
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Medial Elastics:
Efficient and Collision-ready Deformation via Medial Axis Transform

ANONYMOUS AUTHOR(S)

Fig. 1. Our framework couples spatial model reduction and collision detection via medial axis transform, a high-fidelity and compact volumetric shape

representation. This representation (known as the topological skeleton) does not only provide us an expressive subspace, but also serves as a tight volume

enclosure to facilitate the collision detection and handling. In this figure, the barbarian ship has 482k elements and 236k triangles. Following a semi-reduced

projective dynamics formulation, this model is reduced to a 2, 526-dimension subspace with 482k constraints. The animation runs at ∼ 15 FPS with all the

collisions and self-collisions resolved and rich local details preserved.

We propose a framework for the interactive simulation of nonlinear de-
formable objects. The primary feature of our system is the seamless in-
tegration of deformable simulation and collision culling, which are often
independently handled in existing animation systems. The bridge connect-
ing them is the medial axis transform or MAT, a high-fidelity volumetric
approximation of complex 3D shapes. From the physics simulation perspec-
tive, MAT leads to an expressive and compact reduced nonlinear model.
We employ a semi-reduced projective dynamics formulation, which well
captures high-frequency local deformations of high-resolution models while
retaining a low computation cost. Our key observation is that the most
compelling (nonlinear) deformable effects are enabled by the local con-
straints projection, which should not be aggressively reduced. The global
stage solves a linear system and is less GPU-friendly, to which the model
reduction applies with marginal compromise of the visual plausibility. From
the collision detection/culling perspective, MAT is geometrically versatile
using linear-interpolated spheres (i.e. the so-called medial primitives) to
approximate the boundary of the input model. For instance, only 87 medial
primitives are able to encapsulate the dinosaur model as tightly as one using
53, 294 AABBs or 37, 282 bounding spheres. The intersection test between
two medial primitives is formulated as a quadratically constrained quadratic
program problem. We give an algorithm to solve this problem exactly, which
returns the deepest penetration between a pair of intersecting medial primi-
tives. When coupled with spatial hashing, collision (including self-collision)
can be efficiently identified on GPU within few milliseconds even for mas-
sive simulations. We have tested our system on a variety of geometrically

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

complex and high-resolution deformable objects, and our system produces
convincing animations with all the collisions/self-collisions well handled at
an interactive rate.

CCS Concepts: • Computing methodologies → Physical simulation;
Collision detection.

Additional KeyWords and Phrases: Medial axis, Deformable model, Collision

culling, GPU

ACM Reference Format:

Anonymous Author(s). 2019. Medial Elastics: Efficient and Collision-ready
Deformation via Medial Axis Transform. ACM Trans. Graph. 1, 1 (Octo-
ber 2019), 16 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

A high-quality nonlinear deformable simulation of elastic bodies is
an important procedure for physics animations. In order to calcu-
late the time-dependent displacement of a deformable object, one
needs to solve a nonlinear system of the dynamic equilibrium. The
simulator should sufficiently lower the system residual to avoid
visual artifacts and minimize the numerical instability along the
time integration. For real-time animation with a small time budget,
it is common to use coarsened or reduced simulation techniques
to formulate the dynamics with a generalized coordinate instead
of the per-vertex displacement vector [Sifakis and Barbic 2012].
As a result, the core simulation is independent of the resolution
of the input model. Meanwhile, collision detection (CD) includ-
ing self-collision detection (SCD) is another essential task along
the animation pipeline, which returns all the overlapping triangle
pairs on deformed surfaces of elastic bodies so that interpenetrat-
ing objects can be resolved using complimentary constraints or
penalty forces [Baraff 1994; Moore and Wilhelms 1988]. Nowadays,

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

2 • Anon.

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

models with hundred of thousands or even millions of surface tri-
angles are ubiquitous, and a brute-force pair-wise triangle inter-
section test is clearly infeasible. Collision and self-collision culling
(CC/SCC) [Bergen 1997; Bridson et al. 2002; Gottschalk et al. 1996]
pre-screens the updated geometry of models, precludes triangles
that do not collide, and prevents us from testing exceeding pairs.
Both deformable simulation and collision culling have been ex-

tensively studied in the graphics community, yet they are normally
considered as two independent problems and handled separately:
the simulator calculates the displacement of the deformable body by
updating the generalized coordinates. The new surface geometry is
then extracted and forwarded as the input for the follow-up CC/SCC
algorithms. This system flow overlooks the fact that both reduced

simulation and collision culling rely on good geometric approximations

of dynamically deformed objects and breaks the possible algorith-
mic connection between them, which can potentially improve the
performance of the animation pipeline as a whole. Observing this
limitation, James and Pai [2004] exploited subspace modes to con-
struct a bounded deformation tree (BD-tree) for fast CC without
referring to the fullspace displacement. Barbič and James [2010]
accelerated the SCC by pre-computing subspace SCC certificates,
which demarcate a proven self-collision free area on the model with
reduced coordinates. However, these methods tend to work with an
arbitrary reduced model and give up the opportunity of fine-tuning
the subspace construction to maximize CC/SCC performance.
In this paper, we propose a new framework that unifies the re-

duced deformable simulation and CC/SCC by leveraging the medial

axis transform (MAT) and its correspondingmedial mesh (MM) of an
input deformable body. Themedial axis (MA) of a 3D model consists
of a set of points that are centers of maximally inscribed spheres
(i.e. the medial spheres) touching the boundary with at least two
contacts. MM is a non-manifold triangle mesh that discretizes MA
with piecewise linear segments. MAT houses the information of
both MM and radii of all the medial spheres at MM vertices. It essen-
tially forms a collection of linearly interpolated spheres or medial

primitives (MP). MAT has long been considered as a fundamental
volumetric descriptor of 3D shapes [Faraj et al. 2013; Sun et al. 2016]
and an effective shape approximation representation [Stolpner et al.
2012; Yang et al. 2018]. If we slightly dilate the radii of MPs on
the MM, a high-quality tight enclosure of the input model can be
obtained. Inspired by these unique properties of MAT and MM,
we design our new framework, named Medial Elastics, with the
following noteworthy technical features:
• We adopt a spatial reduction scheme based on the embedded MM
of a deformable object. We assign each medial vertex a handle,
holding certain transformation freedoms to drive the deformation
of the 3D model. MM has long been regarded as the “skeleton”
of a 3D shape, which naturally characterizes its most dominant
nonlinear dynamics. Therefore, our subspace is expressive and
compact with well-preserved local details.

• We follow the local-global alternating strategy of the projective
dynamics [Bouaziz et al. 2014] to solve our reducedmodel.Within
this context, we carefully assess the benefit of applying model re-
duction on global and local steps respectively, trying to obtain an
optimal trade-off between the computation efficiency and simula-
tion quality. We find that an aggressive reduction at the local step

could severely downgrade the plausibility of the animation, yet
with only marginal performance speed up. Therefore, we design
a semi-reduced projective dynamics simulator that only applies
the subspace projection at the global step. Compared with a full-
reduction scheme (e.g. the hyper-reduced projective dynamics
solver [Brandt et al. 2018]), our framework delivers richer defor-
mation effects which in many cases, are visually indistinguishable
with the full simulation.

• In our framework, CC and SCC start directly with the generalized
coordinate i.e. the state vector of the MM, which fully determines
the configuration of the MAT. As MAT is able to tightly encapsu-
late a deformed model using only a fewMPs, MAT-based collision
culling is much more effective and efficient compared with the
state-of-the-arts. We not only give an efficient MAT-based CC
algorithm, but also derive a closed-form formulation computing
the deepest interpenetration between colliding MPs. This allows
us to directly query for intersecting triangles nearby the deepest
penetrations among very few MP candidates for CD and SCD.

We have tested ourmethodwith a variety of complex high-resolution
3D models and challenging simulation scenarios. As reported in
Fig. 1, our system yields high-quality collision-free deformable ani-
mations with rich local details at an interactive rate.

2 RELATED WORK

An efficient and plausible simulation of elastically deformable ob-
jects is a desired feature for many applications. In general, de-
formable simulation is formulated as a dynamic equilibrium. For
high-resolution models, the simulator needs to solve a large-scale
nonlinear system repeatedly at each time step. Therefore, even if
we have many well-established simulation frameworks such as the
finite element method (FEM) [Sifakis and Barbic 2012], finite dif-
ference method [Zhu et al. 2010], meshless method [Martin et al.
2010; Müller et al. 2005], mass-spring system [Liu et al. 2013], and
material particle method [Gao et al. 2017], etc., efficiently simulating
high-resolution models remains a challenging problem.

Simulation speedup can be achieved usingmodel reduction, which
removes less important degrees of freedom (DOFs) and creates a sub-
space representation of fullspace DOFs. Spectral reduction method
like modal analysis [Choi and Ko 2005; Hauser et al. 2003; Pentland
and Williams 1989] and its first-order modal derivatives [Barbič
and James 2005; Yang et al. 2015] are often considered as the most
effective way for the spectral subspace construction. Displacement
vectors from recent fullspace simulations can also be utilized as sub-
space bases [Kim and James 2009]. Another collection of research
that shares a similar idea of reducing the total number of simulation
DOFs is referred to as spatial reduction method in this paper. Spatial
reduction leverages coarsened geometry data structures to prescribe
the dynamics of a fine model. The most famous paradigm of spatial
reduction in graphics may be the animation skinning, where the de-
formed skin is attached and controlled by DOFs at rigid joints [Kry
et al. 2002]. Likewise, Capell et al. [2002] deformed an elastic body
using an embedded skeleton; Gilles et al. [2011] used 6-DOF rigid
frames to drive the deformable simulation; Faure et al. [2011] used
scattered handles to model complex deformable models; Martin et al.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

Medial Elastics:

Efficient and Collision-ready Deformation via Medial Axis Transform • 3

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

[2010] used sparsely distributed integrators named elastons to model
the nonlinear dynamics of rod, shell, and solid uniformly.

Our simulation framework is based on projective dynamics [Bouaziz
et al. 2014]. This method decomposes the numerical system into
many small local constraint projections that can be processed in
parallel, and then reassembled in a non-linear fashion leading to
accurate global dynamics. A number of approaches have been pro-
posed to accelerate its computation by using various iterative GPU
solvers [Fratarcangeli et al. 2016; Narain et al. 2016; Wang 2015;
Wang and Yang 2016]. Brandt et al. [2018] combined projective dy-
namics with spatial reduction to simulate high-resolution models
in real time. We are inspired by excellent efficiency of this method.
However, we also found that the accuracy of the local projection is
critical to the animation quality, and local projection should not be
over-aggressively reduced.

CD/SCD is another important procedure along the physics anima-
tion pipeline. A commonly adopted method is to use some bounding
volume hierarchy (BVH) [Zachmann and Langetepe 2003] to avoid
excessive triangle-triangle intersection tests. Various BVH types
have been explored such as AABB [Bergen 1997], OBB [Gottschalk
et al. 1996], sphere [Hubbard 1995; James and Pai 2004], Boxtree [Zach-
mann 2002], spherical shell [Krishnan et al. 1998] and so on. Most
existing BVHs are built with fixed bounding primitives like spheres
or boxes. We say they are fixed meaning each primitive is nailed
at a prescribed position, enveloping a small surrounding volume.
Therefore, it often needs a large number of such fixed primitives
to envelop a complex shape. For rigid body animation, updating a
BVH is efficient as the entire BVH can be uniformly rotated and
translated with six rigid body DOFs. However, updating BVH for a
deformable object is, in general, expensive, which often takes a time
at the order of O(N), where N denotes the model size [Teschner
et al. 2005; Wang et al. 2018]. Kavan and Zara [2005] speeded up
BVH update leveraging the displacement convexity of linear blend
skinning (LBS) algorithm. Our method uses MAT as the bound-
ing volume, which contains infinitely many linearly interpolated
spheres along the underlying MM. There exist other data structures
like the sphere mesh [Thiery et al. 2013, 2016; Tkach et al. 2016] that
also use linearly interpolated spheres. However, only MAT guaran-
tees that spheres are maximally inscribed in the local surface. As a
result, CC and SCC become much more effective with MAT.

