
Vis Comput
DOI 10.1007/s00371-012-0710-3

O R I G I NA L A RT I C L E

Compressing repeated content within large-scale remote sensing
images

Wei Hua · Rui Wang · Xusheng Zeng · Ying Tang ·
Huamin Wang · Hujun Bao

© Springer-Verlag 2012

Abstract Large-scale remote sensing images, including
both satellite and aerial photographs, are widely used to
render terrain scenes in real-time geographic visualization
systems. Such systems often require large memories in or-
der to store fine terrain details and fast network speeds to
transfer image data, if they are built as web applications.
In this paper, we propose a progressive texture compression
framework to reduce the memory and bandwidth cost by
compressing repeated content within and among large-scale
remote sensing images. Different from existing image fac-
torization methods, our algorithm incrementally find similar
regions in new images so that large-scale images can be
more efficiently compressed over time. We further propose
a descriptor, the Gray Split Rotate (GSR) descriptor, to ac-
celerate the similarity search. The reconstruction quality is
finally improved by compressing residual error maps using
customized S3TC-like compression. Our experiment shows
that even with the error maps, our system still has higher
compression rate and higher compression quality than using
S3TC alone, which is a typical compression solution in most
existing visualization systems.

Keywords Texture compression · Image epitomes ·
Large-scale remote sensing image

W. Hua · R. Wang (�) · X. Zeng · H. Bao
State Key Lab of CAD&CG, Zhejiang University, Hangzhou, ZJ,
P.R. China
e-mail: rwang@cad.zju.edu.cn

Y. Tang
Department of Computer Science, Zhejiang University
of Technology, Hangzhou, ZJ, P.R. China

H. Wang
Department of Computer Science and Engineering, The Ohio
State University, Columbus, OH, USA

1 Introduction

Real-time geographic visualization system uses a consider-
able number of large-scale remote sensing images to recon-
struct 3D terrain scenes. Such a system often requires large
memory to store fine terrain details and fast network speed to
transfer image data, if it is implemented as a web-based ap-
plication. For example, Google Earth requires 256 MB GPU
memory and a 768 Kbits/sec network connection for fluent
rendering quality; Bing Maps 3D recommends 1 GB system
memory, 256 MB GPU memory and a high-speed or broad-
band Internet connection. Including more user-specific data
and local street scenes will further increase the system re-
quirement. We believe this issue cannot simply be solved
by having more affordable large memory and faster network
speed in the near future.

Our goal is to efficiently compress and decompress mul-
tiple large-scale remote sensing images for visualization
systems, so that memory and network bandwidth can be
saved for other purposes. Motivated by the method proposed
in [19], our basic idea is to find similarities among images
and simplify image representation by removing duplicate re-
gions. Compared with traditional image compression algo-
rithms, such as JPEG 2000 [18], our method removes redun-
dancy globally and supports real-time GPU decompression.
But different from [19], we focus on dealing with a great
number of large-scale images, which are difficult to handle
by their method due to a large computational cost.

To this end, we propose a progressive texture compres-
sion system by incrementally decomposing new images into
codebooks and transformation maps. Our specific contribu-
tions in this system are as follows.

– Codebooks for Specific Purposes: We classify remote
sensing images into different categories based on their ter-
rain contents, and we construct codebooks separately for

mailto:rwang@cad.zju.edu.cn

W. Hua et al.

each category. In each category, we use a public codebook
to store common features among images, and a private
codebook to store distinctive contents in each individual
image. Compared with using a single codebook for all
images, this structure is more efficient to build for large-
scale images with varying contents.

– Gray Split Rotate (GSR) descriptor and space: We pro-
pose a GSR descriptor to better depict similarity of im-
age blocks and use the metric defined in GSR space to
speed up the similarity search. Our compact descriptor en-
codes the appearance, orientation and light intensity for
one pixel and its neighborhood. By using the GSR de-
scriptor as a similarity metric and searching in the GSR
space, we efficiently distinguish pairs of regions that are
not similar to each other.

