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Fig. 1. Soft and stiff puffer balls. This paper presents a novel GPU-based parallel algorithm for elastic body simulation. We are inspired by a numerical issue

of overshoot, which is the major reason behind the slow convergence of parallel solvers. Overshoot refers to the situation where local relaxation becomes

over-aggressive — the reduction of local energy gets outweighed by the energy increase at other regions on the deformable object. We offer a second-order

optimal solution to resolve this issue so that a parallel iteration becomes as convergent as a global Newton solve. Based on this observation, we carefully

re-design the computation procedure, making this solution efficient and pre-computable. As a result, our method possesses superior parallelism (as using the

Jacobi method) and near second-order convergence (as using global Newton’s method). It constantly converges 50× to 100× faster than the state-of-the-art

GPU methods, and our advantage is more significant for stiff simulations. The teaser figure shows a representative example. In this experiment, 10 puffer balls

slide down into a glass tank. There are 3.5M tetrahedron elements in this example, and the time step size is 1/120. Blue balls are 20 times softer than red balls.

Vertex block descent fails to converge at this time step. If all the puffer balls are soft ones, our method is 122× faster than vertex block descent.

In parallel simulation, convergence and parallelism are often seen as inher-
ently conflicting objectives. Improved parallelism typically entails lighter
local computation and weaker coupling, which unavoidably slow the global
convergence. This paper presents a novel GPU algorithm that achieves con-
vergence rates comparable to fullspace Newton’s method while maintaining

Authors’ Contact Information: Lei Lan, University of Utah, USA; Zixuan Lu, Univer-
sity of Utah, USA, birdpeople1984@gmail.com; Chun Yuan, University of Utah, USA,
yuanchunisme@gmail.com; Weiwei Xu, State Key Lab of CAD&CG, Zhejiang Univer-
sity, China, xww@cad.zju.edu.cn; Hao Su, UCSD, USA, haosu@eng.ucsd.edu; Huamin
Wang, Style3D Research, China, wanghmin@gmail.com; Chenfanfu Jiang, UCLA, USA,
chenfanfu.jiang@gmail.com; Yin Yang, University of Utah, USA, yangzzzy@gmail.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 1557-7368/2025/8-ART44
https://doi.org/10.1145/3731183

good parallelizability just like the Jacobi method. Our approach is built on
a key insight into the phenomenon of overshoot. Overshoot occurs when
a local solver aggressively minimizes its local energy without accounting
for the global context, resulting in a local update that undermines global
convergence. To address this, we derive a theoretically second-order op-
timal solution to mitigate overshoot. Furthermore, we adapt this solution
into a pre-computable form. Leveraging Cubature sampling, our runtime
cost is only marginally higher than the Jacobi method, yet our algorithm
converges nearly quadratically as Newton’s method. We also introduce a
novel full-coordinate formulation for more efficient pre-computation. Our
method integrates seamlessly with the incremental potential contact method
and achieves second-order convergence for both stiff and soft materials.
Experimental results demonstrate that our approach delivers high-quality
simulations and outperforms state-of-the-art GPU methods with 50× to
100× better convergence.

CCS Concepts: • Computing methodologies→ Physical simulation.
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1 Introduction

Since its inception, physics-based simulation has been synonymous
with high computational cost. Integrating such techniques into
time-critical applications stands a significant challenge. Since then,
various techniques aimed at improving simulation performance
have been developed. For instance, it is possible to simplify the
nonlinearity of the material to reuse a pre-factorized system matrix
such as stiffness warping [Choi and Ko 2005; Müller et al. 2002], or
we can build a reduced-order model using much fewer simulation
degrees of freedom (DOFs) [An et al. 2008; Barbič and James 2005;
Pan et al. 2015]. Despite achieving orders-of-magnitude speedups,
these methods often come at the cost of compromised accuracy
to some extent. In other words, they trade physical precision for
performance gain. The advent of GPGPU has brought new oppor-
tunities to the field of simulation. Equipped with a large number
of processing units, GPUs excel in handling massive sub comput-
ing tasks simultaneously. One-stop solvers like Newton’s method
using direct Hessian factorization do not fit this new computation
paradigm, and nearly all the GPU algorithms opt for iterative and
parallel numerical procedures. Two representative examples are the
Jacobi and Gauss-Seidel (GS) methods.

Here, we consider Jacobi or GS as nonlinear relaxation schemes,
where the target function is divided into small sub-problems with
shared DOFs. When put into the context of quadratic optimiza-
tion, they become iterative linear solvers [Greenbaum 1997]. Jacobi
scheme solves each sub-problem independently. Each shared DOF
has several local replicas at sub-problems, which are averaged by
the end of the iteration. The classic GS routine, on the other hand,
solves sub-problems sequentially — the newly updated DOF values
participate in the following local solves. Parallel GS leverages graph
coloring algorithms that group sub-problems without DOFs sharing
so that GS updates within the group can be executed in parallel.
The key ingredient of an effective GPU simulation algorithm is

always a wise trade-off between parallelization and convergence.
Strategies like increasing the size of local sub-problems [Lan et al.
2023] or making sub-problems more overlapping [Luo et al. 2017]
favor convergence, helping the algorithm become more effective
for stiff instances. Downsizing sub-problems [Chen et al. 2024c] or
delaying the information exchange [Fei et al. 2021] enhances the
parallelization at the cost of more iterations or even divergence.
It is believed that one can not achieve the best parallelization and
convergence at the same time.

In this paper, we show a novel GPU algorithm that substantially
narrows, if not closes, the gap between convergence and paralleliza-
tion. Our key observation is local overshoot i.e., fully solving local
sub-problems without knowing the global information. Overshoots
negatively impact global convergence and stand as the main culprit

for the slow convergence of most existing GPU algorithms. How-
ever, this issue has been overlooked and went largely unnoticed.
We propose a solution that makes local computation globally aware
by pre-building a reduced model for each local sub-problem. This
strategy is material-aware and behaves equally well for both ex-
tremely stiff and soft problems. When the optimization problem
can be well-approximated by a quadratic form, i.e., it falls within
the scope of Newton’s method, our approach achieves near-optimal
convergence. As a result, our method converges at or near the rate
of the full Newton’s method while being as parallelizable as Jacobi
or GS. We have tested our method in various simulation scenes. The
experiment results reported are encouraging — our method con-
verges 50× to 100× faster than the state-of-the-art GPU algorithms,
paving the path to real-time and high-resolution simulation without
accuracy compromises. We demonstrate the efficiency and efficacy
of our algorithm in the context of elastodynamic simulation using
finite element method (FEM) [Bathe 2006] however, the proposed
method is readily applicable in other simulations problems such as
cloth/thin shell simulation, rod simulation, MPM (material point
method), and fluid simulation.

2 Related Work

High-resolution deformable bodies house a large number of two-
way coupled unknown DOFs, and implicit time integration methods
like backward Euler [Baraff and Witkin 1998] or Newmark [Hughes
2012] are commonly used for improved numerical stability. This re-
sults in a global (often sparse) nonlinear system. Solving this system
at each time step becomes the major bottleneck of the simulation
pipeline.

An effective strategy is to avoid a full linear solve in classic New-
ton’s method. Following this idea, Hecht et al. [2012] proposed a
lagged factorization scheme that reuses existing Cholesky factor-
ization to save the computation. Chen et al. [2024b] exploited the
global quadratic approximation quality to control the local eigen-
value projection in projected Newton. Multi-resolution [Capell et al.
2002b; Grinspun et al. 2002] and multigrid solvers project fine-grid
residual errors onto a coarser grid, on which linear or nonlinear
iterations are more effective [Bolz et al. 2003; Tamstorf et al. 2015;
Wang et al. 2020; Xian et al. 2019; Zhu et al. 2010]. Quasi-Newton
methods use Hessian approximates, instead of the exact Hessian,
to estimate a good search direction [Li et al. 2019; Liu et al. 2017;
Wang et al. 2020]. Zhang et al. [2024] took the fine-level energy into
account when computing the coarse-level update in the multigrid
solver for cloth and thin-shell simulation. Those methods are mostly
CPU-based and seek performance gain through trading the numer-
ical accuracy. As many graphics applications emphasize more on
visual plausibility, such a trade-off is reasonable and practical.

