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Fig. 1. GarmageNet in Action: A diverse and sophisticated collection of garment assets automatically generated by our GarmageNet framework, along with

their corresponding Garmages—our unified 2D–3D representation that encodes both sewing patterns and detailed geometry for seamless integration with

existing garment modeling workflow. Altogether, GarmageNet generates garments across the spectrum of design complexity: from intricate multi-layered

ensembles (3rd and 5th) and striking asymmetric styles (2nd and 4th) to form-fitting corsets requiring precise drape and structural fidelity (1st).

Realistic digital garment modeling remains a labor-intensive task due to

the intricate process of translating 2D sewing patterns into high-fidelity,

simulation-ready 3D garments. We introduce GarmageNet, a unified gen-

erative framework that automates the creation of 2D sewing patterns, the

construction of sewing relationships, and the synthesis of 3D garment initial-

izations compatible with physics-based simulation. Central to our approach

is Garmage, a novel garment representation that encodes each panel as a

structured geometry image, effectively bridging the semantic and geometric

gap between 2D structural patterns and 3D garment shapes. GarmageNet

employs a latent diffusion transformer to synthesize panel-wise geometry

images and integrates GarmageJigsaw, a neural module for predicting point-

to-point sewing connections along panel contours. To support training and

evaluation, we buildGarmageSet, a large-scale dataset comprising over 10,000

professionally designed garments with detailed structural and style anno-

tations. Our method demonstrates versatility and efficacy across multiple

∗Equal contribution and work conducted at Style3D Research.
†Corresponding author.

application scenarios, including scalable garment generation from multi-

modal design concepts (text prompts, sketches, photographs), automatic

modeling from raw flat sewing patterns, pattern recovery from unstruc-

tured point clouds, and progressive garment editing using conventional

instructions-laying the foundation for fully automated, production-ready

pipelines in digital fashion. Our code and dataset will be publicly available.

CCS Concepts: • Computing methodologies → Shape modeling; Re-

construction; Hierarchical representations; Shape representations.

Additional Key Words and Phrases: Garment Modeling, Garment Dataset,

Diffusion Generation

1 INTRODUCTION

Realistic digital clothing plays a vital role in entertainment and

gaming by enhancing character immersion, and in fashion and

e-commerce by accelerating product development and reducing

costs. Despite this demand, 3D garment modeling—which spans



line-art creation, sewing pattern generation, and physics-based sim-

ulation—remains labor-intensive and technically complex. While

learning-based methods have made notable strides in 2D design,

automating the full pipeline is still challenging due to intricate ge-

ometry and expert-dependent tasks such as manual pattern drafting

and garment initialization. These slow, skill-intensive processes

are poorly suited to the fast fashion industry’s need for speed and

scalability. As deep neural networks (DNN) continue to advance, a

central question emerges: can they truly automate sewing pattern

generation and simulation-ready 3D garment modeling?

Garments are constructed from multiple flexible 2D panels joined

through sewing patterns that define their final 3D shape, motion,

and fit on the human body. The core challenge in digital garment

modeling lies in capturing both 3D continuous geometry and 2D

discrete structure. These patterns are not just templates. They en-

code vital semantic information that governs the transformation

from 2D fabrics to complex 3D garments. Effective modeling must

therefore preserve both 3D geometric integrity for realistic draping

and appearance, and 2D structural correctness to maintain sewing

relationships. Without a carefully designed representation, enforc-

ing such structural constraints within neural networks can limit

their flexibility and compromise geometric fidelity. To be fully ef-

fective and efficient, learning-based garment modeling must bridge

the gap between 2D structural patterns and 3D garment geometry.

Recent learning-based approaches have made strides in garment

modeling but remain constrained by trade-offs between 2D struc-

ture and 3D fidelity. Forward garment modeling operates in the

sewing-pattern domain. They leverage sequential or diffusion-based

frameworks to generate either vector-quantized sewing patterns

with edge-wise sewing correspondence and rigid-transformation

based 3D initialization [He et al. 2024; Li et al. 2025; Liu et al. 2024a;

Nakayama et al. 2024], or to emit the parameters and programs of a

parametric pattern-making DSL such as GarmentCode [Bian et al.

2024; Korosteleva and Sorkine-Hornung 2023; Zhou et al. 2024].

These methods then employ conventional cloth simulators to drape

the generated patterns onto a target avatar. Although they preserve

structural correctness by explicitly generating sewing patterns, they

lack complete spatial context and therefore often fail to reproduce

fine fold details and realistic drape geometry (Figure 2 (b)). In con-

trast, Backward garment modeling [Rong et al. 2024; Tochilkin et al.

2024; Xiang et al. 2024; Yu et al. 2025a; Zhang et al. 2024; Zhao et al.

2025] follows a geometry-first strategy, and mapping multi-modal

design inputs directly into a draped 3D garment. These methods

often employ continuous, optimizable implicit representations, such

as distance or occupancy fields, as their underlying encoding to

preserve geometric fidelity. However, because the structural infor-

mation in UV or sewing pattern space is inherently discrete and

discontinuous, making it difficult to integrate into such represen-

tations. As a result, these methods discard structural information

at the representation level (Figure 2 (c)), rendering it extremely

challenging, if not impossible, to recover sewing patterns after gen-

eration [Srinivasan et al. 2025; Yu et al. 2024]. These limitations

highlight the need for a unified framework that combines the struc-

tural integrity of 2D sewing patterns, the geometric precision of

3D drapes, and seamless compatibility with physics-based cloth

simulation workflows—precisely the objectives of GarmageNet.

Fig. 2. Problems in forward modeling and backward modeling. The magic

of wearing (a) indicates that the same sewing pattern could lead to various

draping statuses, raising the problem of ForwardModeling, which focuses

on sewing pattern structure but fails to ensure draping alignment with the

input (b). On the other hand, Backward Modeling focuses on draping

alignment but fails to preserve structure integrity in UV space (c).