– Error Map Compression: To further improve the com-
pression quality, we develop a S3TC-like compression al-
gorithm to compress the error map, which is defined as
the difference between the original image and the decom-
pressed image. The error map greatly improves the re-
sult quality and provides high compression rate than using
S3TC alone.

2 Previous work

Our work is mainly related to texture compression tech-
niques, most of which have been developed for image com-
pression, texture synthesis and texture rendering purposes.

Comparing to general image compression techniques, for
example the JPEG 2000 [18], texture compression owns
several issues to consider differently [2], such as decod-
ing speed, pixel random access, compression rate and vi-
sual quality, encoding speed and etc. The early texture com-
pression method proposed by Beers and his collaborators [2]
used Vector Quantization (VQ) algorithm to produce a code-
book and an index map. This method was later adopted to
compress a collection of light-field images in [14]. By us-
ing larger image blocks and more flexible transformations,
Wang and his colleagues [19] proposed a texture factoriza-
tion method that automatically removes duplicate contents
from images and assembles representative contents into a
compact codebook, or called the epitome. An important ad-
vantage of these methods is that the decompression process
contains only simple transformations and it can be easily ac-
celerated by graphics hardware, so they are suitable for real-
time rendering applications. While previous methods are fo-
cused on dealing with a single image or a small set of im-
ages, we are more interested in compressing a great number
of large-scale images, which would require a huge compu-
tational cost if the method has not been properly optimized.

Fractal image compression technique proposed by Fisher
[5] utilizes the self-similarity implied in images to build a set

of contractive maps for image compression. Its decompres-
sion process is done iteratively by applying a series of affine
transformations so it is not suitable for real-time rendering.

Developed by Iourcha and his collaborators [7], S3 Tex-
ture Compression (or called DXTC in Microsoft DirectX
3D) is a lossy texture compression algorithm commonly
used in commercial graphics hardware. Based on the orig-
inal S3TC idea, Pereberin [17] later proposed a hierarchical
representation and a block-wise scheme to support S3TC
mip-mapping. Levkovich-Maslyuk and his colleagues [13]
improved color variance within each block by classifying
pixels into different groups and creating a sub-palette sepa-
rately for each group. Ivanov and Kuzmin [8] enriched the
number of color choices by allowing colors shared among
multiple blocks. Fenney [4] proposed an efficient repre-
sentation to avoid block artifacts by blending multiple low
frequency signals with a low-precision and high-frequency
modulation signal. In general, S3TC and its extensions have
a fixed compression ratio independent of the actual image
content.

Given a small texture input, texture synthesis tech-
niques [3, 9, 22] automatically generate seamless textures
over a large surface. In recent years, researchers have de-
signed the GPU texture synthesis algorithms to render the
large synthesized results in real-time with the small input
sample stored in the texture memory [11, 12, 20]. They may
also be formulated as real-time texture decompression algo-
rithms, if the goal is to get the surface textured rather than to
recover an exact image. One question is how to summarize
large textures into a small texture image as an inverse texture
synthesis problem. A possible solution is the optimization-
based inverse synthesis framework presented by Wei and his
collaborators [21].

Our GSR descriptor is also related to local descrip-
tors proposed in the computer vision community, such as
SIFT [15] and SURF [1]. These descriptors are typically de-
veloped for image classification and object recognition pur-
poses, so they are robust against image noises and varying
illumination conditions. Since our final goal is to faithfully
replace each original image region by its similar counterpart
in the codebook, these descriptors are not sensitive enough
to discriminate distinctive regions, even though they share
certain common features.

3 System overview

A geographic visualization system often requires a huge
data set of large-scale remote sensing images. While most
existing texture compression algorithms are focused on
dealing with a single image or a small collection of images,
our system can efficiently compress multiple remote sensing
images in a progressive way, and decompress them on the
fly using random-access texture fetches.