Simplifications of the underlying elasticity model also lead to
many important simulation techniques. A classic example is stiffness
warping [Müller et al. 2002], which can be viewed as a simplified
co-rotated material. It allows the re-use of the rest-shape stiffness
matrix for rotational deformation. Stiffness warping can also be com-
bined with modal analysis to enable real-time simulations [Choi and
Ko 2005]. Chao et al. [2010] designed a simplified material model
measuring the distance of linear deformation and rotation. This
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concept is similar to the shape matching algorithm [Müller et al.
2005], where the deformation energy is defined based on the nearest
rigid body transformation. PBD (position-based dynamics) [Müller
et al. 2007] and extended PBD (XPBD) [Macklin et al. 2016] regard
the elastic energy as a set of compliant constraints and use the steep-
est descent or gradient descent to update the vertex positions at
each constraint. This method is later generalized for other simu-
lation problems, including fluid [Macklin and Müller 2013], rigid
bodies [Müller et al. 2020], and MPM [Yu et al. 2024]. Similarly,
projective dynamics (PD) treats the elasticity energy as a collec-
tion of quadratic constraints. This assumption allows the user to
separate the constraint projection and the distance measure into
local and global steps [Bouaziz et al. 2014]. The key benefit of PBD
and PD is the decoupling of DOFs in different constraints. As a
result, both methods can be parallelized on the GPU [Fratarcangeli
et al. 2016, 2018; Wang 2015]. In other words, the idealization of
the underlying material model eases the solving procedure. How-
ever, the generalization of those methods to more complicated and
real-world materials is less intuitive, and a careful re-formulation is
needed [Macklin and Muller 2021].
Model reduction is another widely used acceleration technique,

often referred to as the subspace method or reduced-order mod-
els. As the name implies, model reduction constructs a subspace
representation of the fullspace DOFs. Modal analysis [Choi and Ko
2005; Hauser et al. 2003; Pentland and Williams 1989] and its first-
order derivatives [Barbič and James 2005] are commonly regarded as
highly effective approaches for subspace construction. Additionally,
displacements from recent fullspace simulations can be leveraged to
enhance the subspace representation [Kim and James 2009]. Some
methods exploit condensation [Teng et al. 2015] and Schur comple-
ment [Peiret et al. 2019], which share the same nature of using a
sub-set of DOFs to represent the global system status. Sheth et al.
[2015] addressed the momentum conservation among contacting
reduced models. The success of deep learning also brings new per-
spectives to simulation. Fulton et al. [2019] used an autoencoder
to implicitly connect the latent space coordinate to the fullspace
DOFs. Shen et al. [2021] employed complex-step finite difference
(CSFD) [Luo et al. 2019] to evaluate the fictitious force caused by
varying subspaces. Zong et al. [2023] built the subspace for the
stress field instead of the displacement field.
A common drawback of reduced-order models lies in the lack

of local details. As low-frequency deformations are normally con-
sidered more “important”, and high-frequency deformations are
therefore filtered by the subspace representation. This issue could
be mitigated by building local subspaces. Barbič and Zhao [2011]
proposed a substructuring algorithm that assumes small and nearly
rigid interfaces among local subspace domains, making it particu-
larly effective for plant simulation [Zhao and Barbič 2013]. Yang
et al. [2013] integrated modal warping [Choi and Ko 2005] with
component mode synthesis (CMS) [MacNeal 1971] to construct lo-
cal subspaces based on interface deformations. To address locking
artifacts, Kim and James [2011] introduced spring-based coupling
between adjacent subspaces. Similarly, Wu et al. [2015] utilized a
spring-based coupling approach, combined with Cubature [An et al.
2008] sampling, to enhance efficiency and accuracy. Harmon and

Zorin [2013] augmented the subspace with local bases to capture
deformation induced by collision and contact.

Previous works have also utilized coarsened geometric represen-
tations to govern the dynamics of detailed models. For example,
Capell et al. [2002a] employed an embedded skeleton to deform
elastic bodies, while Gilles et al. [2011] used six-DOF rigid frames
to drive deformable simulations. Faure et al. [2011] introduced scat-
tered handles to model nonlinear dynamics, and Lan et al. [2020,
2021] leveraged the medial axis transform to construct mesh skele-
tons. Martin et al. [2010] proposed sparsely distributed integrators,
called elastons, to uniformly handle the nonlinear dynamics of rods,
shells, and solids. These methods achieve significant speedups be-
cause the number of simulation DOFs is independent of the model’s
resolution. However, this comes at the cost of reduced accuracy
and a loss of fine simulation details. After all, reduced simulation
uses a low-dimension representation to model high-dimensional
dynamics.
GPU simulation approaches the efficiency from a different per-

spective. Modern GPUs feature a large number of processors and
excel in handling massive small-size computing tasks in parallel.
This property requires an algorithmic re-design of simulation, shift-
ing from a one-step solver (e.g., Newton’s method) to parallelizable
and iterative numerical procedures [Fratarcangeli et al. 2018]. For
instance, Wang and Yang [2016] used Jacobi pre-conditioned gra-
dient descent for elastic simulation. While the use of the Jacobi
method increases the total number of iterations, the parallelized
computation at the GPU compensates for it, resulting in improved
overall performance. This idea can be combined with PD [Wang
2015] to solve the global step system inexactly on the GPU. Fratar-
cangeli et al. [2016] used a parallel GPU GS method to solve the
global step matrix, which shows a better convergence than Jacobi.
GS has also been a popular choice for GPU-based XPBD implemen-
tations [Chen et al. 2024a; Macklin et al. 2016].Lan et al. [2022]
combined multiple Jacobi iterations into a single aggregated itera-
tion named A-Jacobi. Guo et al. [2024] leveraged GPU for fast sparse
matrix-vector computation to speed up nonlinear Newton Krylov
solve. Wu et al. [2022] employed a multigrid-like pre-conditioner
to further improve the convergence of GPU iterations. Similarly,
subspace methods are also helpful to pre-condition the system [Lan
et al. 2024; Li et al. 2023]. Despite the variety of simulation algorithm
designs, GPU methods always trade convergence for parallelism,
and achieving both superior convergence and parallelism is nor-
mally considered a “mission impossible”. For example, to address
the nonlinearity introduced by IPC (incremental potential contact)
barriers [Li et al. 2020a], Lan et al. [2023] proposed a stencil descent
method, which relaxes local variational energy at four vertices of
an element (and a colliding primitive pair). In contrast, vertex block
descent (VBD) [Chen et al. 2024c] prioritizes parallelism by solving
local problems at each vertex. As a result, stencil descent performs
more effectively in simulations involving stiffer objects, while VBD
is better suited for softer materials.
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3 Undershoot & Overshoot

We start with an explanation of overshoot and show a second-order
solution to this issue. Elastodynamic simulation can be formulated
as a variational optimization at each discretized time step:

argmin
𝒙

𝐸 (𝒙). (1)

The unknown vector 𝒙 ∈ R
𝑁 concatenates 𝑥 , 𝑦, and 𝑧 coordinates

of all the vertices of a finite element mesh, where 𝑁 denotes the
system size. The target function 𝐸 = 𝐼 + Ψ consists of the iner-
tia potential 𝐼 and the elasticity potential Ψ, which penalize ac-
celerated motions and mesh deformation, respectively. Suppose
implicit Euler integration is used, 𝐼 becomes a quadratic function

of 𝒙: 𝐼 = 1
2ℎ2

‖𝑴
1
2 (𝒙 − 𝒛)‖2, where 𝒛 = 𝒙̂ + ℎ �̂𝒙 + ℎ2𝑴−1𝒇𝑒𝑥𝑡 is a

known vector depending on the previous position 𝒙̂ , velocity �̂𝒙 , and
an external force 𝒇𝑒𝑥𝑡 . 𝑴 is the mass matrix, and ℎ is the time step
size. Ψ is a nonlinear function whose specific form depends on the
chosen material model and the underlying constitutive law.

We normally do not have a closed-form recipe to directly obtain
𝒙★, the global minimizer of Eq. (1). Nearly all the nonlinear proce-
dures start with an initial guess i.e., 𝒙0 and progressively improve
this guess via 𝒙𝑘+1 ← 𝒙𝑘 + 𝛿𝒙𝑘 . Here, the superscript 𝑘 denotes
the iteration index. At each iteration, we would like to calculate an
improving 𝛿𝒙𝑘 making 𝒙𝑘+1 as close to 𝒙★ as possible.
For GPU simulation, parallelization is commonly achieved by

splitting 𝐸 into multiple sub-instances or sub-problems 𝐸𝑖 (𝒙𝑖 ). Here,
the subscript 𝑖 is for the 𝑖-th sub-problem, which includes a small
number of 𝑁𝑖 DOFs, 𝒙𝑖 ∈ R

𝑁𝑖 . An extreme case is the coordinate
descent (CD) [Wright 2015], where each sub-problem contains just
one unknown i.e., 𝑁𝑖 = 1. When 𝑁𝑖 is small, sub-problems can be
efficiently solved in parallel using Jacobi or GS scheme. Many GPU
simulation algorithms widely used in the graphics community are
designed following this high-level idea e.g., see [Chen et al. 2024c;
Lan et al. 2023].
A fundamental flaw of such a divide-and-conquer strategy is

that minimizing 𝐸𝑖 does not align with minimizing 𝐸. In other words,
𝒙★𝑖 ≠ 𝑺𝑖𝒙★, where 𝒙★𝑖 is the local minimizer of 𝐸𝑖 , and 𝑺𝑖 is a selection
matrix picking DOFs pertaining to the 𝑖-th sub-problem from the
global vector. It may be possible that 𝛿𝒙𝑖 fails to sufficiently lower 𝐸𝑖 ,
and therefore becomes less helpful reducing 𝐸. We refer to this issue
undershoot. Undershoot can be potentially alleviated with a local
line search with Wolfe condition [Wolfe 1969]. Conversely, fully
relaxing 𝐸𝑖 is also problematic because the reduction of 𝐸𝑖 often, if
not always, fails to offset the energy increases when 𝛿𝒙𝑖 is applied.
In other words, locally optimal 𝛿𝒙𝑖 can worsen the overall target
function 𝐸, leading to the so-called overshoot. Overshoot can only
be monitored with global line search, which is expensive and should
not be frequently used. Overshoot suggests the local computation
is inaccurate since it only uses local information.