In this paper, we introduce GarmageNet, the first unified frame-

work, to our knowledge, that automatically generates 2D sewing

patterns, infers sewing relationships, and produces simulation-ready

3D garment initializations. GarmageNet enables a variety of practi-

cal applications, including scalable garment generation from multi-

modal design concepts (text prompts, sketches, photographs), au-

tomatic modeling from raw flat sewing patterns, pattern recovery

from unstructured point clouds, and progressive garment editing

via conventional instructions.

At the core of GarmageNet is a novel garment representation

called Garmage, designed to bridge the gap between 2D sewing

patterns and 3D garment geometry by drawing inspiration from

geometry images [Gu et al. 2002]. A Garmage consists of a structured

set of per-panel geometry images, where sewing patterns define

the UV space, the alpha channel encodes the 2D panel contour,

the 2D bounding box captures the length–width ratio, and the 3D

bounding box represents the spatial relationship of the panel to the

human body. Serving as both a 2D image-based and 3D geometric

representation, Garmage offers two key advantages: it retains the

flexibility of standard image formats for easy integration with image-

based algorithms, and it enables direct reconstruction of simulation-

ready 3D garments.

Building upon Garmage, our GarmageNet formulates garment

synthesis as a latent diffusion process. It first learns a compact man-

ifold of admissible garment panel variations by encoding each cloth

piece’s quasi-static 3D geometry and corresponding 2D panel shape

into a fixed-size latent token. Leveraging this latent space as a strong

prior, we then introduce a diffusion transformer (DiT) that learn-

ing to produces valid assemblies of these latent tokens, ultimately

yielding a complete Garmage capable of precisely delineating de-

tailed 3D garment geometry while preserving panel-wise structural

information.

To integrate Garmage into existing garment modeling pipelines,

we propose GarmageJigsaw, a model for recovering sewing rela-

tionships between Garmage panels. Unlike traditional curve-based

stitching definitions, GarmageJigsaw defines sewing as point-to-

point connectivity along panel boundaries, extracted from Gar-

mage’s alpha channel. The model consists of two neural compo-

nents: a Point Classifier to identify stitching points, and a Stitch

Predictor to infer stitching pairs. Panel contours are then converted

into Bézier curves using angle-detecting convolutional kernels to
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identify corners, and predicted point-to-point stitches are refor-

matted into edge-to-edge connections to ensure compatibility with

pattern design software.

GarmageNet requires a suitable dataset for training. However, the

absence of efficient, flexible garment representations—coupled with

a lack of large-scale, high-quality datasets that link 3D garments

with 2D sewing patterns—has significantly hindered progress in

this domain. To address this, we introduce GarmageSet, a large-

scale dataset of over 10,000 professionally designed garments, each

represented as a Garmage annotated with precise sewing patterns,

structural details, and style attributes. GarmageSet not only supports

the effective training and evaluation of GarmageNet but also demon-

strates its ability to convert additional unstructured sewing patterns

into well-organized Garmage representations. This establishes a

self-reinforcing feedback loop: newly generated data expands the

training corpus, progressively enhancing the quality, diversity, and

generalization of GarmageNet’s outputs. We summarize our main

contributions as follows:

• We introduceGarmageNet, a novel uniform generation frame-

work capable of producing complex and simulation-ready

garments from various inputmodalities, including text prompts,

sketch images, raw sewing patterns, or unstructured point

clouds.

• We introduce Garmage, a novel and compact representa-

tion that seamlessly encodes a garment’s discrete sewing

pattern structure and continuous draping geometry into

fixed-length latent tokens, facilitating efficient integration

with diffusion-based generative models and multi-modal

cross-attention conditioning.

• We introduce GarmageJigsaw to recover sewing relation-

ships between Garmage panels by predicting point-to-point

stitches along panel contours and convert Garmage into

production-ready1 garment assets, facilitating downstream

editing of sewing patterns, material properties, and dynamic

simulations.

• We introduce GarmageSet, an initial dataset of high-fidelity

Garmages with detailed structural and style annotations. We

further demonstrate that GarmageNet’s generation capabili-

ties can expand this dataset, establishing a scalable feedback

loop for continuous improvement.

• Our framework surpasses existing forward and backward

garment modeling approaches and unlocks a range of prac-

tical applications, including scalable multi-modal garment

generation (from text, sketches, or photos), automatic 3D

reconstruction from flat patterns, sewing-pattern recovery

from point clouds, and interactive garment editing with

intuitive commands.

2 RELATED WORK

In this section, we review advances in garment modeling (Sec-

tion 2.1), datasets (Section 2.2), and structural object modeling (Sec-

tion 2.3) that inspired the design of GarmageNet.

1We define “production-ready” as assets derived from real-world manufacturing data
(in contrast to purely synthetic datasets such as GarmentCode), conforming to industry-
grade quality standards, and fully compatible with existing garment production
workflows.

2.1 Garment Modeling

Traditional garment modeling involves complex, labor-intensive

steps such as pattern making, sewing identification, and cloth ar-

rangement. Berthouzoz et al. [2013] introduced a machine learning-

based sewing identification algorithm, but it requires manual gar-

ment initialization and carefully designed parsers for extracting pan-

els and styling elements. Liu et al. [2024d] proposed an automatic

initialization algorithm through panel classification and heuristic

optimization, but it still relies on complete sewing patterns.

In learning-based garment modeling, early work like NeuralTai-

lor [Korosteleva and Lee 2022] focused on reconstructing sewing

patterns from unstructured point clouds. Later research evolved

into two main approaches: Vector quantization-based methods,

which transform sewing patterns into 1D sequences, such as Dress-

Code [He et al. 2024] and SewFormer [Liu et al. 2023], which use GPT

and Transformer architectures for text- and image-to-pattern gen-

eration. AIpparel [Nakayama et al. 2024] and SewingLDM [Liu et al.

