055)

Table 2: User studies on overall realism, image quality and consistency. The table shows the
percentage of votes that existing methods are preferred to ours.

Dataset Face Synthetics SynFashion
Overall Realism Image Quality Consistency Overall Realism Image Quality Consistency

CUT 0.529% 0.529% 13.175% 8.994% 6.878% 16.931%
SANTA 0.922% 1.383% 12.304% 3.333% 5.238% 11.571%
VCT 5.952% 14.286% 20.714% 2.041% 6.122% 18.367%
UNSB 4.511% 6.767% 21.278% 9.821% 9.821% 26.607%

4.3 Results

Qualitative Results Fig. 3 and Fig. 4 show the visual comparison between our method, CUT [10],
SANTA [11], UNSB [12] and VCT [13] on the SynFashion and Face Synthetics datasets. As can be
seen from the figures, both the CUT and SANTA methods exhibit some degree of image degradation
and fail to effectively learn the concept of image realism from data across rendered and real domains,
thus enable to generate realistic images. The diffusion based style transfer method VCT maintains
image quality but fails to extract realistic image features from the guidance image, also resulting
in the loss of image details. Compared to previous methods, the UNSB method achieves better
consistency in terms of content, but like CUT and SANTA, it performs poorly in maintaining color
fidelity and the realism effect is not good. The proposed method effectively enhances the overall
realism of the image, particularly in capturing the facial and hand features of models, as well as the
texture and wrinkle details of the garment.

Quantitative Results The absence of ground truth for rendered-to-real translation and domain gap
between the source rendered and target real domains make quantitative evaluation challenging.

Following the previous work [8], we use KID to evaluate the realism of the generated images and the
average SSIM and LPIPS to assess content similarity. For each dataset, we use the 7500 testing result
images from each method and calculate the KID against the realistic images and the SSIM/LPIPS
against the rendered images. As shown in Tab. 1, our method shows significant improvements in
terms of realism as well as overall texture and content consistency. The standard deviations here show
the variance over test inputs for a fixed model to demonstrate the stability and generalization ability.

User Studies We adopt user studies to provide more quantitative insight into perceived realism, image
quality, and consistency to input rendered images. We follow StyleDiffusion [74] in style-transfer and
compare our method to previous works in pairs. Specifically, we randomly sample 100 image pairs
from each dataset for user evaluation. Each pair contains one image generated by our method and a
corresponding image generated by another comparison method, presented side by side in random
order. Users are asked to assess the images based on three criteria: 1) which result appears more
realistic, 2) which result demonstrates overall better image quality, and 3) which result shows better
consistency with the reference image.

We collected approximately 2,000 votes per question from 20 users and present the percentage of
votes where existing methods were preferred over ours in the Tab. 2. Lower percentages indicate that
our method was favored over the competitors. Our approach garnered a strong preference in terms of
overall realism and image quality, while also showing a clear advantage in maintaining consistency
with the reference images.
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Source image w/o TAC Oursw/o source DKI w/o target DKI

Figure 5: Visual examples of ablation study in a drop-one-out manner. (DKI: Domain Knowledge
Injection. TAC: Texture-preserving Attention Control.)

Table 3: Ablation study in a drop-on-out manner.

Dataset Face Synthetics SynFashion
KID↓(std) LPIPS↓(std) SSIM↑(std) KID↓(std) LPIPS↓(std) SSIM↑(std)

w/o source DKI 77.376 (2.063) 0.107 (0.029) 0.857 (0.059) 58.520 (1.902) 0.059 (0.019) 0.903 (0.065)
w/o target DKI 78.927 (2.134) 0.114 (0.031) 0.845 (0.063) 60.186 (1.623) 0.064 (0.022) 0.897 (0.056)
w/o TAC 69.349 (1.485) 0.253 (0.070) 0.720 (0.085) 51.392 (1.083) 0.183 (0.047) 0.794 (0.074)
Ours 73.831 (1.973) 0.121 (0.035) 0.831 (0.068) 54.720 (1.362) 0.067 (0.025) 0.881 (0.055)

4.4 Ablation Study and Further Analysis

We conduct ablation study on two datasets in a drop-one-out manner and evaluate the performance of
each module in the proposed method during inference and analyze the impact on the final results. As
shown in Fig. 5, without source DKI (embedding), the fine-tuned base model tends to recover the
input rendering image with DDIM inversion. Without target DKI (fine-tuning), the rendering effect
slightly decreases but the output is still not real enough due to lack of concentrated knowledge on real
human and clothing. Without TAC, the semantic structure such as face identity and clothing design
can significantly deviate from the input. The quantitative results are in Tab. 3.

Fig. 6 shows the trade-off between image realism and texture preservation. With a high denoising
strength, the generated images resemble realistic images more closely but retain fewer details from
the original rendered image. Increasing the TAC ratio helps to better preserve the texture details
and facial features. Unlike other content preservation techniques such as inpainting, which can lead
to potential visual incoherence, our TAC seems to blend the attention features smoothly into the
generation process and cause no obvious coherence issues.