We are not the first trying to couple model reduction and CC/SCC.
James and Pai [2004] proposed an algorithm that updates the BD-
tree directly using the generalized coordinate. This method was
later generalized to enable efficient Haptics force rendering [Barbič
and James 2007]. Barbič and James [2010] computed SCC certifi-

cates in subspace to accelerate SCC. Based on the observation that
a self-collision occurs under large local deformation, Zheng and
James [2012] proposed an energy-based metric to improve the ef-
fectiveness of SCC. Teng et al. [2014] leveraged the coherence of
the joint contact in character animation, and efficiently processed
the collision within the subspace. These contributions intend to
improve the performance of CC/SCC for any reduced models. The
work from Zheng and James [2012] is more general, being applicable
to arbitrary deformations of triangle meshes even without reduction.
However, generalized coordinates in different reduced models have

distinct geometry or physics interpretations. It is unlikely that a sin-
gle framework can fully leverage all the features of various reduced
models. A recent contribution similar to our method is VIPER [An-
gles et al. 2019], which was built by adding scaling DOFs at the
cross-section of the classic cosserat model. VIPER handles collision
using iterative Dichotomous search [Antoniou and Lu 2007].

We present a new framework namely Medial Elastics. Our frame-
work seamlessly integrates model reduction and CC/SCC under a
unique MAT-based simulation scheme. From model reduction per-
spective, MAT naturally captures the most important deformations
of an elastic object, and allows to construct a compact yet expressive
subspace. We adopt a semi-reduced projective dynamics formula-
tion to better balance the trade-off between efficiency and quality.
This formulation well synergizes with our collision-ready strategy,
which makes the reduced global matrix collision-invariant and pre-
factorizable. The reduced coordinate is directly used to update the
bounding MAT at the cost of O(n), where n << N is the subspace
dimension. From CC/SCC point of view, MAT tightly envelops the
deformable body with only a few hundred MPs. We give the analytic
solution to calculate the deepest intersection between two MPs. As
a result, our MAT-based subspace CC/SCC only needs O(n2) calcu-
lations for a pair of deformable objects, which is also parallelizable
on the GPU.

48,840 vertices (initial MA)
Hausdorff error: 7E-7

2,000 vertices
Hausdorff error: 1E-3

100 vertices

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

M
ea

n
H

au
sd

or
ff

er
ro

r

Bounding primitives

MAT
Bounding sphere
AABB

Hausdorff error: 5E-3

Fig. 2. Volumetric MAT approximation of the Armadillo model (with 62, 161
surface triangles). The initial MA (the leftmost subfigure) contains around

50k medial vertices. After aggressively simplifying the MM to only 100
vertices, the mean Hausdorff error remains less than 1%. Note that the

vertical axis of the rightmost plot is logarithmic.

3 MEDIAL AXIS TRANSFORM

Fig. 3. Linearly interpolating

medial spheres over an edge or

a triangle yields a medial cone

(left) or a medial slab (right).

As shown in Fig. 2, the MA of 3D
model is a set of centers of maximally
inscribed spheres with at least two
closest points on its boundary [Blum
1967]. By incorporating the radius in-
formation along theMA, there exists a
unique MAT representing the original
3D model losslessly. One can easily
perform the in/out test by comparing
the distance to the nearest medial point and the corresponding
radius. Sun et al. [2016] showed that MA can be compactly approx-
imated by MM, a 2D non-manifold triangle mesh, and the radius
information is interpolated among two (across an edge) or three
(across a triangle) medial vertices on the MM. The resulting MP
is either a medial cone or a medial slab (i.e. see Fig. 3). After sim-
plification, the MAT is no longer fully consistent with the original

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

4 • Anon.

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

model. Nevertheless, the quality of MAT is insensitive to the MM
simplification. As shown in Fig. 2, even with an aggressive simpli-
fication removing 99.8% medial vertices (from 48, 840 to 100), the
mean Hausdorff error of the resulting MAT is still below 1%. Here,
the so-called Hausdorff error refers to the Hausdorff distance divided
by the maximum dimension of the model’s bounding box.

An initial MA is obtained from a filtered volumetric Voronoi tes-
sellation of the input model [Amenta and Bern 1999; Attali and
Montanvert 1997]. This MA is normally noisy and has many spiky
edges (i.e. the leftmost subfigure in Fig. 2). We follow the greedy
algorithm as described in [Faraj et al. 2013; Li et al. 2015] to obtain
the MM using edge-collapse. In our implementation, we use the
quadratic error metric as in Q-MAT [Li et al. 2015] for the MM sim-
plification, which effectively removes redundant and noisy spikes
on the initial MM. After the MM simplification is completed, we
need to ensure that all the surface vertices of the input model are
within the MAT volume. This is achieved by locally scaling radii of
MPs for “most outside” vertices so that they are just enclosed by the
scaled spheres.

Unlike other widely used bounding primitives like AABB [Bergen
1997], OBB [Gottschalk et al. 1996] and bounding spheres [Hubbard
1995; James and Pai 2004], MAT enables the linear variation along
edges and triangles on the MM, which injects one more dimension
of approximation freedom. Consequently, MAT is also one-order
more effective in terms of the volumetric shape approximation. This
is verified in the rightmost plot in Fig. 2, where we compare mean
Hausdorff errors using three different bounding primitives: AABB,
bounding sphere, and MAT to encapsulate the Armadillo model. It
can be seen from the plot that with the same number of bounding
primitives, MAT consistently has a much smaller Hausdorff error
than both AABB and bounding sphere. In CD, one needs to pinpoint
an intersecting triangle pair between two geometries, which is qua-
dratic w.r.t. the number of participating bounding primitives. For
deformable models with complex and irregular surface geometries
(like many examples shown in the paper), the advantage of MAT
is even more significant. Therefore, it is not surprising to see that
MAT-based CC/SCC is orders-of-magnitude more effective than
existing bounding primitives.

4 MAT-DRIVEN SEMI-REDUCED PROJECTIVE

DYNAMICS

Fig. 4. Affine (red)

and quadratic (green)

handles on the Ar-

madillo model.

Regarding deformable simulation, our method
can be considered as a spatial reduction tech-
nique, which prescribes the nonlinear dy-
namic of an elastic body with a collection of
sparsely distributed handles. Those handles
are representatives of simulation DOFs, and
the generalized coordinate q is essentially the
state vector of all the handles. MA has been
known to be the generic “topological skele-
ton” of a 3D shape suggesting its expressivity
for characterizing intrinsic deformations of
3D shapes. We follow this intuition and allocate handles at medial
vertices on the MM, which will be referred to as medial handles

(MHs).

4.1 Subspace Construction

Given a material point p, let x = [x1, x2, x3]� and u = [u1,u2,u3]�
be its rest-shape position and displacement. We model its per-
component displacement from an MH with a transformation func-
tion Ti such that: ui = Ti (x) for i = 1, 2, 3. A common choice of T is
the affine transformation [Faure et al. 2011] or the rigid body trans-
formation [Gilles et al. 2011]. For instance, if we set an MH as an
affine handle,Ti = ai ·x+ti or u = Ax+ t, whereA = [a1, a2, a3]� is
the corresponding linear transformation matrix and t = [t1, t2, t3]�
are three translational freedoms. A fundamental limitation of using
affine/linear DOFs in spatial reduction is the locking issue: with
coarsened discretization, the piecewise linear approximation often
yields a high shearing energy1, which prevents the elastic body from
being properly deformed to the desired shape, and incorporating
high-order DOFs is recommended [Bargteil and Cohen 2014; Martin
et al. 2010]. Therefore, in addition to conventional affine MHs, we
also have a few quadratic MHs on the MM to provide sufficient
flexibility for large, nonlinear and local deformations (Fig. 4).
If a medial vertex is connected with very few other handles, its

local discretization may be too sparse, and a quadratic handle is
assigned. We also downgrade quadratic handles that merely cover
a small volume on the deformable body to be an affine one. The
threshold is set as 1

10 · V
n , where V is the volume of the entire

deformable body, and n is total number of MHs. Given a quadratic
MHHj , we follow the formulation in [Luo et al. 2018] and define

T
j
i as a quadratic form of:T j

i (x) = x�Qj
ix+ a

j�
i x+ t

j
i , where Q

j
i is a

3-by-3 symmetric tensor encoding quadratic deformation freedoms.
The reduced coordinate of Hj can then be written as:

qj =
[
tj�, aj�1 , a

j�
2 , a

j�
3 , q̃

j�
1 , q̃

j�
2 , q̃

j�
3 , q̂

j�
1 , q̂

j�
2 , q̂

j�
3

]�
∈ R30. (1)

Here, we use superscript (·)j to denote the handle index. Diagonal

and off-diagonal DOFs of Qj
i are vectorized as:

q̃
j
i =

[
(Qj

i)11, (Q
j
i)22, (Q

j
i)33

]�
, and q̂

j
i = 2

[
(Qj

i)12, (Q
j
i)23, (Q

j
i)13

]�
.

The subspacematrixU atp relates qj to its displacement via u = Uqj ,
and it has the following structure:

U(x) =
[
Ut ,Ua, Ũ, Û

]
=

[
I, I ⊗ x�, I ⊗ x̃�, I ⊗ x̂�

] ∈ R3×30, (2)

with x̃ = [x21, x22, x23]� and x̂ = [x1x2, x2x3, x1x3]� being second-
order homogenous and heterogenous position vectors of p. The
final displacement of p is computed by assembling a global subspace
matrix and reduced coordinate that blend T j of all the n handles:

u = Uq =

n∑
j=1

w jU(x)qj = [w1U(x), · · · ,wnU(x)]
⎡⎢⎢⎢⎢⎢⎣
q1

...

qn

⎤⎥⎥⎥⎥⎥⎦ . (3)

The weight coefficient w j (x) is position-dependent and varies
at different vertices on the mesh. Yet, it can be pre-computed and
remains unchanged during the simulation. We use the biharmonic
weight [Jacobson et al. 2011] to assign w j for each MH at a given
mesh vertex by solving the mass-weighted Laplacian matrix. During

1This is because shearing is the first-order approximation of many nonlinear effects
like bending and twisting.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

Medial Elastics:

Efficient and Collision-ready Deformation via Medial Axis Transform • 5

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

the weight computation, we impose the interpolating constraint
of: w j (MHj) = 1 and w j (MHi) = 0 for i � j. In other words, each
handle is solely controlled by its own generalized coordinate. If
there exist extra boundary conditions of the deformable body (i.e.
anchor vertices), the weight coefficients at those vertices are also
constrained to be zero so that the boundary conditions can be auto-
matically satisfied without imposing additional constraints during
the simulation. As the biharmonic weight itself has good locality, we
do not explicitly tune the supporting radius of the weight function
as did in [Brandt et al. 2018] in general. If the deformable object uses
a highly heterogenous material, one should choose a more material-
aware weight mechanism such as in [Luo et al. 2018] or [Nesme
et al. 2009].