2024a] further advanced tokenization for more complex patterns.

Code-generation methods like Design2GarmentCode [Zhou et al.

2024] and ChatGarment [Bian et al. 2024] use large language mod-

els (LLMs) to generate parametric pattern-making DSLs (domain-

specific language), such as GarmentCode [Korosteleva and Sorkine-

Hornung 2023], supporting large-scale dataset generation.

Implicit garment modeling methods often rely on unsigned dis-

tance fields (UDF) [Yu et al. 2025a], manifold distance fields [Liu

et al. 2024b], and Gaussian splatting [Liu et al. 2024c; Rong et al.

2024] to handle non-watertight garment geometry, and employ diffu-

sion or GAN-based generative models to generate visually pleasant

garment assets, with vivid dynamics [Rong et al. 2024; Xie et al.

2024]. However, how to transform those implicit representations

into triangular or quadrilateral meshes relies on a solid iso-surface

extraction algorithm, which remains quite a challenging problem.

With the rise of image generative models, recent approaches

[Elizarov et al. 2024; Yan et al. 2024] have used the geometry image

representation [Gu et al. 2002; Sander et al. 2003] for 3D geom-

etry generation. Although constructing consistent UV spaces is

challenging for general objects, these methods work well for gar-

ment modeling due to the inherent structure of its well-defined UV

space (i.e., sewing patterns) that adhere to industrial standards. For

example, ISP [Li et al. 2024a,b] uses geometry images to capture

garment deformations, while Yu et al. [Yu and Wang 2024] applied

super-resolution to improve fine-grained simulation efficiency.

2.2 Garment Datasets

Learning-based 3D garment generation relies on high-quality datasets,

which fall into three categories: scanning-based, simulation-based,

and sewing pattern-based.

Scanning-Based Datasets [Antić et al. 2024; Bhatnagar et al. 2019;

Ho et al. 2023; Lin et al. 2023; Ma et al. 2020; Pons-Moll et al. 2017;

Tiwari et al. 2020; Wang et al. 2024b; Xu et al. 2023; Zhang et al.

2017] capture realistic garment appearances and shapes; however,

isolating semantically meaningful parts from the raw scans remains

a labor-intensive process, heavily reliant on manual efforts. As a

result, these datasets typically lack sewing patterns that match the

garment assets. Additionally, they are mostly derived from existing
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Fig. 3. Overview of our GarmageNet framework, which seamlessly converts multi-modal design inputs—including text descriptions, sewing patterns, line-art

sketches, and point clouds (a)—into simulation-ready garment assets (d). Central to our framework is the novel Garmage representation (b), a unified 2D–3D

structure encoding each garment as a structured set of per-panel geometry images. Leveraging Garmage, our approach efficiently recovers vertex-level

sewing relationships and detailed 3D draping initializations (c), enabling direct and high-quality garment simulation.

commercial garment asset libraries, limiting their scale and design

diversity.

Simulation-based datasets often include [Bertiche et al. 2020; Black

et al. 2023; Gundogdu et al. 2019; Jiang et al. 2020; Narain et al. 2012;

Patel et al. 2020; Santesteban et al. 2019; Xiang et al. 2020; Zou

et al. 2023], which use physics engines to simulate and enhance

the physical plausibility of synthetic 3D garments. While these

datasets are more efficient to produce than 3D scanning datasets,

they generally suffer from limited garment style diversity, poor

garment deformation, and low-quality paired images, reducing their

practical use for real-world image data tasks.

Additionally, sewing pattern-based datasets [Korosteleva et al.

2024; Korosteleva and Lee 2021] use parametric modeling to create

garment models from sewing patterns, offering UV information

but often focusing on simpler, single-layer styles. These datasets

struggle with representing complex garments due to their lack of

multi-layer structures and intricate sewing patterns, limiting their

scalability and ability to model detailed, multi-layer garments.

2.3 Structural Object Modeling

Recent advancements in structural object modeling have enhanced

the generation and reconstruction of Boundary Representation (B-

rep) models, enabling more complex 3D shape synthesis for CAD

applications. BRepGen [Xu et al. 2024] uses a diffusion-based ap-

proach to generate B-rep models hierarchically, capturing intricate

geometries, while SolidGen [Jayaraman et al. 2022] employs autore-

gressive neural networks to predict B-rep components with indexed

boundary representation, facilitating high-quality CAD model gen-

eration. ComplexGen [Guo et al. 2022] detects geometric primitives

and their relationships to create structurally faithful CAD models.

StructureNet [Mo et al. 2019], DPA-Net [Yu et al. 2025b], and

TreeSBA [Guo et al. 2025] focus on basic geometric shapes but strug-

gle with non-rigid structures and sewing relationships in garments.

StructEdit [Mo et al. 2020] targets local editing of geometric bodies,

suitable for regular shapes but limited for flexible, multi-layer gar-

ments. 3D Neural Edge Reconstruction [Li et al. 2024c] reconstructs

rigid object contours but does not handle flexible garment modeling.

Fracture assembly methods like PuzzleFusion++ [Wang et al.

2024a] and Jigsaw [Lu et al. 2024] infer matching relationships

for rigid objects but fail with garments, where misaligned contours

and segment-to-segment connections are common. In Garmage,

we adapt this approach by treating panels as "fractures," predict-

ing relationships between their contour points to establish sewing

connections. Unlike rigid objects, garment contours may not align

perfectly, and Garmage addresses this by incorporating garment-

specific properties, such as curvature, edge smoothness, and sewing

constraints in a learning-based framework.

3 OVERVIEW

Traditional digital garment modeling demands expert intervention

to draft 2D sewing patterns and manually arrange panels around

articulated avatars for physics-based simulation. Although learning-

based approaches have begun to automate pattern creation, they

typically lack explicit 3D geometric guidance, resulting in imprecise

outputs and difficulty in handling complex draping behaviors.