Compressing repeated content within large-scale remote sensing images

Fig. 1 System pipeline

Following the same representation as used in [19], we
separate images into two components: a codebook and a
transformation map. The codebook contains representative
small samples from original images; the transformation map
indicates how an image can be recovered from the code-
book. Here we use the name codebook instead of epitome
in order to emphasize its general use among multiple im-
ages. The basic idea behind this system is to incrementally
update the contents in codebooks, if and only if its content is
not sufficient to recover a new image. This dynamic feature
is crucial to reducing the computational cost when dealing
with a varying data set of multiple images. A simple so-
lution here is to directly insert new contents into a single
codebook when the system receives a new image. However,
it is likely to produce a huge codebook and slow down the
compression process. So we propose to use two codebooks
instead of one. We use a public codebook to contain com-
mon contents among images and it will be used to recover
multiple images during the decompression process. Mean-
while, we use a private codebook to store and recover dis-
tinctive contents in each image. This data structure allows us
to effectively reduce the codebook size and makes the sim-
ilarity search more efficient, by only considering the pub-
lic codebook in the similarity search. To further reduce the
public codebook size and accelerate the codebook construc-
tion process, we classify remote sensing images into differ-
ent categories and construct public codebooks separately for
each category. Since images in each category share more
common features and the number of categories for remote
sensing images is limited, the codebook for each category
can also be more efficiently built.

Figure 1 shows the pipeline of our system. It contains
two components, compression and decompression. The
compression process first classifies a set of initial images
into different categories using the K-mean clustering algo-
rithm [10]. We choose the color histogram as a simple clas-
sifier. The initial value of each cluster center is assigned by
user input. After classification, we construct image pyramids

using Gaussian filters and they are then compressed using
our progressive compression algorithm, as will be discussed
in Sect. 4. The compression process produces a codebook
bank that contains both public and private codebooks for
images in different categories, and transformation maps that
instruct the renderer how to recover images using random
texture access. We will explain the decompression algorithm
in Sect. 5.

4 Texture compression

Our texture compression approach takes a three-step algo-
rithm. The first step is to find similar regions within and
among images by our new descriptor. Then, these similar re-
gions are progressively factorized into codebooks and trans-
form maps. After these steps, to improve the compression
quality, residual errors are computed and quantized into er-
ror maps. Since two former steps of our algorithm bear some
similarities to that in [19], we highlight two distinctive adop-
tions of our algorithm for compressing large-scale images.
First, compared with the color and orientation histograms
used in [19], a new descriptor, the GSR descriptor, is pro-
posed in this paper. With extra local rotation-variant infor-
mation, our descriptor brings more accurate depiction of
similarities among image regions. Second, instead of com-
paring every pair of image blocks, a quadratic number of
comparisons to the number of blocks [19], we utilize the
high-dimension feature space of the GSR descriptor and em-
ploy K-nearest neighbor search to accelerate the pruning
process. In this section, we first introduce the GSR descrip-
tor, then describe the construction of codebook and finally
give out details of the error maps. The validation of these
adoptions comparing to [19] is given in Sect. 6.

4.1 Similarity search by GSR descriptor

Our Gray Split Rotate (GSR) descriptor combines inten-
sity/color statistics with the rotation-variant descriptor used

W. Hua et al.

Fig. 2 Gradient vectors (a) in each block are used to find the main
direction (b). The overall direction allows us to create a grid for GSR
formulation as (c) shows

Fig. 3 We use interpolated grayscale values within the grid to formu-
late the descriptor in N2 dimensions. This figure is only an illustration
that an 8 × 8-pixel block is formulated in a 16-dimensional descriptor.
The color blocks are for illustration, in our method, we only use the
grayscale values of each block

in SURF. Although the descriptor can be formulated using
all three RGB channels of the original image, we prefer to
use only the grayscale intensity so that the descriptor can be
more efficiently calculated. We first apply a Gaussian blur
filter to remove high-frequency image noises. We then seg-
ment the image into square blocks and calculate intensity
gradient for each pixel in every block (Fig. 2a). These gra-
dients on pixels are grouped to obtain the main direction
(Fig. 2b). Once we find the main direction, we create a N -
by-N square grid that is aligned with the main direction as
Fig. 2c shows. Given this grid, we simply use interpolated
grayscale values in the grid to formulate the descriptor in
N2 dimensions. N is typically chosen from 4 to 8 (Fig. 3).