4 Towards Second-order Convergence

The ideal situation free of overshoot (and undershoot) occurs when
the local solve update yields 𝛿𝒙𝑘+1𝑖 = 𝑺𝑖𝛿𝒙★. This means that the
system converges with one single iteration. Yet it is unlikely because
𝛿𝒙★ is unknown, and it is next to impossible to steer the local solve
towards an uncharted target. We take a step back and aim to push

the local solve to achieve global second-order convergence, i.e., at a
similar rate to Newton’s method.

Newton’s method is well-known, which Taylor expands 𝐸 (𝒙★) at
𝒙𝑘 such that:

𝐸 (𝒙★) = 𝐸★ = 𝐸 (𝒙𝑘 + 𝛿𝒙𝑘 )

= 𝐸𝑘 + 𝒈𝑘
�
𝛿𝒙𝑘 +

1

2
𝛿𝒙𝑘

�
𝑯𝑘𝛿𝒙𝑘 +𝑂 (‖𝛿𝒙𝑘 ‖3), (2)

where 𝐸𝑘 = 𝐸 (𝒙𝑘 ). 𝒈𝑘 =
(
𝜕𝐸𝑘

𝜕𝒙

)�
∈ R

𝑁 , and 𝑯𝑘 = 𝜕2𝐸𝑘

𝜕𝒙2
∈ R

𝑁×𝑁 are

the gradient and Hessian of the variational energy 𝐸. If 𝑂 (‖𝛿𝒙𝑘 ‖3)
is sufficiently small, and 𝐸 is secondary differentiable, Newton’s
method converges quadraticallywithout needing the line search [No-
cedal and Wright 1999]. The corresponding DOF update 𝛿𝒙∗ can be
computed from:

𝛿𝒙∗ = argmin
𝒚

𝐸 (𝒚) = 𝐸𝑘 + 𝒈𝑘
�
𝒚 +

1

2
𝒚�𝑯𝑘𝒚

via solving the linear system of:

𝑯𝑘𝛿𝒙∗ = −𝒈𝑘 . (3)

Eq. (3) gives a closed-form way to compute 𝛿𝒙∗ so that the update
𝒙∗ ← 𝒙𝑘 + 𝛿𝒙∗ offers the second-order optimal estimation of 𝒙★.
If we make the local solve 𝛿𝒙𝑖 approach 𝑺𝑖𝛿𝒙∗, a parallel iteration
becomes as converging as a (global) Newton step.

Let 𝐸𝐶𝑖 be the complement of 𝐸𝑖 i.e., the variational energy at the
remaining parts of the model such that 𝐸𝐶𝑖 = 𝐸−𝐸𝑖 . Since overshoot
stems from the lack of global information, a straightforward remedy
is to change the local sub-problem to:

min
𝛿𝑥𝑖

𝐸𝑖 (𝛿𝒙𝑖 ) + 𝐸𝐶𝑖 (𝛿𝒙), (4)

so that the local solve also takes the global energy variation into
account. It should be immediately noticed that 𝐸𝐶𝑖 (𝛿𝒙) depends on
𝛿𝒙 while the variable to be optimized in Eq. (4) only involves local
DOFs 𝛿𝒙𝑖 . To make Eq. (4) meaningful, we can choose to change the
unknown from 𝛿𝒙𝑖 to 𝛿𝒙 , which essentially converts Eq. (4) back to
Eq. (1) — we give up the parallelization for the convergence.
Alternatively, if we know how 𝛿𝒙𝑖 would influence the global

DOF variation 𝛿𝒙 such that 𝛿𝒙 = 𝜙𝑖 (𝛿𝒙𝑖 ), Eq. (4) becomes:

min
𝛿𝑥𝑖

𝐸𝑖 (𝛿𝒙𝑖 ) + 𝐸𝐶𝑖 [𝜙𝑖 (𝛿𝒙𝑖 )] , (5)

which can then be solved e.g., using Newton’s method as:

𝛿𝒙𝑖 = −

(
𝑯𝑖 + ∇𝐸�𝐶𝑖

𝜕2𝜙𝑖

𝜕𝛿𝒙2
𝑖

+
𝜕∇𝐸𝐶𝑖

𝜕𝛿𝒙𝑖

� 𝜕𝜙𝑖
𝜕𝛿𝒙𝑖

)−1 (
𝒈𝑖 +

𝜕𝜙𝑖
𝜕𝛿𝒙𝑖

�

∇𝐸𝐶𝑖

)
,

(6)

where ∇𝐸𝐶𝑖 =
(
𝜕𝐸𝐶𝑖
𝜕𝛿𝒙

)�
=

(
𝜕𝐸𝐶𝑖
𝜕𝒙

)�
∈ R

𝑁 , and
𝜕∇𝐸𝐶𝑖
𝜕𝛿𝒙𝑖

=
𝜕∇𝐸𝐶𝑖
𝜕𝒙𝑖

=

𝜕2𝐸𝐶𝑖
𝜕𝒙𝜕𝒙𝑖

∈ R
𝑁×𝑁𝑖 . Intuitively,𝜙𝑖 (𝛿𝒙𝑖 ) describes the global deformation

increment caused by the local perturbation of 𝛿𝒙𝑖 .

4.1 Local Perturbation Subspace

At the current Newton linearization, we compute 𝜙𝑖 by imposing a
unit perturbation at one local DOF while keeping all the other local
DOFs fixed. The resulting perturbation at the rest part of the model
represents the influence of the perturbed local DOF. To this end, we
re-order systemDOFs as 𝛿𝒙 = [𝛿𝒙�𝑖 , 𝛿𝒙

�
𝐶𝑖
]� such that 𝛿𝒙𝐶𝑖 ∈ R

𝑁−𝑁𝑖
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contains all the complementary DOFs excluding the ones in 𝛿𝒙𝑖 . We
can then build 𝑁𝑖 incremental equilibria:[

𝑯𝑖,𝑖 𝑯𝑖,𝐶𝑖

𝑯�
𝑖,𝐶𝑖

𝑯𝐶𝑖 ,𝐶𝑖

] [
𝑰
𝑼𝐶𝑖

]
=

[
𝛿𝑭𝑖
0

]
. (7)

Note that the superscript 𝑘 is ignored in Eq. (7). 𝑰 is an 𝑁𝑖 by 𝑁𝑖

identity matrix. 𝛿𝑭𝑖 are the virtual forces needed to trigger the unit
perturbation at each local DOF and keep others fixed. Columns in
𝑼𝐶𝑖 embody the corresponding virtual deformation at complemen-
tary DOFs, which can be computed by expanding the second row
of Eq. (7):

𝑯�
𝑖,𝐶𝑖

+ 𝑯𝐶𝑖 ,𝐶𝑖𝑼𝐶𝑖 = 0 ⇒ 𝑼𝐶𝑖 = −𝑯 −1
𝐶𝑖 ,𝐶𝑖

𝑯�
𝑖,𝐶𝑖

. (8)

Any local solve update 𝛿𝒙𝑖 can be understood as a linear combina-
tion of such per-DOF perturbations i.e., 𝛿𝒙𝑖 = 𝑰𝛿𝒙𝑖 . Consequently,
the triggered global perturbation is also a linear combination of
columns in 𝑼𝐶𝑖 . In other words, 𝑼𝐶𝑖 forms a set of bases spanning a
perturbation subspace at complementary DOFs, in which the per-
turbations are controlled by 𝛿𝒙𝑖 . Therefore, 𝜙 can be obtained as:

𝛿𝒙 = 𝜙𝑖 (𝛿𝒙𝑖 ) =

[
𝛿𝒙𝑖
𝛿𝒙𝐶𝑖

]
=

[
𝑰

−𝑯 −1
𝐶𝑖 ,𝐶𝑖

𝑯�
𝑖,𝐶𝑖

]
𝛿𝒙𝑖 =

[
𝑰
𝑼𝐶𝑖

]
𝛿𝒙𝑖 .

(9)
We note that 𝜙𝑖 becomes linearized at the current Newton step. It
remains a nonlinear function during the simulation because the
Hessian 𝑯 (𝒙𝑘 ) depends on the current deformation of the system.