4.2 Semi-reduced Projective Dynamics

With the implicit Euler integration scheme, the dynamic equilibrium
of the deformable body becomes:

M(ut+1 − ut − h �ut) = h2
(
fint(ut+1) + fext

)
, (4)

whereM is the mass matrix. fint and fext stand for the elastic internal
force and the external force. The subscript (·)t denotes the time
integration step, and h is the time step size. Projective dynamics
poses the equilibrium of Eq. (4) as an optimization problem of ut+1 =
argminE(u) for

E(u) = 1

2h2

���M 1
2 (u − u∗)

���2 +∑W (u), (5)

where u∗ = ut + h �ut + h2M−1fext is a known vector depending
on the kinematics from the previous time step.W is the constraint
energy measuring how far the system deviates from its nearest
optimal configuration, where all the constraints are satisfied. It is
solved via an efficient local-global alternating procedure utilizing
an auxiliary vector p. At the local step, projective dynamics takes a
given mesh deformation u and seeks for the optimal configuration
of pi for the i-th constraint, which represents an abstract point on
the constraint manifold:

min
pi

ωi
2

‖AiSiu − Bipi ‖2 s.t. Ci (pi) = 0, (6)

where ωi is the weight of the i-th constraint. Si is a selection matrix
that extracts fullspace freedoms in u associated with the i-th con-
straint. Ai and Bi are constant matrices typically encoding certain
linear operators that lead to a suitable distance measure between u

and p. Ci (pi) = 0 defines the constraint manifold where pi resides.
After the local step, the global step fixes all the pi and computes u
via solving the linear system of:(

M

h2
+
∑
i

ωiS
�
i A

�
i AiSi

)
u =

M

h2
u∗ +

∑
ωiS

�
i A

�
i Bipi . (7)

Global reduction vs. local reduction We argue that performing

model reduction on global and local steps is not equally profitable.
The global reduction (i.e. use model reduction at the global step)
accelerates the simulation more substantially and induces less com-
promise to the animation quality than the local reduction. To show
this, we first look into the acceleration potential of global and lo-
cal reduction respectively. In the local step, each constraint Ci is

normally of low dimension, and finding pi for an individual con-
straint (namely, the constraint projection) is considered as an O(1)
procedure. With the help of GPU parallelization, the cost of the
local step is sublinear w.r.t. the problem size. As plotted in Fig. 6, the
nVidia Titan GPU only needs less than 1.1ms to handle 500, 000
constraints. At the global step, we solve a constant linear system of
M
h2 +

∑
i ωiS

�
i A

�
i AiSi using the forward and backward substitution.

This procedure is sequential. While it can still be accelerated by the
GPU as in [Naumov 2011], the time complexity remains quadratic.
In other words, the global reduction improves the time performance
more significantly from O(N 2) to O(n2) compared to the O(N) to
O(n) acceleration at the local step (also see Fig. 6). We are aware
of the possibility of using iterative linear solvers over the direct
solver [Fratarcangeli et al. 2016, 2018; Wang 2015; Wang and Yang
2016] for the global step. However, those methods are only effec-
tive for sparse systems. With model reduction, the sparsity of the
global matrix is highly condensed, and those acceleration techniques
become less profitable.

Ground truth
(no reduction)

Global reduction Global and local reduction
1,000 handles 1,000 handles

10,000 constraint samples610,452 elements our method

Fig. 5. The puffer ball has sharp concave local geometry, which is typically

considered less friendly to model reduction. Nevertheless, our method (with

only global reduction) yields plausible animation, that is visually indistin-

guishable from the fullspace simulation using only 1, 000 MHs. However, if

local reduction is also applied as in [Brandt et al. 2018], we can clearly see

the stiffening artifacts from the animation with pale local effects.

0
1
2
3
4
5
6
7

0.E+00 1.E+05 2.E+05 3.E+05 4.E+05 5.E+05

G
PU

 ti
m

e
/ m

s

Subspace size

Local reduction
Global reduction

Fig. 6. The local step is sublin-

ear w.r.t. subspace dimension.

Projecting 500, 000 as-rigid-as-
possible constraints only takes

1.1 ms on the Titan GPU.

Global step needs to solve a

linear system and is more sen-

sitive to the problem size.

Next, we investigate the quality of
the resulting animation when model
reduction is applied to local and global
steps. It is true that the subspace of
u = Uq imposes a hard constraint
on all the possible deformations we
could obtain. Yet, as long as we have a
modest-sizeMM (i.e. with hundreds of
handles) this subspace often contains
copious interesting effects to produce
a compelling animation. The real ques-
tion is whether the solver is able to
reach desired (subspace) deformations
if the local step is also reduced. With
global reduction alone, the solver is
still able to find the optimal configu-
ration for each constraint, which most effectively reduces system’s
residual error (locally). The primary compromise global reduction
takes is at the distance measure – a fullspace local minimizer of
Eq. (5), after finishing all the constraint projections, is approximated

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

6 • Anon.

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

by its best subspace replica. On the other hand, local reduction di-
rectly smooths the constraint manifold Ci , which is often nonlinear
and concave. All the approximated constraint projections induce
residual errors to the system. Some of them may be filtered by the
subspace projection but most of them are accumulated due to the
nonlinear nature of constraints. Therefore, local reduction tends to
produce more artifacts, and should be used with extra cautions.
This analysis is consistent with our observation from the ex-

periment. As shown in Fig. 5, we simulate a soft puffer ball using
full projective dynamics, semi-reduced projective dynamics (our
method, global reduction only), and hyper-reduced projective dy-
namics (both global and local steps are reduced as in [Brandt et al.
2018]). Both semi-reduced and hyper-reduced methods use the same
subspace constructed from 1, 000 MHs. We can see from the fig-
ure that our semi-reduction scheme yields a similar result as the
fullspace projective dynamics. However, hyper-reduced projective
dynamics produces stiffening artifacts: most strings on the sphere
do not deform properly under the gravity. In this example, each
solver is fully converged. We use 10, 000 constraint samples for the
hyper-reduced case – this number is much higher than constraint
samples reported in [Brandt et al. 2018].

Bearing the above analysis in mind, our semi-reduced projective
dynamics scheme is simply to solve Eq. (7) within the column space
of U while enforcing u = Uq:

U�
(
M

h2
+
∑
i

ωiS
�
i A

�
i AiSi

)
Uq = U�

(
M

h2
Uq∗ +

∑
ωiS

�
i A

�
i Bipi

)
.

(8)
Note that q∗ should be computed via qt +h �qt +h2

(
U�MU

)−1
U�fext

instead of qt + h �qt + h2U�M−1fext. This is because subspace bases
are not orthonormal as eigen modes, such as column vectors in U. If
a Gram-Schmidt orthogonalization is performed over them explic-
itly, the geometric interpretation of generalized coordinate may be
destroyed. For local step, we leave it untouched in the fullspace and
only pre-compute (AiSiU)� Bi and AiSiU for each constraint.

4.3 Making Subspace Collision-Ready

In projective dynamics, collisions can also be regarded as a type
of constraint. However, unlike other constraint types e.g. volume
preservation or elastic potential, collision constraints are dynami-
cally changing during the animation. In other words, the reduced
global matrix is no longer constant and cannot be pre-factorized
unless another external collision handling method is used (e.g. the
penalty method). This limitation can be removed within our semi-
reduced formulation. The key observation is that the collision con-
straint does not alter the configuration of the subspace. It only
induces the auxiliary variable pi for each collision point at the local
step, which is in the fullspace. Therefore, our strategy is to put all
the surface vertices into a “ghost collision event” before the global
matrix assembly. Each surface vertex will be associated with a vir-
tual constraint, and Ai and Si matrices are included in the reduced
global matrix. If the vertex is collision-free, the constraint projec-
tion simply setting the optimal position as its current position. The
constraint projection only yields an acting pi when the vertex truly
collides with something. Intuitively, this strategy is similar to pre-
attaching each surface vertex a virtual spring. The spring does not

yield penalty forces until a collision is detected. On the downside,
this scheme impairs the convergency rate when massive collisions
become active as the constraint manifold would be significantly
altered within a time step. A possible cure of this limitation is to
use multiple global matrices as in [Komaritzan and Botsch 2018].
Clearly, doing so requires extra GPU memory consumption, which
could be prohibitive for massive simulations.

4.4 Displacement and Deformation Bounding

Before the simulation, the rest-shape MAT tightly encapsulates
the undeformed model making it an ideal bounding envelope for
CC/SCC. After simulation starts, we adjust states of all the medial
spheres at each time step so that the updated MAT also well encap-
sulates the deformed model, and the cost of updating the MAT is of
the reduced order of O(n).
Displacement bounding Let us consider a vertex within amedial
cone whose rest position is x. There exists a sphere S centered at c
encapsulating the vertex such that: ‖x−c‖ < r , where r is the radius
of S. We know that S is actually interpolated by medial spheres at
two handles, sayH1 andH2, of the cone, whose centers and radii are
c1, c2 and r1, r2 respectively. In other words, we have r = t1r1 + t2r2
and c = t1c1+t2c2 with interpolating parameters t1 and t2 satisfying
t1+t2 = 1 and 0 ≤ t1, t2 ≤ 1. During the simulation when the vertex
is displaced by u, the distance between the deformed vertex and the
sphere center becomes ‖x + u − c′‖. While the center of S is also
moved from c to c′ due to the deformation, it is still the interpolation
of two corresponding medial spheres. Let u1 and u2 be the handle
displacements, and we can re-write x + u − c′ as:

x + u − c′= x + u − [t1(c1 + u1) + t2(c2 + u2)]
= x − c + u − t1u1 − t2u2.

(9)

Let us first assume that H1 and H2 are the only handles on the
MM implying u = w1T1(x)+w2T2(x). We also have u1 = T1(c1) and
u2 = T2(c2) because c1 and c2 are actually rest-shape positions of
H1 and H2. Following the triangle inequality, an upper bound of
the new distance can be obtained as:��x + u − c′

�� = ‖x − c + Δu1 + Δu2‖ ≤ r + ‖Δu1‖ + ‖Δu2‖ , (10)

where Δu1 = w1T1(x) − t1T1(c1) and Δu2 = w2T2(x) − t2T2(c2). We
further decompose Δu1 into four components:

Δu1 =
(
w1Ut (x) − t1Ut (c1)

)
t1 +

(
w1Ua (x) − t1Ua (c1)

)
a1

+
(
w1Ũ(x) − t1Ũ(c1)

)
q̃1 +

(
w1Û(x) − t1Û(c1)

)
q̂1.

(11)
It is easy to see as per Eqs. (1) and (2) that t1, a1 =

[
a1�1 , a

1�
2 , a

1�
3

]�
,

q̃1 =
[̃
q1�1 , q̃

1�
2 , q̃

1�
3

]�
, and q̂1 =

[̂
q1�1 , q̂

1�
2 , q̂

1�
3

]�
are generalized

coordinates for translation, affine, homogenous quadratic, and het-
erogenous quadratic DOFs of H1. Next, we derive an upper bound
of ‖Δu1‖ by finding upper bounds of the norm of each of these four
displacement components.
The translation component is relatively simple. Eq. (2) tells that

Ut (x) = Ut (c1) = I are constant, which yields:��(w1Ut (x) − t1Ut (c1)
)
t1
��= ��(w1 − t1) · t1

��
≤ max {|w1 − t1 |} ·

��t1�� . (12)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

Medial Elastics:

Efficient and Collision-ready Deformation via Medial Axis Transform • 7

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

In other words, when the simulator returns a reduced displacement
at a certain time step, t1 is given, and the maximum length of the
translation displacement is capped by themaximumvalue of |w1−t1 |,
which can be pre-computed before simulation.