The GSR descriptor presented above allows us to quickly
compare two image blocks and terminate further compu-
tations if they appear too different in the descriptor space.
Wang and his colleagues [19] compared every pair of im-
age blocks so the number of comparisons is quadratic to the
number of blocks. While doing this is acceptable for a single
image, it is no longer affordable when we deal with multiple
large-scale images. So instead, we build a N2-dimensional
tree for all GSR descriptors and only compare a pair of
blocks that are neighbors in the GSR space using [16]. The
neighborhood can either be defined within a fixed radius or
by a fixed number of neighbors. Since it is not straightfor-
ward to automatically adjust radius parameters for different
types of image, we prefer to set a fixed number of neigh-
bors to define the similarity neighborhood in the descriptor
space. After a pair of image regions passed this pruning pro-
cess, they will be further tested under the computationally

expensive KLT metric and compute the affine transform. We
recommend readers to check [19] for more details of using
the KLT feature tracker and the computation of affine trans-
form.

When images are represented in multi-resolution, we pro-
cess the similarity search separately at each image pyramid
level. Although we can incorporate similarity search across
different pyramid levels as that in [19], we find from our ex-
periment that it is unnecessary because features in remote
sensing images are at similar scales.

4.2 Codebook construction

Given the GSR descriptor proposed in Sect. 4.1, our next
goal is to progressively factorize images into codebooks and
transformation maps. Without losing generality, given a new
image and an existing public codebook, we take the follow-
ing steps to update the public codebook and construct a pri-
vate codebook.

We first separate the image into a set of blocks, each of
which contains 16×16 pixels. We then run similarity search
between each image block and the public codebook. If a
match exists, we compute and store the appropriate trans-
formation, with which the block can be directly recovered
from the existing codebook. For these remaining blocks that
cannot be represented by the public codebook, we build a
similarity match list for each block as in [19] and count
how representative a repeated content is. If the reused times
are more than a threshold, the block will be added into the
public codebook bank. Otherwise, we think it is not repre-
sentative enough and it will be assembled into the private
codebook instead. Details on the assembling process can be
found in [19].

4.3 Compression with error maps

The combination of codebooks and transformation maps al-
lows us to reconstruct comparable results to original images.
However, this compression algorithm can be highly lossy
if original images do not have sufficient similarity regions.
Here we use an error map to further improve the compres-
sion quality. The error map E is defined as the difference be-
tween the reconstruction result and the original image. Ide-
ally, using a lossless compression algorithm [6] to compress
this error map, we are able to fully recover the original im-
age without any residual error. However, the compression
ratio would be greatly affected in this way. So we prefer to
use a lossy compression algorithm instead.

We modify the standard DXT1 in S3TC to compress this
error map. In DXT1, a 64-bit word is used to represent a
4 × 4-pixel block. The first half of the word is used to store
two 16-bit RGB565 colors and the second half is used to
store a 2-bit control code per pixel. Since an error map has

Compressing repeated content within large-scale remote sensing images

Fig. 4 Bits formations. (a) is the bits formations used in DXT1 for a
4 × 4-pixel block and (b) shows our bits formation for a 8 × 8-pixel
block to compress error map

relatively smaller intensity values, we use a 8×8-pixel block
and store two colors with dynamic bit lengths (12 bits in
maximum if using 4 bits per channel, or 0 bits in minimum)
and a 6-bit prefix header to indicate the actual bit length.
The bit format is illustrated in Fig. 4. In total, our method
requires 156 bits in maximum for a 8 × 8 pixel block, com-
pared with 256 bits used by DXT1. Compression results
with and without error maps are shown in Sect. 6.

5 Texture decompression

In this section, we introduce our decompression algorithm
for real-time rendering. Before the rendering process, code-
books, transformation maps and error maps are loaded into
the GPU memory. Each of them is represented as an im-
age texture. They are used to recover images by fragment
shaders in GPU.