Our approach introduces the first unified learning-based garment

creation framework built upon a dual 2D/3D representation that

embeds both sewing-pattern structure and quasi-static drape ge-

ometry in a unified image format. As illustrated in Figure 3, our

method accepts multi-modal design inputs, including textual de-

scriptions, design sketches, scanned point clouds, and raw sewing
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Fig. 4. Overview of our GarmageNet architecture. During the geometry

encoding stage (top), each garment is encoded into a set of fixed-size (72-

dimensional) latent vectors using a Variational Autoencoder (VAE). These

compact latent representations serve as training targets for the subsequent

diffusion generation stage (bottom). In the diffusion stage, we employ a

diffusion transformer (DiT) denoiser, integrating multi-modal conditions,

including line-art sketches, raw sewing patterns, and point clouds via cross-

attention mechanisms to effectively guide and control the garment genera-

tion process.

patterns, and transfers those design inputs into Garmages with a

specially-designed diffusion transformer (DiT).

After generation, we extract 2D sewing contours by thresholding

the alpha channel of the generated Garmage and reconstruct each

cloth panel’s 3D shape by denormalizing the Garmage’s RGB chan-

nels with the panel’s bounding box. To recover stitching topology,

our GarmageJigsaw module jointly leverages 2D silhouette features

and 3D proximity of contour points, producing point correspon-

dences that we fit with Bézier curves to yield manufacturable seam

lines. As a result, our method extracts, from the generated Garmage,

the garment’s 2D sewing patterns, sewing relationships, and vertex-

wise fine-grained initial 3D geometry positioned around a digital

avatar—ready for physics-based simulation.

The effectiveness of our framework depends on a comprehensive,

multimodal garment corpus, which we call GarmageSet. To support

all input pathways, each entry in GarmageSet pairs a ground-truth

Garmage (with per-panel geometry images, dimensions, and bound-

ing boxes) with four aligned modalities: a natural-language descrip-

tion, a line-art sketch, a vectorized sewing pattern, and a uniformly

sampled point cloud of the draped garment. GarmageSet spans 15𝑘
outfits across varied styles and categories, and provides the rich

supervision necessary to train and evaluate GarmageNet.

4 GARMAGENET

While intertwining 3D geometry and 2D structure pose challenges

for learning-based garment encoding and generation, it confers a

unique advantage: garment assets inherently possesswell-structured

and semantically meaningful UV spaces (i.e., their sewing patterns).

Each texel in a sewing-pattern panel simultaneously maps to a point

on its corresponding 3D cloth piece, creating a natural bridge be-

tween structure and geometry. Garmage exploits this insight by

converting each cloth piece into a panel-aligned geometry image,

whose color channels encode the piece’s quasi-static 3D geometry

and whose alpha channel delineates the panel contour. By harness-

ing the complementary strengths of 2D and 3D representations,

Garmage enables efficient, high-quality 3D garment creation with-

out sacrificing structural fidelity.

4.1 The Garmage Representation

Traditionally, a garment asset is represented as a set of 3D cloth

pieces C = {𝐶𝑖 }𝑁𝑖=1 and their corresponding 2D sewing pattern

panels P = {𝑃𝑖 }𝑁𝑖=1, where each panel in the sewing pattern maps

directly to a cloth piece in 3D space.

In Garmage, we model a garment as a set of per-panel geometry

images [Gu et al. 2002; Sander et al. 2003], each of which simultane-

ously encodes a panel’s 2D contour and its normalized 3D shape.

Formally, we define

G =
{
(𝑃𝑖 ,𝐶𝑖 )

}𝑁
𝑖=1 =

{
(𝐷𝑖 , 𝐵𝑖 , 𝐼𝑖 )

}𝑁
𝑖=1, (1)

where 𝐷𝑖 = (ℎ𝑖 ,𝑤𝑖 ) ∈ R2 gives the 𝑖−the panel’s physical height
and width dimension (in meters) aligned with the fabric’s warp and

weft; 𝐵𝑖 = (𝑜𝑖 , 𝑠𝑖 ) ∈ R6 specifies the axis-aligned bounding box of

cloth piece 𝐶𝑖 , parametrized by its center 𝑜𝑖 ∈ R3 and half-extents

𝑠𝑖 ∈ R3; and 𝐼𝑖 ∈ R𝐻×𝑊 ×4 is a 4-channel image patch whose first

three channels encode 𝐶𝑖 ’s geometry normalized by 𝐵𝑖 and whose

alpha channel delineates the panel contour as an occupancy map.

To construct each image patch 𝐼𝑖 , we rasterize the cloth piece 𝐶𝑖
under its panel 𝑃𝑖 ’s UV parameterization at a uniform resolution

(𝐻 = 𝑊 = 256). Before rasterization, we rotate the 2D panel 𝑃𝑖
so its warp direction aligns with the 𝑣+ axis, then normalize its

coordinates to [−1, 1] by its physical dimension 𝐷𝑖 = (ℎ𝑖 ,𝑤𝑖 ). Si-
multaneously, we map every 3D vertex 𝑣 𝑗 ∈ 𝐶𝑖 into normalized

space via (𝑣 𝑗 −𝑜𝑖 )/𝑠𝑖 ∈ [−1, 1]3 using its bounding box 𝐵𝑖 = (𝑜𝑖 , 𝑠𝑖 ).
At each pixel center 𝑢𝑝 ∈ [−1, 1]2 (corresponding to a 3D point 𝑝),
we test whether 𝑝 falls inside any triangle of the cloth piece; if so,

we find the containing triangle’s vertices 𝑗 and their barycentric

weights 𝛽 𝑗 (𝑝) ∈ R3 to 𝑝 , then set

𝐼𝑖 (𝑢𝑝 ) =
⎧⎪⎪⎨
⎪⎪⎩
(∑

𝑗 𝛽 𝑗 (𝑢𝑝 )
𝑣𝑗−𝑜𝑖
𝑠𝑖

, 1
)
, 𝑝 ∈ 𝐶𝑖 ,(

(0, 0, 0), 0
)
, otherwise.