Ua (x) is not constant, and we re-write the affine displacement by
substituting Ua (x) = I ⊗ x� as:(

w1Ua (x) − t1Ua (c1)
)
a1=

[
w1(I ⊗ x�) − t1(I ⊗ c�1)

]
a1

=
[
I ⊗ (w1x − t1c1)�

]
a1,

(13)

which leads us to:��(w1Ua (x) − t1Ua (c1)
)
a1
�� = ��[I ⊗ (w1x − t1c1)�

]
a1
��

=

√((w1x − t1c1) · a11
)2
+
((w1x − t1c1) · a12

)2
+
((w1x − t1c1) · a13

)2
=

√
(w1x − t1c1)�

(
a11a

1�
1 + a

1
2a

1�
2 + a

1
3a

1�
3

)(w1x − t1c1)

≤ max {‖w1x − t1c1‖} · ρ1/2
(

3∑
i=1

a1i a
1�
i

)
.

(14)
Here, ρ(·) returns the spectral radius of the input matrix.

∑
a1i a

1�
i

is clearly symmetric positive definite, so it has positive eigenvalues.
Similar to Eq. (12), max{‖w1x − t1c1‖} is pre-computed.
The derivation in Eq. (14) can be readily used for bounding ho-

mogenous displacement components:���(w1Ũ(x) − t1Ũ(c1)
)
q̃1
��� ≤ max{‖w1x̃ − t1̃c1‖} · ρ1/2

(
3∑
i=1

q̃1i q̃
1�
i

)
,

(15)
and heterogenous displacement component:���(w1Û(x) − t1Û(c1)

)
q̂1
��� ≤ max{‖w1x̂ − t1̂c1‖} · ρ1/2

(
3∑
i=1

q̂1i q̂
1�
i

)
.

(16)
An upper bound for ‖Δu2‖ can be obtained in the same way as

in Eqs. (12) to (16). If the vertex is inside a medial slab, we also
need to compute the upper bound of ‖Δu3‖ for the third handle.
Afterwards, we substitute the upper bound of each displacement
component of both ‖Δu1‖ and ‖Δu2‖ into Eq. (10) and update the
radius of medial spheres accordingly. In general, a vertex within the
MP also receives influential deformation from other out-primitive
handles, say H3. In this case, the vertex displacement becomes:
u = w1T1(x)+w2T2(x)+w3T3(x), and we follow the same procedure
to derive the upper bound of w3T3(x). Should a medial vertex be
shared by multiple MPs, the scaling of a medial sphere is determined
by the biggest scaling factor among all of its incident MPs.

So far, all the bounding distances are computed based the displace-
ment i.e. how far is the vertex away from its rest-shape position, and
we name this MAT update strategy displacement bounding. How-
ever, it is noticed that displacement bounding tends to yield an
excessively scaled MAT during the simulation (i.e. see Fig. 7), which
significantly impairs the efficiency of follow-up CC/SCC. Next, we
show a tighter bounding method, i.e. deformation bounding, by
updating medial spheres within a local frame embedded at each MP.

Deformation bounding If all the vertices within an MP are dis-
placed rigidly, for instance by a certain translation, we do not need
to update radii of medial spheres. Nevertheless, because the transla-
tion displacement component in Eq. (12) is non-zero, it will scale

One MP Four MPs,
displacement bounding

Four MPs,
deformation bounding

Our rigid motion

Shape matching

Hausdorff error: 23% Hausdorff error: 29.4%

Hausdorff error: 1.9%

Hausdorff error: 1.8%

Fig. 7. Displacement bounding scales medial spheres based on vertices’

displacement of the MP. As long as the model deviates far from its rest

shape, displacement bounding produces a loose enclosure even with little

deformation. Deformation bounding fixes this issue by computing a local

generalized coordinate with rigid drift factored out.

up the bounding MAT regardlessly. Similarly, a rigid rotation also
yields a non-zero affine displacement component and increase the
bounding volume. A concrete example is given in Fig. 7, where we
bend a cactus stem with four MPs. The top medial cone undergoes a
large displacement, and it is rotated for almost 90◦. However, com-
pared with the rest-shape geometry, its deformation is rather small.
This observation suggests that we could have a much tighter MAT
enclosure if the scaling factor is computed based the magnitude of
the local deformation other than its global displacement. This is the
primary rationale behind our deformation bounding strategy.
The optimal rigid body motion that matches a deformed pose is

the one used in shape matching [Müller et al. 2005], which however
takes O(N) to compute the corresponding rotation and translation.
Instead, we give up the optimality but compute a good rigid body
motion at a lower cost ofO(n), by only using the reduced coordinates
at medial handles. The rigid translation Δc is the displacement
of the geometry center of all the medial spheres on the MP (c),
and the rigid rotation R is computed by averaging each handle’s
rotation using Slerp [Shoemake 1985], which can be obtained via the
polar decomposition of the handle’s affine transformation matrix
Aj . Hence, the deformation of a vertex can be formulated as:

d = x +
∑

w jT
j (x) −

[
R(x − c) + c + Δc

]
. (17)

As quadratic deformation components are less dependent on the
underlying rigid body motion, we stick with Eqs. (15) and (16) for
computing upper bounds of quadratic DOFs. Therefore,T j in Eq. (17)
only contains translation and affine displacement components at
each handle.
The so-called deformation bounding computes upper bounds of

translation and affine components in a local frame at the center of
medial spheres on the MP (i.e. c̄) in order to factor out the rigid body
motion hidden in the global displacement. This local frame is also
skewed by the corresponding rigid rotation R. We use (·)∗ to denote
a local variable so that x = Rx∗ + c, and the local deformation is:

d∗ = R
�
d = R

� (
x +

∑
w jT

j (x) − R(x − c) − c − Δc
)

= R
� (∑

w jA
j + I

)
x + R

�∑
w j t

j − (x − c) − R
�(c + Δc)

=
(
R
�∑

w jA
jR + I − R

)
︸�������������������������︷︷�������������������������︸

A∗

x∗ + R�
∑

w j
(
Ajc + tj

) − R
�
Δc︸��������������������������������︷︷��������������������������������︸

t∗

.

(18)
According to Eq. (18), we obtain the local affine coordinate by con-

catenating row vectors in R
�∑

w jA
jR + I − R, and R

�∑
w j

(
Ajc +

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

8 • Anon.

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

tj
)−R�Δc is the local translation coordinate. They are then plugged

into Eqs. (12) and (14) to update MPs. Note that both max{|w j − tj |}
and max{w jx−tjcj } are invariant under rigid body motions. Hence,
they can still be pre-computed in the global frame.
The bounding quality of the MAT depends on its capability of

shape approximation. If we only have few MPs, linearly interpo-
lated spheres may be quite inconsistent with handles’ nonlinear
deformation, and MAT could be scaled considerably in order to
encapsulate the deformed surface. An extreme case is reported in
the leftmost sub-figure of Fig. 7, where there is only one medial
cone on the MM. The deformation bounding performs no better
than the displacement bounding: both have an average Hausdorff
error of 23%, due to the limited approximation freedom of MM.

D
eform

ed m
esh

D
eform

ation bounding

D
isplacem

ent bounding

Fig. 8. With 104 handles, deformation

bounding well encapsulates the de-

formed Armadillo. The average Haus-

dorff error is only 2.1%. The naïve dis-
placement bounding produces a very

loose enclosure with the Hausdorff er-

ror of 18.2%

Fortunately, this is seldom
the case in practical simula-
tion applications as we always
have sufficient MPs to cap-
ture desired deformation ef-
fects. Under this circumstance,
effectively removing the rigid
body motion in the displace-
ment plays an important role in
tightening the bounding enclo-
sure. As shown in Fig. 7, even
with extra three MPs added,
naïve displacement bounding
still has a higher Hausdorff
error of 29.4%. On the other
hand, our deformation bound-
ing strategy provides a high-
quality MAT bounding, which has the Hausdorff error of 1.9%. It
is only 0.1% higher than the Hausdorff error based on the shape
matching, which is typically considered optimal. Yet, our deforma-
tion bounding is much more efficient and updates MAT atO(n) since
all the computations (i.e. see Eq. (18)) only need the generalized
coordinate. Another example of a pendent Armadillo is given in
Fig. 8, which is consistent with the cactus example. Deformation
bounding tightly encapsulates the deformed Armadillo with a very
small Hausdorff error (2.1%). The remaining question is: how can

we efficiently detect intersections between MPs? We elaborate on this
important technical challenge in the next section.

5 COLLISION CULLING AND DETECTION

In order to perform CC/SCC effectively, we need to know if two MPs
overlap with each other (for collision culling), and if so, where is the
deepest intersection so that we can directly identify nearby triangles
and facilitate the follow-up collision processing. Each intersecting
MP can be either a medial cone or a medial slab (i.e. Fig. 3). We
know that both types of MPs are surfaces of interpolated spheres,
which can be naturally expressed using implicit surface functions.
Computing the minimum distance between two implicit surfaces
is a difficult geometric problem [Chen et al. 2006]. In our case,
as MP surface is quadratic, it can be formulated as a quadratically

constrained quadratic program (QCQP) problem. Thanks to simplex-
interpolated MPs, the number of unknowns remains manageable,
and we show that this problem can be exactly solved.

5.1 Intersection Test between Medial Cones

Consider twomedial cones C1 and C2. Let c1,1 and c1,2 be the centers
of medial spheres at two medial vertices of C1, whose radii are r1,1
and r1,2 respectively. Similarly, c2,1, c2,2 and r2,1, r2,2 are sphere
centers and radii of C2. 0 ≤ t1 ≤ 1 is the interpolation parameter
of C1, and 0 ≤ t2 ≤ 1 is the interpolation parameter of C2. In C1,
each point along the line segment connecting c1,1 and c1,2 defines
a sphere center (and so is in C2) such that:

c1 = t1c1,1 + (1 − t1)c1,2, and c2 = t2c2,1 + (1 − t2)c2,2. (19)

Their radii are also linearly interpolated:

r1 = t1r1,1 + (1 − t1)r1,2, and r2 = t2r2,1 + (1 − t2)r2,2. (20)

Theminimum surface distance between C1 and C2 can be formulated
as the following QCQP:

min d(t1, t2) = ‖x1 − x2‖
s.t. (x1 − c1) · (x1 − c1) = r21 , (x2 − c2) · (x2 − c2) = r22 ,

0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ 1.
(21)

Here x1 and x2 represent two arbitrary points on the surface of C1
and C2. Both of them are quadratically constrained by interpolated
sphere surfaces. c and r are functions of the parameters t1 and t2,
which are box-constrained between 0 and 1. Due to the geometric
symmetry of an MP, we can avoid referring to Lagrange multipli-
ers and simplify the solving process. The signed surface distance
between C1 and C2 can always be written as the distance between
c1(t1) and c2(t2) (denoted with

√
S) minus the sum of corresponding

medial radii. Therefore, the QCQP of Eq. (21) can be reduced to the
following minimization problem:

min f (t1, t2) = ‖c1 − c2‖ − (r1 + r2) =
√
S − (R1t1 + R2t2 + R3)

s.t. 0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ 1,
(22)

where

S = At21 + Bt1t2 +Ct
2
2 + Dt1 + Et2 + F ,

A = (c1,1 − c1,2) · (c1,1 − c1,2), B = −2(c1,1 − c1,2) · (c2,1 − c2,2),
C = 2(c2,1 − c2,2) · (c2,1 − c2,2), D = 2(c1,1 − c1,2) · (c1,2 − c2,2),
E = −2(c2,1 − c2,2) · (c1,2 − c2,2), F = (c1,2 − c2,2) · (c1,2 − c2,2),
R1 = r1,1 − r1,2, R2 = r2,1 − r2,2, R3 = r1,2 + r2,2.

Fig. 9. Two medial cones intersect

when д(t1, t2) = 0 overlaps with
the constraint region (left), or one

medial cone is completely inside

of the other (right).