The pseudo code of the actual decompression process is
shown in Algorithm 1. For each pixel, we first determine

Algorithm 1 Decompression code in shader
1: int blockNum, blockLength;
2: sampler2D publicEptm, privateEptm, eMap;
3: sampler2D tfmAffine0, tfmAffine1;
4: procedure main(in t, out outColor, const use_emap)
5: begin
6: vec2 tblock = (floor(t.st)+vec2(0.5,0.5))/blockNum;
7: vec2 diff = (frac(t.st)−vec2(0.5,0.5))*blockLength;
8: vec4 taffine0 = tex2D(tfmAffine0,tblock);
9: vec4 taffine1 = tex2D(tfmAffine1,tblock);

10: vec2 tEpitome;
11: tEpitome.x = taffine0.xy*diff.xy+taffine1.x;
12: tEpitome.y = taffine0.zw*diff.xy+taffine1.y;
13: vec2 tidx; tidx.x = taffine1.w; tidx.y = 1-tidx.x;
14: vec4 eColor = tidx.x * tex2D(publicEptm,tEpitome)
15: + tidx.y * tex2D(privateEptm,tEpitome);
16: outColor = eColor;
17: if use_emap then
18: vec4 errorColor = decode_emap(eMap, t);
19: outColor = eColor + errorColor;

its texture coordinate in the transformation map (line 6). We
also compute the coordinate difference, which gives the rel-
ative position of the current texel within a block (line 7). We
then fetch transformation coefficients from two transforma-
tion textures, including 6 affine coefficients and a codebook
type flag (line 8–9). According to these coefficients, we pre-
pare the codebook texture coordinate (line 11–12) and then
read the texture color from public or private codebook based
on the flag taffine1.w (line 13–15). If the user chooses not
to use the error map for better rendering quality, the pixel
value will be directly sent to the display buffer. Otherwise,
we use a S3TC-like decompression algorithm (line 18–19)
to compensate the residual error.

6 Results

We implemented and tested our system on an Intel CoreTM2
Quad 2.83 GHz workstation with 3 GB of RAM and an
nVIDIA GeForce 280 GTX graphics card.

6.1 Descriptor comparison

6.1.1 Speed comparison

Table 1 compares the compression time, the reconstruction
quality and the compression ratio of our method versus the
method proposed in [19]. Acceleration 1 is our method that
uses 250 nearest neighbors as similarity candidates for each
block, while acceleration 2 uses 500 neighbors. The grid
size N is chosen to be 4 for both cases and the descrip-
tor is a 16-dimensional vector. This comparison shows that
under almost the same compression ratio and reconstruc-
tion quality, our method is approximately ten times faster
than [19]. While applying different acceleration techniques,
more searching neighbors bring less reconstruction errors
but have more acceleration ratio. In our following results,
unless mentioned otherwise, we use acceleration 2 in the
compression.

6.1.2 Accuracy comparison

Let D be the set of blocks that are accepted under the de-
scriptor metric, and M be the set of blocks that are accepted
under the KLT metric, we define the accuracy factors as fol-
lows:

IR = |M ∩ D|
|M| . (1)

Intuitively, IR ratio measures the accuracy of a descriptor,
since a larger IR value means that the descriptor is consistent
with KLT and there will be less false-positives.

Using this ratio, Fig. 5 compares descriptors proposed in
this paper and that used in [19] on image examples. The gray

W. Hua et al.

Table 1 Comparison of our method versus the method proposed
in [19]. Acceleration 1 is our method that uses 250 nearest neighbors
as similarity candidates for each block, while acceleration 2 uses 500

neighbors. The grid size N is chosen to be 4 for both cases and the
descriptor is a 16-dimensional vector

Examples (1 K × 1 K size) Algorithms Search time (s) Codebook size RMS error Acceleration ratio