4.2 Optimality of 𝜙𝑖
We argue that Eq. (9) builds the optimal local subspace so that 𝛿𝒙𝑖
computed using Eq. (6) matches the global Newton solve 𝑺𝑖𝛿𝒙∗. To
see this, we re-organize Eq. (3) in a similar way:[

𝑯𝑖,𝑖 𝑯𝑖,𝐶𝑖

𝑯�
𝑖,𝐶𝑖

𝑯𝐶𝑖 ,𝐶𝑖

] [
𝛿𝒙∗𝑖
𝛿𝒙∗𝐶𝑖

]
=

[
−𝒈𝑖
−𝒈𝐶𝑖

]
. (10)

Expanding the second line, we can have:

𝛿𝒙∗𝐶𝑖
= −𝑯 −1

𝐶𝑖 ,𝐶𝑖

(
𝒈𝐶𝑖 + 𝑯�

𝑖,𝐶𝑖
𝛿𝒙∗𝑖

)
. (11)

Substituting Eq. (11) back to the first line of Eq. (10) yields:

𝑯𝑖,𝑖𝛿𝒙
∗
𝑖 + 𝑯𝑖,𝐶𝑖𝛿𝒙

∗
𝐶𝑖

= −𝒈𝑖

⇒ 𝑯𝑖,𝑖𝛿𝒙
∗
𝑖 − 𝑯𝑖,𝐶𝑖𝑯

−1
𝐶𝑖 ,𝐶𝑖

(
𝒈𝐶𝑖 + 𝑯�

𝑖,𝐶𝑖
𝛿𝒙∗𝑖

)
= −𝒈𝑖

⇒
(
𝑯𝑖,𝑖 − 𝑯𝑖,𝐶𝑖𝑯

−1
𝐶𝑖 ,𝐶𝑖

𝑯�
𝑖,𝐶𝑖

)
𝛿𝒙∗𝑖 = 𝑯𝑖,𝐶𝑖𝑯

−1
𝐶𝑖 ,𝐶𝑖

𝒈𝐶𝑖 − 𝒈𝑖

⇒ 𝛿𝒙∗𝑖 =
(
𝑯𝑖,𝑖 + 𝑯𝑖,𝐶𝑖𝑼𝐶𝑖

)−1 (
𝑯𝑖,𝐶𝑖𝑯

−1
𝐶𝑖 ,𝐶𝑖

𝒈𝐶𝑖 − 𝒈𝑖
)
. (12)

Meanwhile, we also have the following relations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜕𝜙𝑖
𝜕𝛿𝒙𝑖

=

[
𝑰
𝑼𝐶𝑖

]
,

𝜕2𝜙𝑖

𝜕𝛿𝒙2𝑖
= 0,

∇𝐸𝐶𝑖 =

[
0

𝒈𝐶𝑖

]
,

𝜕∇𝐸𝐶𝑖

𝜕𝛿𝒙𝑖
=

𝜕2𝐸𝐶𝑖

𝜕𝒙𝜕𝒙𝑖
=

[
0

𝑯�
𝑖,𝐶𝑖

]
.

(13)

Note that 𝑯𝑖 in Eq. (6) is just 𝑯𝑖,𝑖 in Eqs. (7) and (10). Putting them
together with Eq. (13) back to Eq. (6), we obtain:

𝛿𝒙𝑖 =
(
𝑯𝑖,𝑖 + 𝑯𝑖,𝐶𝑖𝑼𝐶𝑖

)−1 (
𝑯𝑖,𝐶𝑖𝑯

−1
𝐶𝑖 ,𝐶𝑖

𝒈𝐶𝑖 − 𝒈𝑖
)
.

This shows that the local optimization using Eqs. (6) and (9) is
mathematically equivalent to solving the global Newton and satisfies
𝛿𝒙𝑖 = 𝑺𝑖𝒙∗. In other words, the resulting 𝛿𝒙𝑖 is second-order optimal.

4.3 Co-rotated Subspace

Computing 𝜙𝑘
𝑖 via Eq. (9) needs the current Hessian matrix 𝑯𝑘 (𝒙𝑘 ),

which varies under different mesh poses. Clearly, it is infeasible to
re-build 𝜙𝑘

𝑖 at each time step.
Recall that 𝜙𝑖 helps avoid overshoot because it brings awareness

of 𝐸𝐶𝑖 during the local solve. That said, the key to mitigating over-
shoot lies in how well 𝐸𝐶𝑖 (𝜙

𝑘
𝑖 ) is estimated. This requirement is less

stringent than demanding 𝜙𝑘
𝑖 = 𝛿𝒙∗. The latter always guarantees

that 𝐸𝐶𝑖 (𝜙
𝑘
𝑖 ) is exact; the reverse, however, does not always hold

true. Therefore, it suffices to construct alternative subspace function
𝜙𝑘
𝑖 such that 𝐸𝐶𝑖 (𝜙

𝑘
𝑖 ) closely matches 𝐸𝐶𝑖 (𝜙

𝑘
𝑖 ) even though 𝜙𝑘

𝑖 (𝛿𝒙𝑖 )
may not exactly align with 𝜙𝑘

𝑖 (𝛿𝒙𝑖 ).
The idea is to embed a co-rotated local frame at each mesh vertex.

Given the current deformation pose 𝒙𝑘 , we extract a local rotation
𝑹𝑘
〈 𝑗 〉

∈ 𝑆𝑂 (3) at vertex 𝑗 . Here, we use the subscripted notation

〈 𝑗〉 to denote the vertex index. 𝑹𝑘
〈 𝑗 〉

can be efficiently computed

by applying the polar decomposition over the local deformation
gradient at all the vertices in parallel. This local rotation captures
how an infinitesimal chunk of material around the vertex 𝑗 is rotated
w.r.t. its rest pose. As a rigid rotation preserves the elasticity energy,
we rotate the vertex back to this rest orientation without modifying
the energy it stores. Meanwhile, 𝜙 at the rest shape can be pre-
computed. Mathematically, this strategy builds 𝜙𝑘

𝑖 as:

𝜙𝑘
𝑖 = 𝑹𝑘

[
𝑰

−𝑯̄ −1
𝐶𝑖 ,𝐶𝑖

𝑯̄�
𝑖,𝐶𝑖

]
︸�����������������︷︷�����������������︸

𝑼̄𝑖

𝑹𝑘�

𝑖 𝛿𝒙𝑘𝑖 = 𝑹𝑘 𝑼̄𝑖𝑹
𝑘�

𝑖︸����︷︷����︸
𝑼𝑘
𝑖

𝛿𝒙𝑘𝑖 , (14)

where 𝑹𝑘 and 𝑹𝑘
𝑖 are two block-diagonal matrices whose 3 by 3

diagonal blocks are per-vertex local rotation matrix. At the current
Newton step, 𝑹𝑘 and 𝑹𝑘

𝑖 are constant. 𝑯̄ −1
𝐶𝑖 ,𝐶𝑖

𝑯̄�
𝑖,𝐶𝑖

is also constant

depending on the rest-shape Hessian 𝑯̄ . In other words, 𝜙𝑘
𝑖 remains

a linearized subspace at the current Newton linearization, and it
can also be efficiently constructed at different deformation poses
because 𝑯̄ −1

𝐶𝑖 ,𝐶𝑖
𝑯̄�
𝑖,𝐶𝑖

is pre-computable.

4.4 Discussion

The subspace function 𝜙𝑘
𝑖 plays a central role. It allows global aware-

ness by predicting how the global energy changes in response to
the local update 𝛿𝒙𝑖 . As a result, the local solve well aligns with
𝑺𝑖𝛿𝒙∗. 𝜙𝑘

𝑖 does not reduce the size of the local problem so that the
local solve remains in the 𝑁𝑖 -rank space. However, the remainder
part of the optimization (𝐸𝐶𝑖 ) is condensed to a subspace whose
generalized subspace coordinate is designed to be 𝛿𝒙𝑖 . While this is
a nonlinear subspace that varies w.r.t. deformation poses, it can be
linearized at each local quadratic approximation of 𝒙★. We design
an alternative formulation 𝜙𝑘

𝑖 to allow pre-computation for the most
expensive part of the subspace construction. As a result, the reduced

Hessian of
𝜕2𝐸𝐶𝑖

𝜕𝛿𝒙2𝑖
acts as a “damper” preventing the local solver from

reaching its local minimizer (and thus overshoots).
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The subspace function 𝜙𝑘
𝑖 can also be viewed as a type of in-

terpolation function that smoothly propagates 𝛿𝒙𝑖 to 𝛿𝒙 . To this
end, many interpolation algorithms may also help such as radial
basis function (RBF) [Botsch and Kobbelt 2005; Carr et al. 2001],
Green coordinates [Lipman et al. 2008; Michel and Thiery 2023],
Splines [Li et al. 2023; Liu et al. 2014], Harmonics [Jacobson et al.
2011; Lipman et al. 2010], or SPH kernels [Koschier et al. 2022].
However, those methods are geometry-based and do not reflect
the material property. For instance, 𝛿𝒙𝑖 produces more general and
global perturbations for stiff materials and more local and regional
perturbations for soft materials. The perturbations at 𝑥 , 𝑦, or 𝑧 coor-
dinates are also different given different constitutive models. After
all, geometry-based interpolation schemes are not designed to make
local solve second-order optimal i.e., 𝛿𝒙𝑖 = 𝑺𝑖𝛿𝒙∗. On the other
hand, 𝜙 performs like a material-aware shape function, expanding
the influence of a sub-problem towards the entire object.