5 Conclusion

In this paper, we introduce a novel diffusion-based framework for rendered-to-real fashion image
translation and create a high-quality rendered fashion image dataset (SynFashion), which includes
10k images with multiple classes. With Domain Knowledge Injection (DKI) and Texture-preserving
Attention Control (TAC), our method can successfully translate the rendered fashion image into its
realistic counterpart with significant realism improvement and texture details preservation. Extensive
experimental results demonstrate the superiority and effectiveness of our method.
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Figure 6: A visual example of tuning TAC ratio and denoising strength.

Table 4: Comparison of memory required and testing time across different methods.

CUT SANTA VCT UNSB Ours

Memory Required (GB) 3.3 4.5 22 7.4 7.7
Testing Time (s) 0.38 0.33 62.47 0.53 7.98

Limitations and social impacts While our method achieves superior results on this challenging task,
there are still several problems to be further explored. In this work, we simply use DDIM inversion to
extract texture-related attention features. However, the inversion process slows down the generation,
requiring approximately one minute to translate an image with a resolution of 768× 1024. This could
potentially be accelerated by recent inversion-free methods. We test the inference time and resource
consumption for a 512x512 image on an RTX 3090, as shown in Tab. 4. Note that comparing to VCT,
which is also based on diffusion, our method takes much less memory and time during testing as we
do not need to perform additional optimization for each testing image. Our method cannot handle
real-time applications for now, but has potential for improvement with future integration with SD
Turbo or SD Lightning. Additionally, for different images, finding the optimal balance between the
TAC ratio and denoising strength may require more empirical refinements to achieve the best result.
Due to limitations on computational resources, experiments were not conducted on more advanced
models such as SDXL [75]. Given that our method is based on SD1.5 and for human-related content
generation, potential negative societal impacts of exploiting this method could be violation of portrait
rights, racial bias, or inappropriate content in generation when the denoising strength is high. Relative
solutions can include but are not limited to using authorized, diverse and balanced training data and
training detection models to prevent inappropriate content generation.
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A Appendix / supplemental material

Figure 7: Results on textual textures and different rendering inputs.

A.1 More implementation details

More details of our RIG algorithm is shown in Algorithm. 1.

Algorithm 1 Realistic Image Generation

1: Inputs:
2: xcg ← source rendered image
3: vnd ← negative domain embedding
4: γ, F ← step threshold, feature size threshold
5: Algorithm:
6: z0 = E(xcg)
7: ẑT ← DDIM-inv(z0)
8: zT ← ẑT // starting from same seed
9: for t = T to 1 do

10: zt−1, Q
t
cg,K

t
cg ← DDIM-samp(zt)

11: if t < γ & f > F then
12: ẑt−1 ← ε̃∗θ(ẑt, t, vnd){Qt

r ← Qt
cg;K

t
r ← Kt

cg}
13: else
14: ẑt−1 ← ε̃∗θ(ẑt, t, vnd)
15: end if
16: end for
17: Output: xr ← D(ẑ0)
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Table 5: Number of images in different categories of SynFashion.

Category Pants T-shirt Lingerie &
Swimwear

Half Skirt Hoodie Coat Jacket

Numbers 864 416 440 392 448 604 812

Category Set Home-
wear

Hat Hanfu Jeans Shorts Down
Jacket

Numbers 420 336 308 472 180 420 508

Category Vest &
Camisole

Shirt Suit Dress Sweater Trench
Coat

Numbers 388 476 672 416 1056 416

A.2 Results on textual textures and different rendering inputs

As for rendering baselines, we build the 3D projects with Style3D Studio and use its integrated
rendering tool based on rasterization. Using UE5 could potentially improve the rendering quality but
will not diminish the effectiveness of our method. To verify this, we use more advanced rendering
techniques via ray tracing (based on V-ray) to obtain rendered images, and our method consistently
demonstrates its advantages in realism. Two visual examples are shown in Fig. 7.

A.3 More results of realistic image translation

To further verify the performance of the proposed method in realistic translation tasks, additional
experiments were conducted using the collected SynFashion dataset and the Face Synthetics dataset.
The results are illustrated in Figure .8 for Face Synthetics and Figure .9 for SynFashion.

A.4 More details of collected SynFashion dataset

Figure .10, Figure .11, Figure .12, and Figure .13 provide detailed visualizations of the SynFashion
dataset. The first column in each figure presents the front view of a designed 3D garment object.
Various texture patterns are assigned to each garment object, and the subsequent columns show the
images with four different views. The number of images in each category is shown in Table. 5.
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Figure 8: More comparison results on Face Synthetics dataset.
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Figure 9: More comparison results on SynFashion dataset.
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Figure 10: Examples of collected SynFashion dataset (Part 1).
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Figure 11: Examples of collected SynFashion dataset (Part 2).
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Figure 12: Examples of collected SynFashion dataset (Part 3).
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Figure 13: Examples of collected SynFashion dataset (Part 4).
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