Cone-cone collision culling Un-
less f (t1, t2) in Eq. (22) is less than
or equal to zero, from which we
know C1 and C2 do not overlap,
and their actual nearest distance is
not of our interest. This is checked
by quickly identifying if there ex-
ists at least one real solution for
f (t1, t2) = 0, in order to secure a
collision. Because both ‖c1 − c2‖

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

Medial Elastics:

Efficient and Collision-ready Deformation via Medial Axis Transform • 9

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

and r1 + r2 are positive, f (t1, t2) =
0 is equivalent to:

д(t1, t2) = ‖c1 − c2‖2 − (r1 + r2)2
= A′t21 + B

′t1t2 +C ′t22 + D
′t1 + E ′t2 + F ′ = 0.

(23)

д(t1, t2) is essentially a bivariate quadratic function of t1 and t2
with its 6 coefficients defined as: A′ = A − R21, B

′ = B − R1R2,

C ′ = C −R22, D ′ = D−R1R3, E ′ = E−R2R3, F ′ = F −R23. Setting д to
zero describes a quadratic curve of the quadric-plane intersection,
known as the conic section. The conic section is either an ellipse, a
parabola, or a hyperbola, and it divides the 2D parametric domain
of t1 and t2 into positive and negative regions as shown in Fig. 9.
д(t1, t2) = 0 has a solution if and only if the conic section overlaps
with the boxed region of t1, t2 ∈ [0, 1]. Alg. 1 describes how it can
be efficiently processed. Specifically, we start with testing д(t1, t2)
at four corners of the boxed constraint: д(0, 0), д(0, 1), д(1, 0), д(1, 1).
If any of them is less than or equal to zero, we know C1 and C2
intersect with each other (lines 1–3 in Alg. 1). Afterwards, д(t1, t2)
= 0 is tested for each edge of the constraint area (i.e. t1 = 0 or 1, and
t2 = 0 or 1). This is done by solving a quadratic equation of t1 (or
t2) with t2 (or t1) setting as 0 or 1 respectively (lines 8–19 in Alg. 1).
Note that there exists a special case that is not yet covered. This is
when д(t1, t2) = 0 forms an ellipse which encloses the constraint
region, or the constraint box encloses the ellipse (i.e. see Fig. 9 right).
Geometrically, this corresponds to the situation where a medial
cone sits inside of the other cone completely. Therefore, we need to
verify that the interior of the ellipse is negative, and the center of
the ellipse is within t1, t2 ∈ [0, 1] to secure a collision (lines 20–22
in Alg. 1). If Alg. 1 returns a false, we know C1 and C2 do not collide
with each other and the corresponding collision is culled.

This routine can be readily generalized for CC between other MPs
like cone-slab CC and slab-slab CC. In these cases, д = 0 cannot be
intuitively visualized as a 2D conic section. However, the problem
structure is unchanged, and we can project this higher-dimension
problem to a lower-dimension space. Specifically, we still start with
corner points of the boxed constraint (which are 3D or 4D points).
If any negative д is observed, a collision is recognized. After that,
we test the intersection between д = 0 and edges, planes, or hyper-
planes of the constraint region (i.e. by setting the corresponding
parameter to 0 or 1). This eventually brings us a quadratic equation
to solve. As long as it has one root between 0 and 1, the collision
is recognized. We also need to check the extreme situation when
the 3D ellipsoid or 4D hyperellipsoid encloses the constraint region.
While it seems obscure, we just test д value at the center of the
ellipsoid or hyperellipsoid. If it is negative, we further verify if it is
inside the constraint region to secure a collision – just as we do for
the cone-cone CC.

Cone-cone collision detection After Alg. 1 confirms a collision
between C1 and C2, our CD algorithm efficiently computes their
deepest penetration. We start by checking if 4AC − B2 = 0 as our
case 0 (i.e. see Fig. 10). If 4AC − B2 = 0, c1,2 − c1,1 and c2,2 − c2,1
are parallel to each other. In this case, S does not contribute to the
minimization of f (t1, t2) because either t1 or t2 is able to minimize
S at its entire span of [0, 1]. In other words, ∂S/∂t1 and ∂S/∂t2
become linearly dependent to each other leading to infinitely many

ALGORITHM 1: Cone-cone collision culling.

Input: A′ = A − R2
1 , B

′ = B − R1R2, C
′ = C − R2

3 , D
′ = D − R1R3,

E′ = E − R2R3, F
′ = F − R2

3 for C1 and C2
Output: if C1 and C2 collide with each other or not

1: if д(0, 0) ≤ 0 or д(0, 1) ≤ 0 or д(1, 0) ≤ 0 or д(1, 1) ≤ 0 then
2: return True

3: end

4: solve A′t 21 + D
′t1 + F ′ = 0; // set t2 = 0

5: if t1 ∈ [0, 1] then
6: return True

7: end

8: solve A′t 21 + (B′ + D′)t1 +C ′ + E′ + F ′ = 0; // set t2 = 1
9: if t1 ∈ [0, 1] then
10: return True

11: end

12: solve C ′t 22 + E
′t1 + F ′ = 0; // set t1 = 0

13: if t2 ∈ [0, 1] then
14: return True

15: end

16: solve C ′t 22 + (B′ + E′)t2 + A′ + D′ + F ′ = 0; // set t1 = 1
17: if t2 ∈ [0, 1] then
18: return True

19: end

/* д(t1, t2) = 0 must be an ellipse */

20: (tx , ty) ← center of д(t1, t2) = 0;
21: if tx , ty ∈ [0, 1] and д(tx , ty) < 0 then
22: return True

23: end

24: return False

minimizers of S . Thus, r1 and r2 fully determine the minimum value
of f (t1, t2), and the global minimizer of f (t1, t2) must be at one of
the four medial vertices on C1 and C2. Otherwise 4AC − B2 > 0,
and we follow the standard routine of setting the first-order partial
derivatives of f w.r.t. the unknown parameters t1 and t2 to zeros:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂ f (t1, t2)
∂t1

=
1

2
√
S
· (2At1 + Bt2 + D) − R1 = 0,

∂ f (t1, t2)
∂t2

=
1

2
√
S
· (Bt1 + 2Ct2 + E) − R2 = 0.

(24)

Due to the existence of 1/√S , Eq. (24) has a singular point at (t∗1 , t∗2).
If this happens, and t∗1 , t

∗
2 ∈ [0, 1] satisfy the box constraint, (t∗1 , t∗2)

is the minimizer of f . In all other situations, we solve Eq. (24) by
checking the radius’s variation of C1 and C2 as shown in Fig. 10. In
most cases, we end up with solving a quadratic equation of either
t1 or t2 in the form of:

X1t
2
1 + X2t1 + X3 = 0, or Y1t

2
2 + Y2t2 + Y3 = 0. (25)

As a quadratic equation has two possible roots in general, we check
both possibilities and pick the one yielding a smaller f value.

Case 1 Case 2,3 ,33 ,3,3 Case 4 Case 0

Fig. 10. We handle the cone-cone intersection test by checking radius vari-

ations at C1 and C2. Each case leads to a closed-form formulation of the

signed minimum distance between C1 and C2.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

10 • Anon.

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

Case 1 R1 = 0 and R2 = 0. R1 = 0 and R2 = 0 suggest the
medial radii of both cones are constant. As a result, Eq. (24) be-
comes a linear system, and it gives t1 = BE − 2CD/4AC − B2 and
t2 = BD − 2AE/4AC − B2.

Case 2 R1 = 0 and R2 � 0. R1 = 0 means C1 does not have
radius variation, and ∂ f (t1, t2)/∂t1 = 0 becomes a linear equation
of t1 = H1t2 + K1, where H1 = −B/2A, K1 = −D/2A. We solve t2
using Eq. (25) where:

Y1 = (2C + BH1)2 − 4R22(AH2
1 + BH1 +C),

Y2 = 2(2C + BH1)(BK1 + E) − 4R22(2AH1K1 + BK1 + DH1 + E),
Y3 = (BK1 + E)2 − 4R22(AK2

1 + DK1 + F).

Case 3 R1 � 0 and R2 = 0. Case 3 is symmetric to case 2, where
we have t2 = H2t1 + K2 for H2 = −B/2C and K2 = −E/2C . t1 is
computed via Eq. (25), and the coefficients are:

X1 = (2A + BH2)2 − 4R21(A + BH2 +CH
2
2),

X2 = 2(2A + BH2)(BK2 + D) − 4R21(BK2 + 2CH2K2 + D + EH2),
X3 = (BK2 + D)2 − 4R21(CK2

2 + EK2 + F).

Case 4 R1 � 0 and R2 � 0. This is the most general situation
for the cone-cone test. When R1 � 0 and R2 � 0, Eq. (24) can be
manipulated to yield:

2At1 + Bt2 + D

Bt1 + 2Ct2 + E
=

2R1
√
Sc

2R2
√
Sc
=

R1
R2

⇒ (2At1 + Bt2 + D)R2 = (Bt1 + 2Ct2 + E)R1
⇒ (2AR2 − BR1)t1 = (2CR1 − BR2)t2 + (ER1 − DR2),

or simply: L1t1 = L2t2 + L3. If L1 = 0 and L2 = 0, it can be verified
that 4AC−B2 = 0, and it becomes case 0. If L1 = 0, L2 � 0 or L1 � 0,
L2 = 0, we can directly obtain t2 = −L3/L2 or t1 = L3/L1. Otherwise,
if L1 � 0 and L2 � 0, we have t1 = L2/L1t2 + L3/L1 = H3t2 + K3.
Thus, t2 can be computed via Eq (25), where all the coefficients are:

Y1 = (2C + BH3)2 − 4R22(AH2
3 + BH3 +C),

Y2 = 2(2C + BH3)(BK3 + E) − 4R22(2AH3K3 + BK3 + DH3 + E),
Y3 = (BK3 + E)2 − 4R22(AK2

3 + DK3 + F).

5.2 Collision Detection between Other Medial Primitives

For the cone-cone test, each cone has either a constant or linear
radius variation, which leads to 4 different cases. A slab has two
independent edges, which leads to 4 radius variation patterns. In
theory, we will have 2×4 = 8 cases for a cone-slab test and 4×4 = 16
cases for a slab-slab test. However, one may notice that, many of
them are symmetric sharing identical problem structure, just as case
2 and case 3 in the cone-cone test. We now show how to identify
those potentially redundant cases, and generalize to an efficient
intersection test to other types of MPs.
For an independent medial edge Ek on the primitive with the

interpolation parameter tk , we use a binary digit Bk to denote its
radius variation status: Bk = 0 means we have a constant radius size
along Ek , and Bk = 1 suggests the radius linearly varies. Note that
Bk = 0 also implies the corresponding partial derivative ∂ f /∂tk
degenerates to a linear constraint, while Bk = 1 implies ∂ f /∂tk

remains a quadratic one. The fact is that we use the same compu-
tational routine to solve all the tk as long as the total numbers of
quadratic equations and linear equations are the same, regardless of
their indexing order. For example, the binary encodings for case 1
and case 4 in the cone-cone test (where we have two edges in total)
are 00 and 11. In the meantime, the binary encodings for case 2 and
case 3 are 01 and 10. Therefore, case 2 and case 3 are symmetric
and can be handled collectively. For a cone-slab test, because there
are 3 independent edges we need 4 cases to fully process the CD.
They are binarily coded as 000, 001, 011, and 111, corresponding to
systems with 0, 1, 2 and 3 quadratic constraints. Similarly, there will
be 5 different cases for a slab-slab test, represented as 0000, 0001,
0011, 0111 and 1111.