5 Cubature Sampling

𝜙𝑘
𝑖 is linearized at the current deformation poses 𝒙𝑘 , and we have
𝜕𝜙𝑘𝑖
𝜕𝛿𝒙𝑖

= 𝑼𝑘
𝑖 and

𝜕2𝜙𝑘𝑖
𝜕𝛿𝒙2𝑖

= 0 per Eq. (14). Substituting them into Eq. (6)

with some manipulations gives the local system we need to solve:(
𝑯𝑘
𝑖,𝑖 + 𝑯̃𝑘

𝑖,𝑖

)
𝛿𝒙𝑘𝑖 = −𝒈̃𝑘𝑖 − 𝒈𝑘𝑖 , (15)

where

𝑯̃𝑘
𝑖,𝑖 = 𝑼𝑘�

𝑖

(
∇2𝐸𝑘𝐶𝑖

)
𝑼𝑘
𝑖 , 𝒈̃𝑘𝑖 = 𝑼𝑘�

𝑖 ∇𝐸𝑘𝐶𝑖
, (16)

are the reduced Hessian and gradient force. Eq. (15) is of low di-
mension and can be efficiently solved at each GPU thread. However,
its assembly is not, since 𝑼𝑘

𝑖 is a dense matrix. To exactly build

𝑯̃𝑘
𝑖,𝑖 and 𝒈̃

𝑘
𝑖 , one needs to traverse all the complementary DOFs and

project their Hessian and gradient into the column space of 𝑼𝑘
𝑖 . The

time complexity is 𝑂 (𝑁 · 𝑁 2
𝑖 ), and it needs to be done for all the

sub-problems.
A known solution was proposed in [An et al. 2008] a.k.a. Cubature.

Cubature is a sampling technique, which pre-computes a small group
of sample elements S𝑖 i.e., Cubature elements, and the associated
non-negative weights. The reduced Hessian and gradient force are
then approximated by:

𝑯̃𝑘
𝑖,𝑖 ≈

∑
𝑒∈S𝑖

𝑤𝑒 [𝑼
𝑘
𝑖 ]

�
𝑒 [∇

2𝐸𝑘𝐶𝑖
]𝑒 [𝑼

𝑘
𝑖 ]𝑒 , 𝒈̃

𝑘
𝑖 ≈

∑
𝑒∈S𝑖

𝑤𝑒 [𝑼
𝑘
𝑖 ]

�
𝑒 [∇𝐸

𝑘
𝐶𝑖
]𝑒 ,

(17)
where [∇𝐸𝑘𝐶𝑖

]𝑒 ∈ R
12 and [∇2𝐸𝑘𝐶𝑖

]𝑒 ∈ R
12×12 are the gradient and

Hessian of 𝐸𝑘𝐶𝑖
at the Cubature element 𝑒 . [𝑼𝑘

𝑖 ]𝑒 ∈ R
12×𝑁𝑖 is the

element subspace matrix, which extracts corresponding rows of 𝑒
from 𝑼𝑘

𝑖 .𝑤𝑒 is the non-negative weight coefficient.
Given a set of training poses T, the corresponding reduced gra-

dient (i.e., 𝒈̃ (1)
𝑖 ,..., 𝒈̃ ( |T | )

𝑖 ), and Cubature element set S𝑖 , the weight
coefficients at all the Cubature elements are computed via solving:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[𝒈̃ (1)
𝑖 ]1

‖𝒈̃ (1)
𝑖 ‖

· · ·
[𝒈̃ (1)

𝑖 ] |S𝑖 |

‖𝒈̃ (1)
𝑖 ‖

... · · ·
...

[𝒈̃ ( |T |)
𝑖 ]1

‖𝒈̃ ( |T |)
𝑖 ‖

· · ·
[𝒈̃ ( |T |)

𝑖 ] |S𝑖 |

‖𝒈̃ ( |T |)
𝑖 ‖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
𝑤1

...
𝑤 |S |𝑖

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒈̃ (1)
𝑖

‖𝒈̃ (1)
𝑖 ‖

...
𝒈̃ ( |T |)
𝑖

‖𝒈̃ ( |T |)
𝑖 ‖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (18)

using non-negative least square (NNLS). Several candidate Cuba-
ture elements are randomly picked from the non-Cubature elements,
and the one most effectively reduces the residual of Eq. (18) will
be included in S𝑖 . This procedure continues until the desired resid-
ual error is reached. We refer the reader to the seminal paper of
Cubature [An et al. 2008] for further details.

Cubature training is normally considered expensive, and accelera-
tion techniques are also available e.g., see [Von Tycowicz et al. 2013;
Yang et al. 2015]. The complexity of Cubature training is largely
due to repetitive NNLS solving, which scales up super-polynomially
when more Cubature samples are needed. The size of Cubature
sample set is linearly correlated with the size of the subspace i.e.,
|S𝑖 | ∝ 𝑁𝑖 . As a result, we only need a handful Cubature elements
e.g., four or six, for each sub-problem in our implementation (with
residual less than 1%), making Cubature training lightweight.
We would also like to mention that unlike most existing algo-

rithms for reduced simulation, which aim to construct a compact
subspace for deformation or displacement, our subspace depicts de-
formable perturbation 𝛿𝒙 . Therefore, 𝑼𝑘

𝑖 does not need to incorpo-
rate large deformation. To this end, our training poses are simply
low-frequency eigenvectors of the rest-shape Hessian matrix 𝑯̄ . In
addition, what we need is a good estimation of 𝐸𝐶𝑖 . The exactness
of Cubature gradient is of less importance – this is because our
primary goal is to estimate a reasonable “damping Hessian” to pre-
vent overshoot other than exactly minimize 𝐸. As a result, sparse
Cubature sampling is highly effective in our framework.

6 Full-coordinate Pre-computation

The co-rotated formulation allows the most expensive step in con-
structing 𝜙𝑘

𝑖 to be pre-computed as shown in Eq. (14). For each sub-
problem 𝑖 , the pre-computation solves 𝑯̄𝐶𝑖 ,𝐶𝑖 for 𝑁𝑖 times. 𝑯̄𝐶𝑖 ,𝐶𝑖 is
a (𝑁 −𝑁𝑖 )× (𝑁 −𝑁𝑖 ) matrix. It is nearly of the same scale as 𝑯̄ since
𝑁𝑖 is a small quantity. Performing such factorization for all the sub-
problems is extremely slow, which takes days for large-scale models.
We observe that while 𝑯̄𝐶𝑖 ,𝐶𝑖 differs across different sub-problems,
a significant portion of these matrices overlaps. This suggests a
brute-force computation would be inefficient and wasteful. Moti-
vated by this observation, we propose a full-coordinate formulation
for Eq. (7), which accelerates the pre-computation by three orders,
reducing the time required from days to tens of minutes.

We know that Eq. (7) builds 𝜙𝑘
𝑖 via a set of incremental equilibria.

Each column of 𝛿𝑭𝑖 embodies an external force at local DOFs, which
triggers a unit perturbation at a specific local DOF while keeping
other local DOFs fixed. The very same equilibrium can also be
achieved by directly prescribing local DOF values with 𝑁𝑖 position
constraints:

𝑯̄ 𝒖̄𝑖, 𝑗 = 0, s.t. 𝑺𝑖 𝒖̄𝑖, 𝑗 = 𝒆 𝑗 , for 𝑗 = 1, 2, · · · , 𝑁𝑖 , (19)

where 𝒆 𝑗 is the 𝑗-th column of 𝑰 , which is a vector of zeros with a
value of one at the 𝑗-th entry. 𝒖̄𝑖, 𝑗 ≠ 0 is the deformation variation
of the mesh induced by the constraint. The subscript 𝑖, 𝑗 suggests
constraints are imposed for the 𝑖-th sub-problem, whose 𝑗-th local
DOF is perturbed. This constrained linear system can be solved with
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the full coordinate and Lagrange multipliers such that:[
𝑯̄ 𝑺�𝑖
𝑺𝑖 0

] [
𝑼̄𝑖
𝚲𝑖

]
=

[
0

𝑰

]
. (20)

Here, 𝑼̄𝑖 = [𝒖̄𝑖,1, · · · , 𝒖̄𝑖,𝑁𝑖 ]. 𝚲𝑖 = −𝛿𝑭𝑖 are Lagrange multipliers.
Compared with Eq. (7), Eq. (20) solves both unknown DOFs and
multipliers, and it is normally considered less efficient. However,
because its top-left block becomes invariant for all the sub-problems,
we can leverage block-wise matrix inversion to re-use factorized 𝑯̄
without performing factorization of different 𝑯̄𝐶𝑖 ,𝐶𝑖 repeatedly.