(2)

Rasterizing panels with sharp features (e.g., dart tips) requires care-

ful handling of boundary aliasing. Following [Yan et al. 2024], we

run the rasterization at an initial high 1024 × 1024 resolution and

subsequently downsample to the target resolution 256 × 256 via

sparse pooling.

4.2 Diffusion-based Garmage Generation

Garment panels serving similar functions often exhibit similar shape

features and consistent spatial relationships relative to the human

body. For instance, bodice panels typically feature characteristic

structural elements such as necklines and armholes and are gener-

ally positioned over the chest region in 3D space. This regularity

implies a strong correlation between a panel’s silhouette (encoded in

the alpha channel of 𝐼𝑖 ) and the geometry status of its corresponding
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cloth piece (the remaining channels in 𝐼𝑖 ), motivating the compres-

sion of Garmages into a unified latent space that simultaneously

captures both silhouette and geometry.

4.2.1 Latent Encoding. Consider the geometry-image component

𝐼𝑖 of the 𝑖−th panel in a Garamge G, we leverage UNet-based varia-

tional autoencoder
(
ΦE (·),ΦD(·)

)
, to compress 𝐼𝑖 into a 64-dimensional

latent vector

ΦE :R256×256×4 → R64, ΦE (𝐼𝑖 ) = 𝑍𝑖 ,

ΦD :R64 → R256×256×4, ΦD(𝑍𝑖 ) ≈ 𝐼𝑖 .
(3)

To further reinforce 2D–3D correlation in the latent space, during

training we randomly mask out the geometry channels of 𝐼𝑖 with
probability 0.25 before passing it through the encoder ΦE (·), and
forcing the decoder ΦD(·) to reconstruct the geometry part solely

from the panel’s silhouette during inference. This masking scheme

also enables flexible Garmage generation from raw sewing patterns.

After latent compression, any garment can be represented as a

set of fixed-length latent tokens,

G = T =
{
𝑇𝑖
}𝑁
𝑖=1 =

{
(𝐷𝑖 ⊕ 𝐵𝑖 ⊕ 𝑍𝑖 )

}𝑁
𝑖=1 ∈ R𝑁×72 (4)

where 𝑁 represents the number of panels in each garment, 𝐷𝑖 ∈ R2
represents the 2D physical dimension of the panel, 𝐵𝑖 ∈ R6 is the
axis-aligned bounding box of its corresponding cloth piece and

𝑍𝑖 ∈ R64 is the geometry latent.

We train the autoencoder with MSE loss to minimize the recon-

struction error, along with a low-weighted (𝜆𝑟𝑒𝑔 = 1𝑒 − 6) KL diver-

gence term between the encoder’s approximate posterior 𝑞Φ𝐸 (𝑧 |𝐼 )
and a standard normal distribution 𝑝 (𝑧) = N(0, 1):

L𝑒𝑛𝑐 =
1

𝑁

𝑁∑
𝑖=1

‖𝐼𝑖 − Φ𝐷 (𝑧𝑖 )‖22 + 𝜆𝑟𝑒𝑔𝐷𝐾𝐿
[
𝑞Φ𝐸 (𝑧 |𝐼𝑖 ) ‖ 𝑝 (𝑧)

]
. (5)

4.2.2 Diffusion Generation. Based on the learned Garmage latent

space, we train a diffusion transformer (DiT) to map random sam-

ples from the standard normal distribution 𝜖 � N(0, 1) to valid

Garmages based on various user input conditions 𝑐 . Specifically,
in the forward process, we gradually interpolate the input token

T with random noise through 0 ≤ 𝑡 ≤ 1000 timesteps turning it

into noisy states T𝑡 =
√
𝛼𝑡T0 +

√
1 − 𝛼𝑡𝜖𝑡 at each timestep. In the

backward process, we linearly embeds the noised latent {𝑍𝑖,𝑡 }𝑁𝑖=1
into patch tokens, embeds the 2D dimension and 3D bounding box

{𝐷𝑖,𝑡 ⊕ 𝐵𝑖,𝑡 }𝑁𝑖=1 into position tokens, and add them together with

the embedded timesteps to construct the noisy state, and train the

diffusion transformer ΨG (·) to recover the added noise from the

previous timestep 𝑡 − 1 to 𝑡 , conditioned on the input condition 𝑐:

ΨG : R𝑁×72 → R𝑁×72, ΨG (T𝑡 , 𝑡, 𝑐) ≈ 𝜖𝑡 ,

ΨG (T𝑡 , 𝑡, 𝑐) = DiT
(
PosEmb(D𝑡 ⊕ B𝑡 ) +MLP(Z𝑡 ), 𝑡, 𝑐

)
,

D𝑡 ⊕ B𝑡 = {𝐷𝑖,𝑡 ⊕ 𝐵𝑖,𝑡 }𝑁𝑖=1 ∈ R𝑁×8, Z𝑡 = {𝑍𝑖,𝑡 }𝑁𝑖=1 ∈ R𝑁×64 .

(6)

We train ΨG (·) using mean-squared error between the predicted

noise ΨG (T0, 𝑐, 𝑡) and added noise 𝜖𝑡 :

LΨ = E𝑡,T0,𝜖𝑡

[
‖𝜖 − ΨG (T0, 𝑐, 𝑡)‖22

]
, (7)

where 𝜖𝑡 denotes the Gaussian noise added at timestep 𝑡 . All panels
in a Garmage are denoised in parallel while the self-attention mech-

anism of the Transformer backbone implicitly models the connec-

tions between panels, ensuring structural validity of the generated

garment. For convenience, we zero-pad each garment to have a

fixed number of panels 𝑁 = 32 during training and discarding any

panels whose bounding box volume |𝐵𝑖 | < 0.075 or 2D dimension

‖𝐷𝑖 ‖2 < 1𝑒−4 at inference time to accommodate panel number

variance.