Hill

[19] 658.00 704×288 8.97 1.00

Acceleration 1 15.39 480×448 9.15 42.76

Acceleration 2 29.91 448×384 9.05 22.00

Building

[19] 246.50 960×272 7.52 1.00

Acceleration 1 15.25 576×512 8.08 16.16

Acceleration 2 29.90 512×448 7.81 8.24

Field

[19] 508.55 448×384 9.42 1.00

Acceleration 1 15.18 504×320 9.83 33.50

Acceleration 2 30.73 448×336 9.62 16.55

Fig. 5 Descriptor performance comparison between the GSR descrip-
tor proposed in this paper with the color and orientation histogram de-
scriptor proposed in [19] on different types of image. Given a sample
block, shown in blue box, red boxes shown in images are similar re-
gions computed by KLT feature tracker and green boxes are computed

by specific feature descriptor. The more overlaps of red and green
boxes indicate larger IR and higher accuracy. The “IR” ratio depicts
the accuracy of a descriptor for the given sample block. The “Avg. IR”
ratio depicts the accuracy of a descriptor for the entire image, which is
computed by averaging “IR” ratio of blocks of the sample image

split rotate descriptor (Fig. 5a,c) here uses a 4-by-4 grid. The
color and orientation histogram descriptor (Fig. 5b,d) uses
16 buckets. Given a sample block, for each descriptor, 500
nearest neighbors in feature space are identified and used
to compute corresponding IR. This example shows that our
GSR descriptor performs better in accuracy than that used
in [19].

6.2 Large-scale images compression

We compress multiple large-scale remote sensing images
with an overall resolution of 76 K × 76 K. The total un-
compressed size of such images is about 16.92 GB and if
including mipmaps built in video memory, it is 22.56 GB.
At compression, we divide these images into 1 K × 1 K sub-

images and process them progressively. Six categories are
initially set to classify these sub-images and then 6-level im-
age pyramids are built for further processing. For each sim-
ilarity search task, four threads are parallelized for accelera-
tion. It takes a total of 16 hours to complete the whole com-
pression process. After compression, the public codebook
bank size is 150.96 MB and the private codebook bank size
is 2661.2 MB. We then compress them by DXT1 and obtain
final public codebook bank with 25.16 MB and private code-
book bank with 443.5 MB for rendering. The error maps oc-
cupy 2205.6 MB. The final compression ratio for these mul-
tiple large-scale remote sensing images is 2.08 % (without
error maps) and 11.19 % (with error maps). Please check the
supplemental material for a captured real-time video demo

Compressing repeated content within large-scale remote sensing images

Fig. 6 Screenshots of our visualization system

Fig. 7 Quality comparison among (a) our compression results only using codebooks, (b) our compression results using codebooks and error
maps, (c) results compressed by DXT1 and (d) uncompressed original image. For each image, we enlarge two regions for details comparison

that shows the quality and performance of our visualization
system. Three screenshots are shown in Fig. 6.

6.2.1 Compression quality

Figure 7 compares the residual error of our compression re-
sults with the results compressed by the DXT1 method. This
example shows that without using the error map, our result
is comparable to DXT1. After using the error map, our com-
pression quality becomes better than DXT1.

6.3 Rendering frame rate and memory consumption

We compare rendering speeds using different decompres-
sion methods through the FPS curves sampled at different
time stamps in Fig. 8. The FPS curve demonstrates how FPS
fluctuates over time, and it shows that our method performs
more smoothly compared with pure DXT1 compression or
directly rendering the original image. In particular, loading
the whole original image into the GPU memory for render-

W. Hua et al.

Fig. 8 FPS curves sampled at
different time stamps

Fig. 9 Occupied memory
curves sampled at different time
stamps

ing will cause frequent memory bandwidth bottlenecks and
they are shown as sudden jumps in its FPS curve.

The plot in Fig. 9 explores how the size of occupied
video memory varies as a function of time for different
methods. It shows that directly rendering the original im-
age requires a large GPU memory as expected. Both DXT1
and our method use much less memory than the original
image, and even using the error map, our method con-
sumes less memory than that of using DXT1 compres-
sion.