The block-inverse of the l.h.s. of Eq. (20) gives:[
𝑯̄ 𝑺�𝑖
𝑺𝑖 0

]−1
=

[
𝑯̄ −1 + 𝑯̄ −1𝑺�𝑖 𝑮̄𝑖𝑺𝑖 𝑯̄ −1 −𝑯̄ −1𝑺�𝑖 𝑮̄𝑖

−𝑮̄𝑖𝑺𝑖 𝑯̄ −1 𝑮̄𝑖

]
,

(21)

where 𝑮̄𝑖 = −
(
𝑺𝑖 𝑯̄ −1𝑺�𝑖

)−1
is the inverse of Schur complement of

𝑯̄ . Inverting Eq. (20) leads:[
𝑼̄𝑖
𝚲𝑖

]
=

[
𝑯̄ 𝑺�𝑖
𝑺𝑖 0

]−1 [
0

𝑰

]
, (22)

which shows that:
𝑼̄𝑖 = −𝑯̄ −1𝑺�𝑖 𝑮̄𝑖 . (23)

During the pre-computation, we only factorize 𝑯̄ once, which is
shared by all the sub-problems without factorizing different 𝑯̄𝐶𝑖 ,𝐶𝑖

at individual sub-problems. 𝑮̄𝑖 ∈ R
𝑁𝑖×𝑁𝑖 is a small matrix and can

be efficiently calculated by solving 𝑯̄ for 𝑁𝑖 times. As a result, the
pre-computation of a sub-problem only needs 2𝑁𝑖 forward and
backward substitutions of 𝑯̄ , and such computation can be trivially
parallelized at all the sub-problems.

7 Incremental Potential Contact

Collisions among deformable objects can also be considered as a
type of potential energy and uniformly encoded in the variational
optimization. A representative paradigm is the incremental potential
contact or IPC [Li et al. 2020a]. IPC is a primal implementation of the
interior-point method, which injects a logarithmic barrier energy
into Eq. (1), defined at each surface primitive pair 𝑙 :

𝐵𝑙 (𝑑𝑙 , 𝑑) =

{
−(𝑑𝑙 − 𝑑)2 log

(
𝑑𝑙
𝑑

)
, 0 < 𝑑𝑙 < 𝑑

0, 𝑑𝑙 ≥ 𝑑
. (24)

𝑑 is a user-specified parameter prescribing the collision tolerance. 𝐵𝑙
becomes “active” if the closest distance between a collision pair (i.e.,
𝑑𝑙 ) is smaller than 𝑑 , and it approaches to +∞ as 𝑑𝑙 approaches to 0.
Intuitively, IPC offers a nonlinear penalty mechanism pushing a pair
of colliding primitives, e.g., a vertex-triangle pair or an edge-edge
pair, away from each other when they are in proximity.

Our method approaches improved convergence from an optimiza-
tion point of view. As a result, it is compatible with IPC or other
implicit penalty methods as long as the collision resolution is in the
form of an unconstrained optimization. The key adaptation is to
accommodate 𝜙𝑖 with collisions and contacts. When a vertex 𝑉 on
model𝐴 is in contact with another object 𝐵 𝜙𝑖 does not only concern
the total energy on 𝐴 but also has a non-vanishing influence on the
energy on 𝐵. In other words, 𝐴 and 𝐵 become two-way coupled by
the contact at the vertex. The value of the subspace basis on 𝐴 is

pre-computed. While the values of 𝜙𝑖 at 𝐵 can be approximated by
assuming all the colliding vertices on 𝐵 have the same perturbation
as𝑉 . This strategy assumes IPC or the contact penalty is much stiffer
than the elasticity stiffness, and the variation of the perturbation
within the sub-problem is ignored.

8 Experimental Results

We implemented our pipeline on a desktop computer with an intel
i7-12700 CPU (for pre-computation) and an Nvidia 3090 RTX GPU.
We used Spectra library for computing the eigendecomposition of
the rest-shape Hessian matrix 𝑯̄ . It should be noted that our frame-
work can be conveniently deployed with other parallel computing
platforms, such as multi-core CPUs. Nevertheless, this section re-
ports the simulation performance and results based on our GPU
implementation. Tab. 1 lists detailed experiment setups and timing
information. For all the examples, we normalize the scene into a
one-by-one-by-one unit cube and use the change of position of the
object between two consecutive iterations i.e., ‖Δ𝒙 ‖ as a simple and
uniformed measure for convergence check. Please also refer to the
supplementary video for more animation results.

8.1 Parallel Implementation

Our method is generic and does not impose restrictions on how a
sub-problem should be specified. In our implementation, we assign a
sub-problem at each mesh vertex, making 𝑁𝑖 = 3. The local Newton
relaxation needs to tackle a 3-by-3 system, which can be analytically
computed. In theory, the positive definiteness of the local Newton
system should be taken care of as explained in [Smith et al. 2018].
We note that the local solve is regularized by 𝑯̃𝑖,𝑖 i.e., see Eq. (15),
which is sampled at multiple remote Cubature elements. In practice,
we would not worry about numerical issues of our local solve since
this reduced Hessian is always well-conditioned.
The implementation of Jacobi parallelization is straightforward.

When sub-problems are at vertices, one Jacobi iteration solves all the
sub-problems at vertices in parallel. No averaging is needed. How-
ever, if the sub-problem is defined for multiple vertices e.g., at an
element as in [Lan et al. 2023], a Jacobi iteration also averages dupli-
cated DOFs shared by neighboring sub-problems. Because our local
solve is nearly optimal 𝛿𝒙𝑖 ≈ 𝑺𝑖𝛿𝒙∗, bigger-size sub-problems do not
improve the convergence obviously, and lighter local solve should
be favored. GS parallelization puts independent sub-problems into
groups using graph coloring algorithms [Fratarcangeli et al. 2016].
One GS iteration traverses all the sub-problems of all groups. If
GS parallelization is used, we consider all the sub-problems within
one group as a generalized sub-problem and pre-compute the corre-
sponding𝜙𝑘

𝑖 for each group as a whole. Because all the sub-problems
within a group are independent, the local Hessian is block-diagonal.
In other words, the pre-computation effort is as light as the Jacobi
parallelization. The only difference lies in the computation of 𝑼̄𝑖 .
When GS parallelization is chosen, the constraint in Eq. (19) applies
one unit perturbation at a specific DOF of the current generalized
sub-problem, while keeping all the other DOFs of the generalized
sub-problem fixed. Nevertheless, we do not observe any noticeable
difference between Jacobi and GS parallelization — both converge
at the rate of Newton’s method even under large time steps.
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Table 1. Experiment statistics. This table reports time statistics and simulation setups for all the experiments mentioned in the paper. # Element gives the

total number of elements in the example. # DOF is the total number of simulation DOFs. |S𝑖 | is the size of Cubature samples used for each sub-problem,

knowing that each sub-problem has three DOFs. ‖Δ𝒙 ‖ is the convergence condition. ℎ gives the time step size used for the simulation. Parallelism tells if the

parallelization is in a Jacobi way or a GS way i.e., Jacobi or GS. The difference between those two parallelization methods is negligible. The column of Collision

shows what method is used for collision resolution, using either the implicit penalty method (Penalty) or incremental potential contact (IPC). # Iteration
reports the average number of iterations needed to simulate a time step. Pre. time is the total time used for pre-computation, and Sim. time is the average

simulation time for simulating one time step. We also report the acceleration rate our method offers compared with VBD [Chen et al. 2024c] if the collision is

processed with the penalty method or GPU-IPC [Guo et al. 2024] if the collision is processed with the IPC barrier. We use stable Neo-Hookean model [Smith

et al. 2018] for all the deformable body experiments. For cloth simulation result i.e., Fig. 13, we use StVK model to capture the in-plane deformation, and

quadratic bending for the out-of-plane deformation.

Scene # Element # DOF |S𝑖 | ℎ ‖Δ𝒙 ‖ Parallelism Collision # Iteration Pre. time Sim. time

Teaser (Fig. 1) 3.5M 4.4M 4 1/120 1𝐸 − 3 GS Penalty 55 37 min. 855 ms (∞×)

Falling Armadillos (Fig. 4) 6M 3.6M 4 1/150 5𝐸 − 4 Jacobi Penalty 58 52 min. 883 ms (78×)

House of cards (Fig. 5) 394K 372K 4 1/50 1𝐸 − 3 Jacobi IPC 23 1 min. 31 ms (120×)

Dragon (Fig. 6) 100K 80K 6 1/100 1𝐸 − 3 Jacobi Penalty 9 7 min. 7.3 ms (32×)

Letters soft (Fig. 7) 2.1M 1.7M 6 1/120 5𝐸 − 4 GS Penalty 27 37 min. 176 ms (43×)

Barbarian ships (Fig. 8) 2.5M 2.1M 4 1/120 3𝐸 − 4 Jacobi Penalty 34 45 min. 333 ms (153×)

Jack-o′-lanterns (Fig. 9) 6.7M 5.7M 4 1/120 5𝐸 − 4 GS Penalty 32 4 min. 753 ms (40×)

Squeezed puffer ball (Fig. 10) 1.3M 0.9M 6 1/150 3𝐸 − 4 Jacobi Penalty 69 67 min. 290 ms (173×)

Cactus (Fig. 11) 1.2M 1M 4 1/150 1𝐸 − 3 Jacobi IPC 40 18 min. 171 ms (82×)

Animal corossing (Fig. 12) 4.8M 4.5M 4 1/150 1𝐸 − 3 GS IPC 43 10 min. 684 ms (136×)

Cloth (Fig. 13) 2M 3M 4 1/120 1𝐸 − 3 Jacobi IPC 42 48 min. 469 ms (103×)

8.2 Overshoot Comparison

We illustrate the issue of overshoot and compare our method with
several well-known parallelable algorithms, including XPBD [Mack-
lin et al. 2016], projective dynamics (PD) [Bouaziz et al. 2014], vertex
block descent (VBD) [Chen et al. 2024c], and second-order stencil de-
scent (2nd SD) [Lan et al. 2023]. XPBD and PD are widely known for
their efficiency and convenient parallelization. A limitation of XPBD
or PD is their reliance on the idealization of the material. To make
the comparison objective, we use the as-rigid-as-possible (ARAP)
material [Igarashi et al. 2005], which can be naturally handled with
XPBD and PD.