4.2.3 Dealing with Conditions. During diffusion training, each de-

sign modality is first encoded into its own latent space by a pre-

trained encoder and then injected into the Garmage denoiser via

cross-attention. Text prompts are mapped to a 1024-dimensional

text latent using the CLIP text encoder; Line-art sketches are passed

through a pretrained DINOv2 vision transformer, also yielding a

1024-dimensional image latent; and unstructured point clouds are

processed by a PointTransformer v3 (PTv3) fine-tuned on Garmage-

Set for panel segmentation tasks, producing a 1024-dimensional

point latent [Wu et al. 2024].

Unlike other modalities, raw sewing pattern conditioned genera-

tion is natively supported by GarmageNet via our VAE’s masking

scheme (Section 4.2.1), which allows for inferring the full 4-channel

geometry from the silhouette alone. Consequently, when a sewing

pattern is provided, its 2D dimensions D0 and geometry latents

Z0 are known a priori, leaving only the 3D bounding-box B0 to

be recovered via diffusion. In practice, at each diffusion step 𝑡 , we
corrupt D0 and Z0 to their noised version D𝑡 , Z𝑡 at timestep 𝑡 , con-
catenate them with B𝑡 , and allow the network to iteratively denoise

B𝑡 toward the desired B0.

It is worth noting that while Garmage inherits the geometry

image representation, our panel-wise geometry image representa-

tion enables more efficient latent compression. Combined with the

carefully designed GarmageNet architecture, which emphasizes the

spatial and connectivity relationships between panels, our frame-

work achieves significant improvements in both generation quality

and efficiency compared to existing 3D generation methods based

on geometry images, such as Omage[Yan et al. 2024] (Table2).

5 GARAMGE PROCESSING

With GarmageNet, we can synthesize complete Garmages from

conventional design input, the next challenge is to integrate these

rasterized panel images into traditional garment-modeling pipelines,

which requires vectorizing panel contours and reestablishing sewing

relationships. In the following section, we introduce GarmageJig-

saw, a dedicated module that leverages Garmage’s embedded 2D

silhouettes and 3D spatial cues to robustly infer vertex-wise sewing

correspondences, followed by post-processing routines that yield

production-ready, vector-format sewing patterns.

5.1 Boundary Point Sampling

Conventional garment modeling systems define sewing relation-

ships as continuous curve-to-curve correspondences.While straight-

forward, this edge-based scheme often introduces ambiguity due to

ill-defined edge separation and complex many-to-many mappings

6



Fig. 5. Illustration of stitch representation ambiguity and our point-wise

solution. Existing edge-based methods suffer from inconsistencies due to

arbitrary edge splits: in (a) and (b), the red lines depict the same physical

stitch, yet their extracted edge features (shown below) differ in both length

and parameter encoding. In contrast, our point-wise stitching (c) directly

anchors stitch correspondences tomesh vertices in physical space, producing

consistent, robust sewing relationships independent of panel tessellation.

(Figure 5). In contrast, we represent sewing relationships as con-

nectivity between boundary vertices of cloth pieces, which are not

subject to further subdivision.

As noted above, each panel in Garmage is represented by a four-

channel image patch 𝐼𝑖 ∈ R256×256×4, whose alpha channel [𝐼𝑖 ]4
delineates the panel contour. We extract the set of 2D contour points

as:

𝜕𝐼𝑖 ∈ R𝑘𝑖×2, and

𝜕𝐼𝑖 =
{
𝑢𝑝 : [𝐼𝑖 ]4 (𝑢𝑝 ) > 0

}
\

{
𝑢 :

(
[𝐼𝑖 ]4 	 Λ

)
(𝑢𝑝 ) > 0

}
,

(8)

where 	Λ denotes binary erosion with structuring elementΛ, and 𝑘𝑖
refers to the number of contour points from image patch 𝐼𝑖 . Denoting
[𝐼𝑖 ]0:3 as the remaining geometric channels from 𝐼𝑖 , we retrieve the
corresponding 3D points for 𝜕𝐼𝑖 from [𝐼𝑖 ]0:3 and denormalize them

into world coordinate with the panel’s corresponding bounding box

𝐵𝑖 :

𝜌𝐼𝑖 ∈ R𝑘𝑖×3, 𝜌𝐼𝑖 = Denorm
(
[𝐼𝑖 ]0:3 (𝜕𝐼𝑖 ), 𝐵𝑖

)
. (9)

Note that panels may yield nonuniform point densities, we apply

resampling under predefined particle distance to 𝜌𝐼𝑖 , ensuring that

adjacent contour samples across all panels exhibit consistent 3D

distances, producing normalized inputs for our GarmageJigsaw

correspondence module.

5.2 Sewing Relation Recovery

With the resampled contour points,GarmageJigsaw recovers point-

to-point sewing by jointly leveraging 2D silhouette and 3D geomet-

ric features. As shown in Figure 6, we first extract per-point features

using two PointNet++ encoders, Φ𝜌 (·) on the 3D contour points

𝜌I ∈ R𝐾×3 and Φ𝜕 (·) on the 2D pixels 𝜕I ∈ R𝐾×2. These features
are concatenated and fused through a series of point-transformer

blocks Ψ𝑝 (·) to yield a 128-dimensional per-point feature matrix

𝑓 ∈ R𝐾×128, 𝑓 = Ψ𝑝
(
Φ𝜌 (𝜌I) ⊕ Φ𝜕 (𝜕I)

)
,

𝜌I = {𝜌𝐼𝑖 }𝑁𝑖=1 ∈ R𝐾×3 and 𝜕I = {𝜕𝐼𝑖 }𝑁𝑖=1 ∈ R𝐾×2 .
(10)

Here, 𝐾 =
∑
𝑖 𝑘𝑖 is the total number of contour points across all

panels. A point classifier head Φcls (·) then selects the subset 𝑓 + ∈
R
𝐾+×128 of candidate sewing points by predicting sewing probabil-

ity based on the point features 𝑓 .