Solving a system of quadratic equations is handled by converting
it to a linear system except that each quadratic constraint potentially
leads to two different linear constraints. For instance, in case 2 and
case 3 of the cone-cone test, each root of the quadratic equation
imposes a linear constraint between t1 and t2, which can be finally
solved by coupling with the remaining linear constraints. Therefore,
in the worse case where we have all Bk = 1, we could have 2K

possible solutions, where K = {2, 3, 4} denotes the total number
of independent edges in the test. Fortunately, MAT only uses 2D
simplex interpolations. The total number of DOFs involved in a test
is at most 4 (the slab-slab test). Therefore, it can still be efficiently
solved on GPU.

5.3 Implementation Details

We couple MAT-based enveloping with spatial subdivision [Pabst
et al. 2010], that voxelizes the entire animation scene. After Alg. 1
recognizes a collision, our CD algorithm instantly gives the coor-
dinate of the deepest intersection point. This location is mapped
to the voxel index, and we query for all the surface triangles that
overlap with this voxel. The size of each voxel is set as the length
of the longest triangle edges on the model’s surface. As a result,
this query only returns very few triangles. Note that the actual
voxel grid is never created, and what we need is just an unsigned
int triple that represents the voxel index along three dimensions.
The triangle-voxel overlapping test is simplified as the overlapping
test between voxel and the spatial span of the triangle in all three
directions, which can be performed using only boolean operations.
The standard triangle-triangle collision test is then followed.

We pre-build a list of collision test including all MP pairs between
two models for CC as well as all the MP pairs on a model itself for
SCC. Because the medial sphere on a medial vertex is shared by
multiple MPs, it will release fake collision signals if not properly
dealt with. To this end, we skip all the possible fake collisions from
the shared medial sphere when constructing our list of collision test
by assuming as all the triangles within a sphere do not collide. The
total time complexity of our MAT-based CC/SCC is O(k2n2) where
k denotes the number of objects in the scene. All the MP collision
tests are performed on the GPU in parallel.

6 EXPERIMENTAL RESULTS

We implement our framework on a Windows desktop computer with
an Intel i7 5960X CPU (3.0 GHz) and an nVidia Titan RTX GPU

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

Medial Elastics:

Efficient and Collision-ready Deformation via Medial Axis Transform • 11

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

Full projective dynamics Our method Hyper reduction

Fig. 11. The Armadillo model has smoother geometry than the puffer ball,

and hyper-reduced solver yields a more natural result (top). Likewise, reduc-

ing the material stiffness also relieves the stiffening artifact induced by the

local reduction (bottom). However, the difference between full/semi-reduced

solver and hyper-reduced simulation is still perceivable.

(16 GB memory). We tested our system on a variety of geometrically
complex models in collision-rich scenes. Our system produces high-
quality animations with large deformation and well-preserved local
details at an interactive rate, including the collision handling. We
refer the reader to the supplementary materials for more details,
which include video, executables, and source code.

Model preparation The initial Voronoi tessellation for MM con-
struction is generated using the CGAL library [Fabri and Teillaud
2011]. The biharmonic weight is then computed based on the sim-
plified MAT [Jacobson et al. 2011]. Tab. 1 reports detailed timing
statistics at this stage as well as models’ geometry information. Both
Voronoi tessellation and biharmonic weight computations are on
the CPU. Here, the Voronoi tessellation is the most time-consuming
procedure, which takes up to tens of minutes. The weight calcula-
tion is also quite expensive, but it can be processed in parallel with
CPU multi-threading. After MMs are ready, our system advances to
the online simulation stage, where all the computations are carried
out on the GPU with nVidia cuBLAS.

Our method Substructuring

Fig. 12. Our method produces plausible

animations of the maple bonsai when

a sinusoidal wind is applied. This re-

sult is comparable to the substructuring

method [Barbič and Zhao 2011].

Animationquality Next,
we take a closer look over
the animation quality of
our semi-reduced projec-
tive dynamics solver. In
terms of the simulation al-
gorithm, our most relevant
competitor is the hyper-
reduced solver [Brandt et al.
2018]. To further validate
our method, we simulate
a falling Armadillo (with
1, 000 constraint samples
for the hyper-reduced solver),
which interacts with three glassy rods. As we can see from Fig. 11
(top), the visual difference between our method and the hyper-
reduced solver is smaller than the puffer ball example in Fig. 5. This
is because the local reduction of the hyper-reduced solver induces

Ele. # Tri. # MH MA QM BW
Puffer ball 610k 120k 1, 257|12 776 73 13
Ship 2, 526k 236k 188|9 640 64 4
Staypuft 462k 236k 21|7 172 10 < 1
Armadillo 156k 62k 104|26 362 6 < 1
Dinosaur 194k 114k 67|20 470 31 2
Cactus (1) 231k 139k 208|22 216 23 2
Cactus (2) 243k 115k 183|18 234 23 1
Cactus (3) 95k 58k 19|2 186 9 < 1
Cactus (4) 34k 13k 26|2 64 3 < 1
Cactus (5) 47k 24k 35|4 86 3 < 1
Cactus (6) 37k 12k 23|2 52 2 < 1
Cactus (7) 26k 6k 21|2 36 2 < 1
Cactus (8) 13k 3k 7|2 24 1 < 1

Table 1. Time statistics of constructing MMs and computing the weight

coefficients. # Ele. and # Tri. are total numbers of tetrahedra on the simula-

tion mesh and triangle faces on the surface. #MH records the total number

of medial handles placed (# affine MHs | # quadratic MHs). MA stands for

the time for computing the initial MA and the Voronoi tessellation. QM is

the computation time used for simplifying the initial MA with Q-MAT [Li

et al. 2015]. BW is the time used to compute biharmonics weight [Jacobson

et al. 2011]. All the timing records (the last three columns) are in seconds.

lower residual errors in this example, due to smoother and less
concave geometry of the Armadillo (the residual error is still twice
bigger than our method though). Similarly, softening the material
also improves the plausibility of the hyper-reduced simulation. Af-
ter we make the puffer ball three times softer (Fig. 11, bottom), the
stiffening artifact of the hyper-reduced solver becomes less severe
compared with Fig. 5 as tuning down the stiffness also reduces the
residual error for the local reduction. Yet, our method still gives
better results that are closer to the full simulation in both examples.

Full FEM simulation

Our method

Fig. 13. Artifacts can be seen in the compres-

sion due to the lack of deformation DOFs for

the bulging effect in MAT-based reduction.

As a spatial reduction
simulator, our method
is also similar to multi-
domain simulation [Bar-
bič and Zhao 2011; Yang
et al. 2013] as one may
consider each MH a
sub-domain on the de-
formable object, and the
handle’s DOFs prescribe
local subspace deforma-
tions. To this end, we
compare our method
with the deformation
substructuringmethod [Bar-
bič and Zhao 2011]. The snapshots are provided in Fig. 12, where
the maple bonsai model is decomposed into 1, 771 sub-domains us-
ing the substructuring method and 1, 771 handles (i.e. one handle
per domain) using our method. Both simulations yield natural an-
imations when a sinusoidal wind field is applied. In this example,
self-collision is not processed. While MAT-based model reduction
produces satisfying animation in general, it could be cumbersome
when there exist many compression effects in the animation. As
reported in Fig. 13, we can see some unnatural shapes at the bottom

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

12 • Anon.

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

of the box when it is pressed. In this example, only three quadratic
MHs are used, and the MAT subspace does not have sufficient free-
doms to capture the volumetric bulging during the compression.
Adding more handles on the Staypuft model yields a better result.

MATfor othermaterials Medial elastics synergizeswell with the
projective dynamics, because both reduced simulation and CC/CD

Fig. 14. One can also treat MAT as a general

model reduction method. In this experiment, five

Armadillos fall on staircases and collide with each

other. Each Armadillo is assigned with a different

material, in the order of: StVK, Co-rotational, Neo-

Hookean, Mooney-Rivlin, and Arruda-Boyce.

can be effectively ac-
celerated by the GPU.
Nevertheless, MAT
can also handle other
hyperelastic materi-
als following the stan-
dard model reduc-
tion procedure [Sifakis
and Barbic 2012] by
projecting Eq. (4) into
the column space of
U (i.e. Eq. (2)). Fig. 14
shows snapshots of
five falling Armadil-
los. In this experiment, each Armadillo is assigned with a different
material including StVK, Co-rotational, Neo-Hookean, Mooney-
Rivlin, and Arruda-Boyce. We also pre-compute Cubature [An et al.
2008] for an efficient run-time estimation of reduced internal force
and tangent stiffness matrix. This example is less demanding than
other examples as in Figs. 1 and 18, however the FPS is even slower
(only 1.2 FPS). This is because the simulation leads to a time-varying
dense system, which is not GPU-friendly. As a result, we need to use
CPU for the simulation and pass the resulting reduced coordinate to
the GPU for MAT-based CC/CD. Frequent communications between
the CPU and GPU cause extra overheads.

Subspace Fact. # Cons. Global Local
Puffer ball 15, 444 3.00 610, 452 2.43 0.62
Ship 2, 526 0.67 482, 052 0.38 0.56
Staypuft 462 0.16 212, 608 0.12 0.31
Armadillo 2, 028 0.62 65, 013 0.32 0.16
Dinosaur 1, 404 0.45 193, 695 0.24 0.28
Cactus (1) 5, 076 0.87 231, 312 0.49 0.33
Cactus (2) 4, 812 0.85 243, 552 0.46 0.39
Cactus (3) 288 0.14 94, 740 0.11 0.19
Cactus (4) 372 0.17 34, 164 0.12 0.14
Cactus (5) 540 0.23 46, 584 0.13 0.14
Cactus (6) 336 0.15 37, 458 0.10 0.13
Cactus (7) 312 0.19 26, 412 0.10 0.12
Cactus (8) 240 0.06 12, 942 0.09 0.10

Table 2. Efficiency benchmarks of our semi-reduced projective dynamics

simulator. Subspace is the size of the MM-based subspace. Fact. is the

time used for pre-factorizing the reduced global matrix. # Cons. is the

total number of constraints of the model. Global is the time for solving the

pre-factorized global matrix. Local is the computation time for all the local

projections. All the timing units are inms .

Culling effectiveness Fig. 15 reports a collision-heavy example,
where the dinosaur model falls into a group of cacti. The initial
dinosaur-cactus collision induces a sequence of follow-up collisions

between cacti. The animation is around 18 FPS including the sim-
ulation, CC/SCC, and collision resolve. The subspace sizes of the
dinosaur and all the eight cacti are reported in Tab. 2. In addition
to the animation itself, we also examine the effectiveness among
AABBs, bounding spheres and MAT based CC/SCC for this scene.
Here, we set up bounding AABBs and spheres using two strate-
gies: 1) AABBs/spheres enclose the model as tightly as the MAT
does (i.e. with the same Hausdorff error); or 2) the total numbers of
AABBs/spheres are the same as the number of MPs. For a clearer vi-
sualization, we only color the leaf AABBs or spheres that participate
in the collision. For the MAT-based CC and SCC, we just highlight
the voxel, which envelops the deepest interpenetration between
two MPs. The deformed MATs of all the cacti are also shown in the
figure (the second row).
Detailed collision statistics are given in Fig. 16. When AABBs

or spheres achieve the same bounding quality of MAT (fourth and
sixth rows in Fig. 15), the BVH is deep, and CC involves orders-of-
magnitude more primitive-wise intersection tests along the hierar-
chy than the MAT. On the other hand, if we set the total number of
leaf primitives equivalent to the number of MPs, the BVH is shal-
lower, but each leaf AABB or sphere becomes bigger (i.e. see the third
and fifth rows in Fig. 15), which encapsulates much more surface
triangles for the CD. While better than the first strategy, it is also
less efficient than our method. Thanks to its superior compactness,
MAT outperforms conventional BVHs of AABBs or spheres – only
triangles that overlap the voxel of deepest interpenetration need to
be tested for CD. Moreover, it is reasonable that self-collision of the
triangles within an MP could be neglected because of as-rigid-as
possible constraints are forced in the system.
To objectively quantify the collision performance, we compare

the culling effectiveness for different bounding primitives, which
is defined as the ratio between the total number of intersected
primitives and the total number of intersected triangles during CC.
The result can be found in the top-right plot of Fig. 16. It is clear that
MAT-based CC/SCC is much more efficient than traditional BVHs.
It is also worth mentioning that our method does not have tree-like
multi-level data structures. This is adequate in practice because an
MAT will have a good shape approximation only with a modest
number of medial vertices, and we can fully exploit modern GPUs
to efficiently run the overlapping tests for all MP pairs in parallel.