The direct way to quantify overshoot is to measure the difference
between 𝒙𝑖 and 𝑺𝑖𝒙∗ for sub-problem 𝑖 . We use a standard simulation
setup, where a rectangular beamwith one end fixed at the wall bends
down under its gravity. At a specific frame, we simulate the mesh
displacement for the next time step with ℎ = 1/100 using global
Newton’s method. The global convergence condition is set as the
relative residual force error being smaller than 1𝐸 − 4. The resulting
deformation 𝒙∗ serves as the reference for this comparison. After
that, we use different algorithms to simulate the same frame with
the same material parameters. We pick one tetrahedron element
and plot the variation of ‖𝒙𝑖 − 𝑺𝑖𝒙∗‖ w.r.t. the number of parallel
iterations using different methods.
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Fig. 2. Overshoot of local solvers. We plot the

relative error between 𝒙𝑖 and 𝑺𝑖𝒙∗ such that 𝒙𝑖 is
the position of a tetrahedron element obtained by

different local solvers, including XPBD [Macklin

et al. 2016], PD [Bouaziz et al. 2014], VBD [Chen

et al. 2024c], 2nd SD [Lan et al. 2023], and our

method. Our method converges as fast as New-

ton’s method does, and the error reaches 1𝐸 − 3
with just three iterations. The other methods

barely make progress even after 20 iterations.

The curves high-
light the overshoot
problem of existing
methods as shown in
Fig. 2. Our method
shows a strong qua-
dratic convergence and
pushes 𝒙𝑖 to the refer-
ence with only a hand-
ful of iterations. On
the other hand, ex-
isting methods such
as XPBD, PD, and
VBD barely improve
𝒙𝑖 even after 20 itera-
tions. 2nd SD, due to
its bigger sub-problem
size and hybrid paral-
lelization scheme, de-
livers a better convergence. But it still gets outperformed by our
method by a significant margin. In fact, it will take over 500 VBD,
PD, or XPBD iterations in this example to reduce the relative er-
ror to the order of 1𝐸 − 3, whereas our method only needs three
iterations. The cost of our method for completing one iteration is
slightly higher than VBD or XPBD because of extra computations
for Cubature elements. Overall, our method is more than 50× faster
than XPBD, PD, VBD or 2nd SD in this example.
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8.3 Comparison with VBD & 2nd SD

Fig. 3. Comparison with VBD

& 2nd SD. The Armadillo model

consists of 1M vertices and 3.4M
elements. We fix its left hand and

drag the right leg downwards to

produce a large-scale body defor-

mation. We record the total num-

ber of iterations needed for this

example using VBD [Chen et al.

2024c], 2nd SD [Lan et al. 2022],

and our method under different

material stiffness with ℎ = 1/100.
Ourmethod is 15× faster than 2nd

SD and 40× faster than VBD. Af-

ter further increasing the stiffness

of the Armadillo by 20 times, our

method is 34× faster than 2nd SD,

and 137× faster than VBD ( VBD

switches to a highly conservative

time step of ℎ = 1/20000).

We regard VBD from Chen et al.
[2024c] and 2nd SD from Lan et al.
[2023] as our most relevant com-
petitors. Both VBD and 2nd SD use
Newton’s method to handle sub-
problems. The key difference is that
VBD sets a sub-problem as a vertex
(i.e., same as our implementation),
while 2nd SD uses a tetrahedron el-
ement as a sub-problem. They offer
different trade-offs: VBD has better
parallelization but converges slower
for large time steps or stiff materi-
als. 2nd SD converges better, but lo-
cal solve is much more expensive,
which solves a 12 by 12 system. As
shown previously in Fig. 2, both
VBD and 2nd SD suffer from the
overshoot problem.

To further elaborate on the differ-
ence among those peer paralleliza-
tion strategies, we simulate an Ar-
madillo model with its left hand
fixed by applying a sharp and big
force at the right foot to gener-
ate large-scale body deformation
(Fig. 3). There are 1M vertices and
3.4M elements on the model. We
compare the average number of it-
erations needed to simulate one
time step using VBD, 2nd SD, and
our method under different material
stiffness with ℎ = 1/100. The con-
vergence condition is set as ‖Δ𝒙 ‖ <
1𝐸 − 4. The material model is sta-
ble Neo-Hookean [Smith et al. 2018].
On average, it takes 34 Newton iterations to simulate one time
step, and our method needs 38 (Jacobi) iterations. The Newton
method takes approximately 150 seconds per iteration to perform
the Cholesky decomposition using the MKL PARDISO solver, while
our method takes only 11 ms to complete an iteration. 2nd SD needs
74 hybrid iterations. 2nd SD is about 15× more expensive than our
method at each iteration. Therefore, our method is ∼ 30× faster
than 2nd SD. VBD needs 2, 264 iterations to converge one time step,
and our method is 40× faster. We then increase the stiffness of the
Armadillo for 20 times and run the same simulation with these
methods keeping ℎ = 1/100. In this case, the Newton iteration count
increases to 58, and our method needs 64 iterations. 2nd SD uses 142
iterations on average, and VBD fails to converge even after 10, 000
iterations. VBD becomes convergent when ℎ is reduced to 1/20000,
and it still needs more than 440 iterations for one time step. This is
equivalent to using 8, 800 iterations to simulate 1/100 real-world sec-
onds. In this example, our method is 137× faster. The performance
of VBD becomes even worse under intensive collisions.

Fig. 4. Falling Armadillos. Six Armadillo models consist of 1.2M vertices

and 6M elements. They collide with each other while falling into a container.

Ourmethod requires an average of 58 iterations per time stepwithℎ = 1/150,
compared to 44 iterations for the projected Newton method. However, our

method requires only 883ms per step, achieving a speedup of approximately

8000× compared to the projected Newton method, which takes 106minutes

per step.

It now becomes clear that the excellent performance of VBD
heavily relied on small time steps and soft materials. 2nd SD offers a
more robust solution for stiff simulations. Unfortunately, both VBD
and 2nd SD suffer from overshoot. While our method is orders-of-
magnitude faster. The advantage becomes more noticeable in stiffer
simulations.

8.4 Comparison with Projected Newton Method

We also compare our method with the projected Newton method us-
ing GPU-based direct solvers. In each iteration, the Newton method
performs Cholesky decomposition of a large-scale sparse linear sys-
tem, which leads to significant computational overhead. In contrast,
our method decomposes the global system into smaller 3 by 3 sub-
systems, achieving significant acceleration by fully exploiting GPU
parallelism.

As shown in Fig. 4, we simulate six Armadillo models falling into
a container, where Armadillos undergo mutual collisions. These six
Armadillos contain 1.2M vertices and 6M elements. At this scale,
a Cholesky decomposition used for the Newton method takes ap-
proximately 150 seconds. We use ℎ = 1/150 and resolve collisions
using the implicit penalty method. The projected Newton method
requires an average of 44 iterations to complete a simulation step.
Our method requires 58 iterations under the Jacobi parallelization
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Fig. 5. House of cards. A stack of 155 cards is initially balanced through

frictional contacts using IPC barriers [Li et al. 2020a]. The house of cards

collapses under a high-velocity impact from two boxes. Each card has 2, 543
elements. The greed cards are 200 times more stiffer than red ones. Our

method takes 31ms to simulate one frame, which is over 1, 000× faster than

CPU-based Newton IPC. VBD does not converge in this example.

Fig. 6. Real-time simulation. Our method enables real-time simulation

of complex deformable bodies. The dragon has 100K elements, and it can

be simulated in real time under user manipulations. With ℎ = 1/100, our
method takes fewer than 10 iterations to simulate one frame. The runtime

simulation exceeds 120 FPS in this example, including collision detection.

(e.g., need slightly more iterations compared with Newton). How-
ever, each iteration only needs 15 ms. As a result, our method is
approximately 8, 000× faster than the projected Newton method.

8.5 Collision

Our method is compatible with existing collision processing algo-
rithms such as IPC [Li et al. 2020a] or penalty method [Wu et al.
2020], as long as the simulation can be formulated as an uncon-
strained optimization. An example is shown in Fig. 5, where a “house
of card” is structured by 155 cards. The green cards are 200 times
more stiffer than red cards. They stack each other the frictional
contacts. Two heavy cubes fall, and the card stacking collapses by

Fig. 7. Stiff and soft letters. Five sets of “SIGGRAPH” letters fall on the

floor. The letters on the top row are 1, 000 times more stiffer than the ones

in the bottom row. Our method is not sensitive to the variation of material

stiffness. For each time step, it needs 34 iterations for the stiff letters and

27 iterations for the softer letters. 2nd SD and VBD fail to converge when

simulating the stiff letters.

this external impact. There are 394K elements in this simulation.
Our method uses 31 ms to simulate one time step (ℎ = 1/50), which
is over 1, 000× faster than CPU-based IPC simulation and more
than 120× faster than Newton-Krylov-based GPU solvers [Guo et al.
2024]. VBD does not converge in this problem due to the existence
of a highly nonlinear barrier (even under ℎ = 1/5000).