7 Conclusions and future work

How to efficiently compress and decompress multiple large-
scale remote sensing images for geographic visualization
applications is an interesting problem, and we present a sys-
tematic solution to this problem in the image factorization
framework. The system uses a set of codebooks for different
purposes, so that each of them can built in a compact and
efficient way. We also propose a GSR descriptor to acceler-
ate the similarity search and we demonstrate that similarity
matches can be efficiently found in the GSR space. Finally
we improve the compression quality by compressing the er-
ror map using a customized S3TC-like compression algo-
rithm.

Looking into the future, we would like to further improve
the compression speed by implementing compression algo-
rithms on GPU. We are also interested in applying differ-
ent importance weights to local image regions, so that we
adaptively control the local compression quality. How to as-
semble codebooks into a compact form is also an interesting
topic to study in the future.

Acknowledgements We would like to thank the reviewers for their
thoughtful comments. We also would like to thank student Hong Yu
for her efforts on the demos. This work was supported in part by NSFC
(No. 60903037 and No. 61003265), the 973 program of China (No.
2009CB320803) and the national key technology R&D program of
China (No. 2012BAH35B03).

References

1. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust fea-
tures. In: ECCV, pp. 404–417 (2006)

2. Beers, A.C., Agrawala, M., Chaddha, N.: Rendering from com-
pressed textures. In: Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH
’96, pp. 373–378. ACM, New York (1996)

3. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis
and transfer. In: Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’01,
pp. 341–346. ACM, New York (2001)

Compressing repeated content within large-scale remote sensing images

4. Fenney, S.: Texture compression using low-frequency
signal modulation. In: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware,
HWWS ’03, pp. 84–91. Eurographics Association, Aire-la-Ville
(2003)

5. Fisher, Y.: Fractal Image Compression, Theory and Application.
Springer, Berlin (1995)

6. Inada, T., McCool, M.D.: Compressed lossless texture repre-
sentation and caching. In: Proceedings of the 21st ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware,
pp. 111–120. ACM, New York (2006)

7. Iourcha, K., Nayak, K., Hong, Z.: System and method for fixed-
rate block image compression with inferred pixels values. US
Patent 5,956,431 (1999)

8. Ivanov, D.V., Kuzmin, Y.P.: Color distribution—a new approach
to texture compression. Comput. Graph. Forum 19(3), 283–290
(2000)

9. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimiza-
tion for example-based synthesis. ACM Trans. Graph. 24, 795–
802 (2005)

10. Lai, J.Z.C., Huang, T.J., Liaw, Y.C.: A fast k-means clustering al-
gorithm using cluster center displacement. Pattern Recognit. 42,
2551–2556 (2009)

11. Lefebvre, S., Hoppe, H.: Parallel controllable texture synthesis.
ACM Trans. Graph. 24, 777–786 (2005)

12. Lefebvre, S., Hoppe, H.: Appearance-space texture synthesis.
ACM Trans. Graph. 25, 541–548 (2006)

13. Levkovich-Maslyuk, L., Kalyuzhny, P., Zhirkov, A.: Texture com-
pression with adaptive block partitions (poster session). In: Pro-
ceedings of the Eighth ACM International Conference on Mul-
timedia, MULTIMEDIA ’00, pp. 401–403. ACM, New York
(2000)

14. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings
of the 23rd Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’96, pp. 31–42. ACM, New York
(1996)

15. Lowe, D.G.: Object recognition from local scale-invariant fea-
tures. In: Proceedings of the International Conference on Com-
puter Vision, ICCV ’99, vol. 2, p. 1150. IEEE Computer Society,
Washington (1999)

16. Mount, D.M., Arya, S.A.: A library for approximate nearest neigh-
bor searching (2010). http://www.cs.umd.edu/~mount/ANN/

17. Pereberin, A.: Hierarchical approach for texture compression. In:
Proceedings of GraphiCon, pp. 195–199 (1999)

18. Skodras, A.N., Christopoulos, C.A., Ebrahimi, T., Ebrahimi, T.:
JPEG2000: the upcoming still image compression standard. IEEE
Signal Process. Mag., 1337–1345 (2001)

19. Wang, H., Wexler, Y., Ofek, E., Hoppe, H.: Factoring repeated
content within and among images. ACM Trans. Graph. (SIG-
GRAPH 2008) 27(3), 14:1–14:10 (2008).