Global Local Sim. CC/SCC CD FPS
Fig. 1 0.38 0.56 42.71 18.7 3.1 15.3
Fig. 15 1.8 1.1 34.5 17.1 1.5 17.7
Fig. 18 (left) 1.9 1.7 39.6 18.3 2.4 15.2
Fig. 18 (right) 14.8 3.7 76.5 21.6 4.8 9.7

Table 3. Time breakdown of examples in Fig. 1, Fig. 15, and Fig. 18. Global

and Local are the time used for the (reduced) global and (full) local steps

of one iteration. Sim. is the total time of our semi-reduced solver (which

includes extra computational overheads e.g. for projecting generalized co-

ordinate to fullspace, etc). CC/SCC is the culling time.CD is the collision

detection time. All the timing units are in ms . The average FPS for the

overall animation is in the column FPS.

Displacement and deformation bounding We prefer deforma-
tion bounding for a much tighter bounding. Displacement bounding

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

Medial Elastics:

Efficient and Collision-ready Deformation via Medial Axis Transform • 13

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

Animation

MAT

AABB, same leaf primitive #

AABB, same Hausdorff error

Bounding sphere, same leaf primitive #

Bounding sphere, same Hausdorff error

Fig. 15. The dinosaur model falls through a group of eight cacti. We compare our MAT-based CC with BVHs of AABBs and bounding spheres. This animation

runs at ∼ 18 FPS with all the collisions and self-collisions culled, detected, and resolved. MAT-based CC/SCC is highlighted in the second row, where the

deformed MATs of all the cacti are also given. For BVHs of AABBs and spheres, we either set the BVH to have the same bounding quality as MAT (same

Hausdorff error) or to have the same number of leaf primitives as MPs on the MAT (same leaf primitive #). Only leaf-level AABBs and spheres are highlighted.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

14 • Anon.

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0 25 50 75 100
125
150
175
200
225
250
275
300
325
350
375
400

C

ol
lid

in
g

M
Ps

Animation frame

Dino
C1
C2
C3
C4
C5
C6
C7
C8

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

C
ul

lin
g

ef
fe

ct
iv

en
es

s
Animation frame

MAT AABB error
AABB num Sphere error
Sphere num

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

C

ol
lid

in
g

A
A

BB
s

(e
rr

or
)

Animation frame

Dino
C1
C2
C3
C4
C5
C6
C7
C8

0

3,000

6,000

9,000

12,000

15,000

18,000

21,000

24,000

27,000

30,000
0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

C

ol
lid

in
g

A
A

BB
s (

nu
m

)

Animation frame

Dino
C1
C2
C3
C4
C5
C6
C7
C8

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

1.E+06

1.E+06

2.E+06

2.E+06

2.E+06

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

C

ol
lid

in
g

sp
he

re
s (

er
ro

r)

Animation frame

Dino
C1
C2
C3
C4
C5
C6
C7
C8

0

7,500

15,000

22,500

30,000

37,500

45,000

52,500

60,000

67,500

75,000

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

C

ol
lid

in
g

sp
he

re
s (

nu
m

)

Animation frame

Dino
C1
C2
C3
C4
C5
C6
C7
C8

Fig. 16. We plot the detailed benchmarks for BVHs of AABBs and spheres at

each individual deformable body in the falling dinosaur animation (Fig. 15).

We also compare the culling effectiveness of different bounding primitives

in the top-right plot, where error is for primitives with the same Hausdorff

error, and num is for the same numbers of leaf primitives.

yields a loose MAT enclosure as long as there exist large rigid body
motions. For highly reduced models with limited MHs, the bounding
quality could be low (i.e. see Fig. 17). Fortunately, we seldom want
to do so because an extravagant model reduction also impairs the
simulation quality. As long as we have a moderate number of MHs,
a tight bounding could be always obtained using the deformation
bounding. To elaborate it, we plot the average Hausdorff errors
of eight cacti in the dragon-cacti collision scene using different
numbers of MHs for both displacement and deformation bounding.
Obviously, the displacement bounding errors are much higher than
deformation bounding.

More examples More examples are shown in Fig. 1 and Fig. 18
with per-step time breakdowns in Tab. 3. In Fig. 1, a barbarian ship
model falls over a few glassy rods. This ship has 482k elements and
236k triangles. Its subspace size is 2, 526 with 482, 052 constraints.
As it slides down to the floor, we observe rich contacts and collisions
between the ship and rods. Each side of the ship has a row of soft
paddles, which collide with each other with interesting local defor-
mations. Our solver captures all of these details, and the animation
is ∼ 15 FPS. Fig. 18 (left) is an enhanced scene of Fig. 15, where we

D
isp

la
ce

m
en

t
bo

un
di

ng
D

ef
or

m
at

io
n

bo
un

di
ng

0.00

0.05

0.10

0.15

0.20

0.25

0 50 100 150 200 250 300 350 400 450 500

rorre ffrodsua
H .gvA

Time step

533 MHs, dis. 533 MHs, def. 266 MHs, dis.
266 MHs, def. 133 MHs, dis. 133 MHs, def.

133 MHs 266 MHs 532 MHs

Fig. 17. Even with sparse MHs deployed, deformation bounding still yields

high-quality MAT enclosures, while the displacement bounding scales MPs

excessively. The average Hausdorff error variation during the animation is

also plotted.

have four Staypufts flying into the cactus bush. The cactus spines
pierce the Staypuft after hard collisions. The subspace size at each
Staypuft is 462, and there are 212, 608 constraints. Cacti swing and
interact with each other vibrantly in this example. Our solver runs
at ∼ 15 FPS.
A more challenging scenario is shown in Fig. 18 (right), where

six puffer balls fall one-by-one and collide with each other. Each
puffer ball also has many self-collisions among its elastic strings. We
consider it a good example to showcase the benefit of MAT. While
geometrically complex, each elastic string on a puffer ball can be
tightly encapsulated by only fewMPs, and CC/SCC can be efficiently
handled. In this example, each puffer ball has as many as 610, 452
constraints. Yet, the local step only takes 1.6ms for each ball. On
the other hand, the subspace size at each puffer ball reaches 15, 444.
Solving such big dense matrix is prohibitive if an interactive rate is
desired, even with CUDA. Therefore, we prune our weight functions
by explicitly enforcing its locality as in [Brandt et al. 2018] so that
each MH only influences its nearby mesh vertices. Doing so makes
the reduced global matrix block-sparse so that we can use the sparse
Cholesky to process the global step more efficiently. This animation
runs at ∼ 10 FPS on average. When intensive collisions occur among
multiple puffer balls, the FPS drops to 5 due to slower convergency
induced by collision constraints. The average Hausdorff errors of
these three experiments are plotted in Fig. 19.

7 LIMITATION AND FUTURE WORK

In this paper, we present a framework to simulate nonlinear dynam-
ics of deformable objects in real time. This framework bridges the
(self-)collision culling and detection with reduced deformable sim-
ulation using MAT. Specifically, our reduced model is constructed
based on MM, which not only captures important shape deforma-
tions, but also serves as a tight volumetric envelop for CC/SCC.
Our generalized coordinate compactly represents the status of each

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

Medial Elastics:

Efficient and Collision-ready Deformation via Medial Axis Transform • 15

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

Fig. 18. Left: Four Staypufts fly to the cactus bush. Each Staypuft has 28 MHs, which construct a 462-dimension subspace. Right: Six puffer balls collide with

each other. Each puffer ball embeds 1, 269 MHs, which do not only capture local deformations at its soft strings, but also help the solver quickly identify

collisions and self-collisions. To ensure there are sufficient flexibilities on the body of the ball, we added extra six handles besides the MH at the center of the

sphere. In this example, we also enforce the weight locality so that we can use sparse Cholesky in cuSPARSE to more efficiently solve the reduced global matrix.

0.00
1.00
2.00
3.00
4.00
5.00
6.00

Barbarian Ship (Fig. 1)
Puffer Ball (Fig. 18, right)
Staypuft & Cactus (Fig. 18, left)

0.00

0.01

0.02

0.03

0.04

0.05

Barbarian Ship (Fig. 1)
Puffer Ball (Fig. 18, right)
Staypuft & Cactus (Fig. 18, left)

Dispacement bounding

Deformation bounding

Av
g.

 H
au

sd
or

ff
 e

rr
or

Time step

Fig. 19. Average Hausdorff errors of examples in Fig. 1 and Fig. 18. The rest-

shape MAT of each model is also given. Due to the large rigid body motion

in those examples, displacement bounding yields very high Hausdorff errors

(e.g. over 500% of the barbarian ship in Fig. 1). The deformation bounding

however produces tight enclosure of deformed model consistently.

MM, which can be directly used to update MAT for CC/SCC. We
propose a subspace collision-ready matrix assembly mechanism,
which keeps the reduced global matrix collision-invariant so that it
can be pre-factorized. We also provide an in-depth analysis of the
trade-off between local reduction and global reduction and based
on which, we design a semi-reduced projective dynamics formula-
tion. For the collision part, we propose an efficient algorithm for
fast CC/SCC between MPs. If an interaction between two MPs is
confirmed, we also provide a closed-form formulation to directly
retrieve the location of the deepest interpenetration between MPs.

However, our system also has several limitations. First of all, the
biggest advantage of this framework itself may also be its biggest
weakness. Unlike [Barbič and James 2010], our system is built based

on MAT, and it is less compatible with other model reduction meth-
ods. In theory, one can still use the reduced coordinate to update the
configurations of the MAT, but it would be slower and less intuitive
than a MAT-based model. Secondly, for the nearly spherical objects,
e.g. puffer ball, we may need to add additional medial vertices man-
ually to capture desired local deformations. Thirdly, current MAT
data structure does not have any hierarchies. As a result, our method
may be outperformed in collision-light animations because a simple
culling at the top level of a BVH may take tens of thousands of
cullings with MAT. Fortunately, we believe that this limitation can
be easily fixed by mixing BVH and MAT during the CC/SCC. In the
future, we plan to design multi-level MAT to address this limitation.
Our subspace is constructed geometrically. Therefore, it may not
be suitable for heterogeneous models. In this situation, one may
consider to use different weight coefficients as in [Nesme et al. 2009]
or [Faure et al. 2011] that better reflect the material variations.

REFERENCES
Nina Amenta and Marshall Bern. 1999. Surface reconstruction by Voronoi filtering.

Discrete & Computational Geometry 22, 4 (1999), 481–504.
Steven S An, Theodore Kim, and Doug L James. 2008. Optimizing cubature for efficient

integration of subspace deformations. InACM transactions on graphics (TOG), Vol. 27.
ACM, 165.

Baptiste Angles, Daniel Rebain, Miles Macklin, Brian Wyvill, Loic Barthe, Jp Lewis,
Javier von der Pahlen, Shahram Izadi, Julien P. C. Valentin, Sofien Bouaziz, and
Andrea Tagliasacchi. 2019. VIPER: Volume Invariant Position-based Elastic Rods.
PACMCGIT 2, 2 (2019), 19:1–19:26. https://doi.org/10.1145/3340260

Andreas Antoniou and Wu-Sheng Lu. 2007. Practical Optimization: Algorithms and
Engineering Applications (1st ed.). Springer Publishing Company, Incorporated.