Fig. 6. Overview of sewing relationship recovery and simulation-ready

sewing pattern reconstruction from the generated Garmage (a). Unlike

previous edge-based methods, we predict vertex-level sewing relationships.

Specifically, we first sample boundary points (c) from the generated Gar-

mage representation. Our GarmageJigsaw takes the boundary points as

input, and leverages a point classifier to identify sewing versus non-sewing

points (d), followed by a stitch predictor that recovers point-to-point stitches

(e), represented as an adjacency matrix. Concurrently, we extract vectorized

sewing patterns (b) from the Garmage and transfer the predicted point

stitches onto these vectorized patterns (f). We then reconstruct triangle

meshes from the vectorized sewing pattern with a Delaunay triangulation

constraint by the predicted stitches. Finally, we retrieve vertex-wise draping

status from the generated Garmage, leading to a simulation-ready triangle

mesh that can be directly integrated into any conventional cloth simulation

engine to produce the physically plausible garment (g).

To predict pairwise correspondences, we apply two MLP heads

Φprime (·) and Φdual (·) to disentangle primal and dual features:

𝑓 +prime ∈ R
𝐾+×128, 𝑓 +prime = Φprime (𝑓 +),

𝑓 +dual ∈ R
𝐾+×128, 𝑓 +dual = Φdual (𝑓 +),

(11)

and combine them with a learnable symmetric weight matrix ΛA ∈
R
128×128, followed by a Sinkhorn normalization [Cuturi 2013] to

produce the adjacency probability matrix:

A = Sinkhorn

(
exp

( (𝑓 +prime)

 ΛA 𝑓 +

dual

𝜏

))
∈ [0, 1]𝐾

+×𝐾+
. (12)

Here, 𝐴𝑖 𝑗 ≈ 𝐴 𝑗,𝑖 denotes the probability of a sewing exists between

the 𝑖-th and 𝑗-th contour points, and 𝜏 is a temperature parameter

according to [Lu et al. 2024]. The probability matrix A is processed

with the Hungarian algorithm [Fischler and Bolles 1981], yielding

the final point-to-point correspondences for seam reconstruction.

The entire GarmageJigsaw model is trained end-to-end with two

complementary loss terms: a binary cross-entropy loss Lcls that

supervises the predicted sewing-point probabilities against ground-

truth labels 𝑦𝑖 ∈ {0, 1}, and a matching loss Lmatch that aligns

the predicted adjacency matrix A with the ground-truth matrix

A𝑔𝑡 . Notably, to prevent the network from trivially minimizing

Lmch by omitting sewing pairs, we pad A into a 𝐾 × 𝐾 matrix with

zero columns and rows corresponding to non-sewing points, and

compute the matching loss on the whole contour points set
(
𝜌I, 𝜕I

)
.
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We train GarmageJigsaw on vertex-wise sewing data where each

stitch is represented as a tuple of vertex IDs (Sec. ??). In our ground-

truth assets, sewn vertices are perfectly coincident with zero 3D

Euclidean distance. However, the generated Garmages through dif-

fusion often exhibit small seam gaps. To make the network robust to

these artifacts, we apply the following data augmentations: First, we

inwardly offset each panel’s boundary facets toward its centroid by a

random distance between 2 mm and 8 mm, transferring the original

sewing relationships to these offset boundaries. Next, we introduce

anisotropic noise parallel to seam directions at true sewing points,

and isotropic noise to all other points along the offset boundary.

Finally, we slightly perturb each panel’s 3D bounding-box center

and scale, as well as its 2D pattern dimensions to compensate for

the generated positional noise.

5.3 Sewing Pattern Reconstruction

In conventional garment-modeling workflows, sewing patterns are

represented as vectorized curves, with sewing relationships explic-

itly defined between these curve segments. To integrate Garmage-

generated results seamlessly into existing pipelines, wemust convert

the predicted point-to-point sewings into curve-to-curve correspon-

dences and vectorize the panel contours.

To vectorize the Garmage panel contours, we first detect corner

points exhibiting sharp turning angles along the contour point set 𝜕I
by employing a specially designed 1D convolutional filter. We then

fit piecewise B-spline curves to contour points between adjacent

corners, resulting in smooth, compact vector representations for

each panel. This vectorization process effectively smooths slanted

boundaries (e.g., the last panel of the 4−th garment in Figure 1)

and fills small noisy holes (e.g., the 2−nd panel of the 5−th gar-

ment in Figure 1). Subsequently, we employ a heuristic algorithm

to cluster point-to-point stitches predicted by GarmageJigsaw into

curve-level sewing correspondences directly on these vectorized

B-spline segments.

Finally, we triangulate each sewing-pattern panel into a mesh us-

ing constrained Delaunay triangulation [Rognant et al. 1999], guided

by the vectorized panel contours and inferred sewing relationships.

Specifically, the boundary facets of each cloth piece mesh consist

of contour points uniformly resampled according to the sewing

correspondences, ensuring smooth and well-aligned seams between

adjacent panels.

Vertex positions for these triangulated meshes are determined by

sampling the corresponding 3D coordinates from their associated

Garmage geometry images using bilinear interpolation, resulting in

a fine-grained initial draping state. In contrast to existing garment

modeling frameworks that typically rely on coarse rigid transforma-

tions to position each panel, our Garmage-based approach provides

vertex-level precision in the initial 3D placement. This capability

allows us to accurately capture intricate folding behaviors and nu-

anced garment structures.