20. Wei, L.Y.: Tile-based texture mapping on graphics hardware. In:
ACM SIGGRAPH 2004 Sketches, SIGGRAPH ’04, p. 67. ACM,
New York (2004)

21. Wei, L.Y., Han, J., Zhou, K., Bao, H., Guo, B., Shum, H.Y.: Inverse
texture synthesis. ACM Trans. Graph. 27, 52:1–52:9 (2008)

22. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured
vector quantization. In: Proceedings of the 27th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’00, pp. 479–488. ACM Press/Addison-Wesley, New
York (2000)

Wei Hua received his Ph.D. de-
gree from the department of Ap-
plied Mathematics at Zhejiang Uni-
versity in 2002. He is currently an
associate professor of the State Key
Laboratory of CAD & CG, Zhejiang
University. His research interest in-
cludes real-time simulation and ren-
dering, virtual reality and software
engineering.

Rui Wang received his Ph.D. de-
gree from the department of Ap-
plied Mathematics at Zhejiang Uni-
versity in 2007. He is currently an
associate professor at the State Key
Laboratory of CAD & CG, Zhejiang
University. His research interest is
in computer graphics and computer
vision techniques that are related to
applications of real-time and realis-
tic rendering and visualization.

Xusheng Zeng received his B.S. de-
gree from the department of Com-
puter Science and Technology at
Zhejiang University in 2011. His re-
search interest is in techniques re-
lated to real-time terrain rendering
and visualization.

Ying Tang received her B.S. de-
grees from the Computer Science
Department of Zhejiang University
in 1999, and her Ph.D. degree from
the State Key Lab of CAD & CG
of Zhejiang University in 2005. She
is currently an associate professor
at the School of Computer Science,
Zhejiang University of Technology.
During Apr. 2005 to April 2006, she
worked as a postdoc at the Depart-
ment of Computer Science and En-
gineering, the Hong Kong Univer-
sity of Science and Technology. Her
research interest includes image and

video processing, GPU-accelerated forest simulation in virtual reality,
and information visualization.

http://www.cs.umd.edu/~mount/ANN/

W. Hua et al.

Huamin Wang is an assistant pro-
fessor in the department of Com-
puter Science and Engineering, at
Ohio State University. Before that,
he was a postdoctoral researcher
in the EECS department at Univer-
sity of California, Berkeley. He re-
ceived his Ph.D. from Georgia In-
stitute of Technology in 2009, M.S.
from Stanford University in 2004
and B.Eng. from Zhejiang Univer-
sity in 2002. His research interest
is in computer graphics, computer
vision, and image processing tech-
niques that are related to graphics

and visualization applications. He is particularly interested in incorpo-
rating real-world data into physically based simulation, so that anima-
tions can be efficiently and realistically generated.

Hujun Bao received his B.S. and
Ph.D. degrees in the department
of applied mathematics at Zhejiang
University in 1987 and 1993, re-
spectively. His research interest in-
cludes modeling and rendering tech-
niques for large scale of virtual en-
vironments and their applications.
He is currently the director of State
Key Laboratory of CAD & CG of
Zhejiang University. He is also the
principal investigator of a virtual re-
ality project sponsored by the Min-
istry of Science and Technology of
China.

	Compressing repeated content within large-scale remote sensing images
	Abstract
	Introduction
	Previous work
	System overview
	Texture compression
	Similarity search by GSR descriptor
	Codebook construction
	Compression with error maps

	Texture decompression
	Results
	Descriptor comparison
	Speed comparison
	Accuracy comparison

	Large-scale images compression
	Compression quality

	Rendering frame rate and memory consumption

	Conclusions and future work
	Acknowledgements
	References