Dominique Attali and Annick Montanvert. 1997. Computing and simplifying 2D and
3D continuous skeletons. Computer vision and image understanding 67, 3 (1997),
261–273.

David Baraff. 1994. Fast contact force computation for nonpenetrating rigid bodies. In
Computer graphics and interactive techniques. ACM, 23–34.

Jernej Barbič and Doug James. 2007. Time-critical distributed contact for 6-dof haptic
rendering of adaptively sampled reduced deformable models. In Proceedings of the
2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. 171–180.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

16 • Anon.

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

Jernej Barbič and Doug L James. 2010. Subspace self-collision culling. ACM Trans.
Graph. (TOG) 29, 4 (2010), 81.

Jernej Barbič and Yili Zhao. 2011. Real-time large-deformation substructuring. In ACM
transactions on graphics (TOG), Vol. 30. ACM, 91.

Jernej Barbič and Doug L James. 2005. Real-time subspace integration for St. Venant-
Kirchhoff deformable models. In ACM Trans. Graph. (TOG), Vol. 24. ACM, 982–990.

Adam W Bargteil and Elaine Cohen. 2014. Animation of deformable bodies with
quadratic bézier finite elements. ACM Trans. Graph. (TOG) 33, 3 (2014), 27.

Gino van den Bergen. 1997. Efficient collision detection of complex deformable models
using AABB trees. Journal of graphics tools 2, 4 (1997), 1–13.

Harry Blum. 1967. A transformation for extracting new descriptors of shape. Models
for Perception of Speech and Visual Forms, 1967 (1967), 362–380.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. (TOG) 33, 4 (2014), 154:1–154:11.

Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-reduced
Projective Dynamics. ACM Trans. Graph. (TOG) 37, 4 (2018), 80:1–80:13.

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of Col-
lisions, Contact and Friction for Cloth Animation. ACM Trans. Graph. 21, 3 (July
2002), 594–603.

Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002.
Interactive skeleton-driven dynamic deformations. In ACM Trans. Graph. (TOG),
Vol. 21. ACM, 586–593.

Xiao-Diao Chen, Jun-Hai Yong, Guo-Qin Zheng, Jean-Claude Paul, and Jia-Guang
Sun. 2006. Computing minimum distance between two implicit algebraic surfaces.
Computer-Aided Design 38, 10 (2006), 1053–1061.

Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal warping: Real-time simulation of
large rotational deformation and manipulation. IEEE Trans. on Visualization and
Computer Graphics 11, 1 (2005), 91–101.

Andreas Fabri and Monique Teillaud. 2011. CGAL-The Computational Geometry
Algorithms Library. In 10e colloque national en calcul des structures. 6.

Noura Faraj, Jean-Marc Thiery, and Tamy Boubekeur. 2013. Progressive medial axis
filtration. In SIGGRAPH Asia 2013 Technical Briefs. ACM, 3.

François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K Pai. 2011. Sparse
meshless models of complex deformable solids. In ACM Trans. Graph. (TOG), Vol. 30.
ACM, 73.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A Practical
Gauss-Seidel Method for Stable Soft Body Dynamics. ACM Trans. Graph. (TOG) 35,
6 (2016), 214:1–214:9.

Marco Fratarcangeli, Huamin Wang, and Yin Yang. 2018. Parallel iterative solvers for
real-time elastic deformations. In SIGGRAPH Asia 2018 Courses. ACM, 14.

Ming Gao, Andre Pradhana Tampubolon, Chenfanfu Jiang, and Eftychios Sifakis. 2017.
An adaptive generalized interpolation material point method for simulating elasto-
plastic materials. ACM Trans. Graph. (TOG) 36, 6 (2017), 223.

Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Dinesh K Pai. 2011. Frame-
based elastic models. ACM Trans. Graph. (TOG) 30, 2 (2011), 15.

Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. 1996. OBBTree: A hierarchical
structure for rapid interference detection. In Computer graphics and interactive
techniques. ACM, 171–180.

Kris K Hauser, Chen Shen, and James F O’Brien. 2003. Interactive Deformation Using
Modal Analysis with Constraints.. In Graphics Interface, Vol. 3. 16–17.

Philip Martyn Hubbard. 1995. Collision detection for interactive graphics applications.
IEEE Trans. on Visualization and Computer Graphics 1, 3 (1995), 218–230.

Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded biharmonic
weights for real-time deformation. ACM Trans. Graph. (TOG) 30, 4 (2011), 78–1.

Doug L James and Dinesh K Pai. 2004. BD-tree: output-sensitive collision detection for
reduced deformable models. ACM Trans. Graph. (TOG) 23, 3 (2004), 393–398.

Ladislav Kavan and Jiri Zara. 2005. Fast Collision Detection for Skeletally Deformable
Models. Computer Graphics Forum 24, 3 (2005), 363–372.

Theodore Kim and Doug L James. 2009. Skipping steps in deformable simulation with
online model reduction. In ACM Trans. Graph. (TOG), Vol. 28. ACM, 123.

Martin Komaritzan and Mario Botsch. 2018. Projective skinning. Proceedings of the
ACM on Computer Graphics and Interactive Techniques 1, 1 (2018), 12.

Shankar Krishnan, M Gopi, M Lin, Dinesh Manocha, and A Pattekar. 1998. Rapid
and accurate contact determination between spline models using ShellTrees. In
Computer Graphics Forum, Vol. 17. Wiley Online Library, 315–326.

Paul G. Kry, Doug L. James, and Dinesh K. Pai. 2002. EigenSkin: Real Time Large
Deformation Character Skinning in Hardware. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’02). 153–159.

Pan Li, Bin Wang, Feng Sun, Xiaohu Guo, Caiming Zhang, and Wenping Wang. 2015.
Q-Mat: Computing medial axis transform by quadratic error minimization. ACM
Trans. Graph. (TOG) 35, 1 (2015), 8.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast
Simulation of Mass-spring Systems. ACM Trans. Graph. (TOG) 32, 6 (2013), 214:1–
214:7.

Ran Luo, Weiwei Xu, Huamin Wang, Kun Zhou, and Yin Yang. 2018. Physics-based
quadratic deformation using elastic weighting. IEEE Trans. on visualization and
computer graphics 24, 12 (2018), 3188–3199.

Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross.
2010. Unified simulation of elastic rods, shells, and solids. In ACM Trans. Graph.
(TOG), Vol. 29. ACM, 39.

MatthewMoore and JaneWilhelms. 1988. Collision detection and response for computer
animation. In ACM Siggraph Computer Graphics, Vol. 22. ACM, 289–298.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.
Meshless deformations based on shape matching. In ACM Trans. Graph. (TOG),
Vol. 24. ACM, 471–478.

Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇ Projective
Dynamics: Fast Simulation of General Constitutive Models. In ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation (SCA ’16). 21–28.

Maxim Naumov. 2011. Parallel solution of sparse triangular linear systems in the
preconditioned iterative methods on the GPU. NVIDIA Corp., Westford, MA, USA,
Tech. Rep. NVR-2011 1 (2011).

Matthieu Nesme, Paul G Kry, Lenka Jeřábková, and François Faure. 2009. Preserving
topology and elasticity for embedded deformable models. In ACM Trans. Graph.
(TOG), Vol. 28. ACM, 52.

Simon Pabst, Artur Koch, and Wolfgang Straßer. 2010. Fast and scalable cpu/gpu
collision detection for rigid and deformable surfaces. In Computer Graphics Forum,
Vol. 29. Wiley Online Library, 1605–1612.

Alex Pentland and John Williams. 1989. Good vibrations: Modal dynamics for graphics
and animation. In SIGGRAPH Comput. Graph., Vol. 23. ACM.

Ken Shoemake. 1985. Animating rotation with quaternion curves. In ACM SIGGRAPH
computer graphics, Vol. 19. ACM, 245–254.

Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids:
a practitioner’s guide to theory, discretization and model reduction. In ACM SIG-
GRAPH 2012 Courses. ACM, 20.

Svetlana Stolpner, Paul Kry, and Kaleem Siddiqi. 2012. Medial spheres for shape
approximation. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 6
(2012), 1234–1240.

Feng Sun, Yi-King Choi, Yizhou Yu, and Wenping Wang. 2016. Medial Meshes: A
Compact and Accurate Representation of Medial Axis Transform. IEEE Trans. on
Visualization and Computer Graphics 22, 3 (March 2016), 1278–1290.

Yun Teng, Miguel A Otaduy, and Theodore Kim. 2014. Simulating articulated subspace
self-contact. ACM Transactions on Graphics (TOG) 33, 4 (2014), 106.

Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger, Gabriel Zachmann, Laks
Raghupathi, Arnulph Fuhrmann, M-P Cani, François Faure, Nadia Magnenat-
Thalmann, Wolfgang Strasser, et al. 2005. Collision detection for deformable objects.
In Computer graphics forum, Vol. 24. Wiley Online Library, 61–81.

Jean-Marc Thiery, Émilie Guy, and Tamy Boubekeur. 2013. Sphere-meshes: Shape
approximation using spherical quadric error metrics. ACM Transactions on Graphics
(TOG) 32, 6 (2013), 178.

Jean-Marc Thiery, Émilie Guy, Tamy Boubekeur, and Elmar Eisemann. 2016. Animated
Mesh Approximation With Sphere-Meshes. ACM Trans. Graph. 35, 3, Article 30
(May 2016), 13 pages. https://doi.org/10.1145/2898350

Anastasia Tkach, Mark Pauly, and Andrea Tagliasacchi. 2016. Sphere-meshes for Real-
time Hand Modeling and Tracking. ACM Trans. Graph. 35, 6, Article 222 (Nov. 2016),
11 pages.

Huamin Wang. 2015. A Chebyshev semi-iterative approach for accelerating projective
and position-based dynamics. ACM Trans. Graph. (TOG) 34, 6 (2015), 246.

Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on the
GPU. ACM Trans. Graph. (TOG) 35, 6 (2016), 212.

Xinlei Wang, Min Tang, Dinesh Manocha, and Ruofeng Tong. 2018. Efficient BVH-based
Collision Detection Scheme with Ordering and Restructuring. In Computer Graphics
Forum, Vol. 37. Wiley Online Library, 227–237.

Baorong Yang, Junfeng Yao, and Xiaohu Guo. 2018. DMAT: Deformable Medial Axis
Transform for Animated Mesh Approximation. Computer Graphics Forum (2018).

Yin Yang, Dingzeyu Li, Weiwei Xu, Yuan Tian, and Changxi Zheng. 2015. Expediting
precomputation for reduced deformable simulation. ACM Trans. Graph. (TOG) 34, 6
(2015).

Yin Yang, Weiwei Xu, Xiaohu Guo, Kun Zhou, and Baining Guo. 2013. Boundary-aware
multidomain subspace deformation. IEEE transactions on visualization and computer
graphics 19, 10 (2013), 1633–1645.

Gabriel Zachmann. 2002. Minimal hierarchical collision detection. In ACM symposium
on Virtual reality software and technology. ACM, 121–128.

Gabriel Zachmann and Elmar Langetepe. 2003. Geometric data structures for computer
graphics. Eurographics Assoc.

Changxi Zheng andDoug L James. 2012. Energy-based self-collision culling for arbitrary
mesh deformations. ACM Trans. Graph. (TOG) 31, 4 (2012), 98.

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient
multigrid method for the simulation of high-resolution elastic solids. ACM Trans.
Graph. (TOG) 29, 2 (2010), 16.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2019.