8.6 Soft & Stiff Simulations

Ourmethod exploits𝜙 to estimate the global energy variation during
the local solve. Solving 𝑯̄𝐶𝑖 ,𝐶𝑖 incorporates the material properties
of the body at complementary DOFs. This makes our method less
sensitive to material variations. Meanwhile, most known parallel
algorithms prefer softer simulations over stiffer simulations because
DOFs are more strongly coupled with stiff materials, and the local
optimum of a sub-problem is more likely to overshoot (e.g., see
the comparison of Fig. 3). In addition to Fig. 5, we show two more
examples in Figs. 1 and 7 involving both soft and stiff objects. In
Fig. 1, we simulate the dynamics of ten puffer balls sliding from
stairs into a glass container from both sides. There are 3.5M elements
in this example. Blue puffer balls are 20 times softer than the red
puffer balls. Our method needs 55 iterations to simulate one time
step (ℎ = 1/120). VBD does not converge in this example even
under ℎ = 1/360. If all the puffer balls are soft ones, VBD becomes
converging but is 122× slower than our method.

Another example is reported in Fig. 7, where we drop five sets of
“SIGGRAPH” letters on the ground. The letters on the top are 1, 000
times stiffer than the ones at the bottom. Our method handles both
simulations stably using similar numbers of iterations i.e., 27 itera-
tions for soft letters and 34 iterations for hard letters). Meanwhile,
neither VBD nor 2nd SD converges for hard letters.

ACM Trans. Graph., Vol. 44, No. 4, Article 44. Publication date: August 2025.



JGS2: Near Second-order Converging Jacobi/Gauss-Seidel for GPU Elastodynamics • 44:11

Fig. 8. Barbarian ships. Five barbarian ships fall and interact with multiple thin rods between two walls. There are more than 2.5M elements in this example.

Our method uses 333 ms to simulate one time step using penalty forces. Our simulation is 153× faster than VBD.

Fig. 9. Jack-o′-lanterns. 850 Halloween jack-o′-lanterns fall into a container with a deformable tree, and they fully bury the tree eventually. There are 6.7M
elements in this example in total. Our method takes 753 ms for each time frame, which is 40× faster than VBD.

8.7 Real-time Simulation

Our method enables real-time elastic simulation of complicated
shapes of real-world material. Fig. 6 shows snapshots of screen
records of a real-time simulation of a dragon. The user interactively
manipulates the Neo-Hookean dragon [Smith et al. 2018], which
consists of 100K elements, and the simulation runs in real-time at
more than 100 FPS following the user inputs.

8.8 More Results

We show more large-scale simulation results using our method.
All of these examples involve complex shapes and high-resolution
models. Fig. 8 reports an example of simulating five barbarian ships.
Each barbarian ship has 500K elements, and the simulation handles
2.5M elements. Under ℎ = 1/120, our method needs 34 iterations
on average, and the solving time for each time step is 333 ms. This
is 153× faster than VBD. In Fig. 9, we keep dropping deformable
Jack-o′-lanterns into a container with an old tree until the tree is
fully buried by the lanterns. There are 6.7M DOFs and 850 pumpkins
in this simulation. Our method is 40× faster than VBD.
The reader may notice the different performance gains in those

two examples, and the improvement of our method tends to become
less pronounced in Fig. 9. This is because deformable bodies in Fig. 9
do not have a large number of elements compared with the ship
model in Fig. 8. Isolated DOFs on different objects are naturally

decoupled, and the local solver is less likely to overshoot. To verify
this, we show another challenging simulation in Fig. 10. In this
example, we simulate a puffer ball with 1.2M elements (i.e., it is of
higher resolution than the puffer ball model used in Fig. 1) falling
into an elastic net of 588 rings and 329K elements. The net twists
and squeezes the puffer ball. In this example, our method is 173×
faster than VBD.

Our method works with IPC as well [Li et al. 2020a]. An example
is given in Fig.11, where six bone dragons fall into a cactus bush
with high velocities. The impacts from the dragon trigger significant
dynamics at the cactus. The use of IPC ensures the simulation is
free of interpenetration, and frictional contacts between the bone
dragons and cactus are also accurately captured. Compared with
vanilla IPC, which solves the global Newton at each iteration, our
method is about 5, 000× faster. This speedup is a rough estimation,
as we have not completed this simulation on CPU IPC. Compared
with GPU-IPC [Guo et al. 2024], our method is 82× faster. There
are 1M DOFs in the simulation, and our method takes 171 ms to
simulate one frame. Another example is shown in Fig. 12, where
500 small animals drop into a tank. After that, we use a glassy plane
to press all the animals and release the constraint suddenly, making
all the animal toys bounce back up. Those little toys are of different
stiffness. In this example, there are 4.8M elements, and it is 70×
faster than GPU projective dynamics [Lan et al. 2022].
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Fig. 10. Squeeze puffer ball. In this simulation, we drop a puffer ball into a soft elastic chain. The puffer ball, comprising 1.2M elements, interacts with an

elastic net made up of 588 rings and 329K elements, connected via ring-ring contacts. As the ball descends, the net twists and compresses it, demonstrating

the effects of tightly coupled contacts and elasticity. This simulation runs with a time step of ℎ = 1/150, and each time step takes 290 ms. Our method is 173×
faster than VBD.

Fig. 11. Bone dragons from the sky. Six bone dragons fall into the cactus bush. There are 1.2M elements in the simulation, and we use IPC to robustly

process high-velocity collisions between bone dragons and cacti, as well as self-collisions among cacti. In this example, our method is over 82× faster than

GPU-based IPC simulation [Guo et al. 2024].

Ourmethod is also able to handle co-dimensional models like thin-
shell and cloth. To this end, we show the result of a high-resolution
cloth simulation in Fig. 13. The tablecloth consists of 2M triangles
and over 3M DOFs. It is displaced to cover a helicopter model from
the top. Our method captures detailed wrinkles of the cloth during
the movement, and it converges with about 42 iterations on average.
In this example, our method is three orders faster than CPU-based
C-IPC [Li et al. 2020b].

9 Conclusion & Future Work

In this paper, we explore the problem of overshoot in parallel de-
formable simulation. When overshoot occurs, the local solver over-
aggressively reduces its local target, and the resulting DOFs’ update
negatively impacts the target function at other areas on the de-
formable body. We give a second-order optimal solution to avoid
overshoot and make this procedure pre-computable. This leads
to a new GPU simulation algorithm that possesses both excellent
parallelism and (near) second-order convergence. We have tested
our method on a wide range of large-scale simulation scenes. Our

method constantly outperforms existing GPU simulation algorithms
by orders, making real-time simulation of complicated deformable
objects possible.
Our method also has some limitations. Our method needs to

build a local subspace at each sub-problem and carry out Cubature
training for co-rotationed basis vectors. Such pre-computation is
slow and could impose practical inconvenience. The second-order
convergence depends on the quadratic approximation of the global
optimal 𝐸★ i.e., see Eq. (2). When Newton’s approximation is less
appropriate and ‖𝛿𝒙𝑘 ‖3 is a relatively big quantity, our method does
not converge quadratically. This could happen when the variational
optimization involves highly nonlinear terms such as the IPC barrier.
Line search is then needed. Fortunately, line search can be done at
each sub-problem in parallel. As a result, our method remains orders-
of-magnitude faster than global IPC solvers. While our algorithm
pushes the simulation performance to a new level, collision detection
becomes the new bottleneck. We demonstrate the feasibility and
potential of our method in the context of hyperelastic simulation,
yet the proposed algorithm is actually a general-purpose parallel
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Fig. 12. Animal crossing. 500 small animal toys fall into the tank, and there are 4.8 elements in this example. A glass plane is then pushed down to compress

all these little toys. After the removal of the plane, the compressed animals bounce back into the air. Animals have different stiffness Our method takes 684 ms

to simulate one time step, which is 70× faster than GPU projective dynamics [Lan et al. 2022], and 136× faster than GPU-IPC [Guo et al. 2024].

Top view

Fig. 13. Cover the helicopter. Our method is not limited to deformable simulation and can also be readily used for thin-shell and cloth simulation. In this

example, a piece of tablecloth covers a helicopter. It is displaced back and forth, generating detailed wrinkles. There are 3M DOFs in the simulation. We use

IPC to process collisions between the cloth and the helicopter as well as the self-collision on the cloth. It takes 469 ms to simulate one frame, and our method

is 12, 00× faster than co-dimensional IPC [Li et al. 2020b].

optimization procedure. Therefore, it is of great interest for us to
apply our method in other simulation and graphics problems. The
key difficulty is still how to find a pre-computable 𝜙 to efficiently
and effectively estimate the global energy variation. We believe a
data-driven approach, i.e., a deep learning perspective may be a
good answer to this challenge, which could offer a case-by-case
optimized setup for different computational problems.
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