6 GARMAGESET

As noted, Garmage’s vertex-level sewing and precise 3D initializa-

tion excel at modeling intricate drapes and folds, whereas existing

datasets [Korosteleva et al. 2024; Luo et al. 2024; Zhu et al. 2020]

Fig. 7. Garment structure definition and corresponding visualization on both

sewing pattern space and 3D garments. (a) Color-coded definitions of eight

structural (e.g., body front, sleeve) and seven decorative (e.g., pocket, ruffle)

panel classes. (b) A sewing-pattern layout annotated by these semantic

labels. (c) The corresponding 3D draped garment on the standard avatar,

with each panel rendered according to its semantic class.

are restricted to simple, flat garments and cannot fully evaluate

our framework. To address this gap, we assembled a professionally

curated, industrial-grade dataset GarmageSet showcasing complex

folding behaviors and multi-layer structures, complete with manu-

ally validated structural and style annotations, as well as multimodal

augmentations including line-art sketches and sampled point clouds.

6.1 GarmageSet Construction

GarmageSet comprises 𝑁 = 14,801 unique garments spanning five

major clothing categories like tops (Figure 11 (d,i)), pants, skirts,

dresses, outerwears and several minor categories like bras (Figure 11

(d)), vests (Figure 11 (j)), pajamas etc. All garments are draped onto

an A-posed standard avatar2 to diminish the geometric variance

brought by body sizes and poses.

6.1.1 Data Acquisition. Building GarmageSet entirely by hand

would be prohibitively time-consuming. To scale the dataset con-

struction efficiently, we adopt a component-centric strategy inspired

by GarmentCode [Korosteleva and Sorkine-Hornung 2023]. As il-

lustrated in Figure 9, we first construct a structured component

library from in-the-wild sewing patterns and then task professional

modelers with assembling garments by randomly selecting compo-

nents, applying design modifications (e.g., adjusting width or length,

or adding decorative features), and combining them into complete

garments.

To build the component library, we collect a diverse set of raw

sewing patterns and engage professional pattern makers to anno-

tate them following the hierarchical garment structure definitions

detailed in Sec. 6.1.2. This process yields a well-organized collection

of reusable garment parts, categorized by role (e.g., bodice, sleeve,

collar) and tagged with stylistic attributes curated by experienced

fashion designers and pattern makers3, as shown in Figure 8.

We then randomly sample valid combinations of components

from the library and use QWen3 to propose 1–3modification instruc-

tions for each combination, such as altering silhouette proportions

or adding style-specific elements. These modified configurations

2Size S mannequin with Asian size 84.
3Some style tags and illustrations are adapted from Fashionpedia[Fashionary 2016].
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Fig. 8. Design space for GarmentSet. Each garment in GarmageSet is annotated along nine professionally defined design dimensions, including silhouette (8

options), darts/pleats (7), waistline (7), hemline (7), neckline (28), collar (17), opening (5), shoulder (6), and sleeve (23). Except for silhouettes, most of those design

dimensions have a “/” option indicating that a particular dimension does not apply to the given garment (e.g., sleeve types are irrelevant for skirts or pants).

Fig. 9. Overview of our GarmageSet construction process. We first build a component library (b) by structuring sewing patterns collected in the wild (a).

Professional modelers then randomly select several components from this library, apply design modifications such as adjusting width, length, or adding

decorative details, and assemble them to create diverse, composed 3D garments (c). This approach enables efficient construction of a high-quality dataset

capturing extensive design variability and structural complexity.

are assigned to professional garment modelers, who manually im-

plement the design changes and assemble the components into

finalized 3D garments.

This scalable and structured data acquisition process, carried out

over eight months by a team of more than ten expert pattern makers

and modelers, resulted in an industrial-scale dataset comprising

2,881 tops, 2,293 outerwear pieces, 857 pants, 1,523 skirts, 6,454

dresses, and 786 garments from other categories such as sportswear,

bras, pajamas and cheongsam.

6.1.2 Garment Structure Definition. As illustrated in Figure 7, gar-

ments exhibit a hierarchical structure comprising panels, edges, and

landmarks, each capturing distinct semantic and geometric charac-

teristics essential for garment design and construction. To accurately

represent and leverage these hierarchical details, we introduce a

structured annotation scheme that clearly defines panel-level se-

mantics, structural lines, and fashion landmarks, as described below.

Panel-level semantics are established by professional pattern mak-

ers based on panel shape, functional role, and placement relative to

the human body. As shown in Figure 7, we identify eight structural

classes—collar, sleeve, body front, body back, body side, skirt/pant

front, skirt/pant back, and skirt/pant side—as well as seven dec-

orative classes—hat, stripe, cuff, waist, hem, pocket, and ruffles.

Annotators assign these semantic labels directly on the 2D sewing
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patterns using a customized LabelStudio [Tkachenko et al. 2025]

annotation tool. We leverage this panel-level semantics to finetune

Point Transformer v3 for point cloud embedding during conditional

Garmage generation.

Utilizing per-panel semantic annotations, we extract five types

of structural lines that define interfaces between semantic panel

groups. The neckline delineates boundaries between front/back

bodice and collar panels; armholes separate bodice panels from

sleeve panels; waistline defines the interface between waist panels

and adjacent bodice or skirt/pant panels (or directly between bodice

and skirt/pant panels if waist panels are absent); wristline marks

the junction between sleeves and cuffs or the lower edge of sleeves

if cuffs are absent; and hemline represents the boundary between

bodice/skirt/pant panels and hem panels, or the lower edge of these

panels when hem panels do not exist. During training, we augment

our dataset by perturbing these structural lines, simulating realistic

variations in sleeve length, garment length, waist height, and other

key design parameters.

Fashion landmarks serve as critical reference points for precise

garment construction and fitting. Examples include the shoulder

tip (SH), bust point (BP), center front neck (CFN), and center front

waist (CFW). These landmarks are annotated on both the 2D sewing

patterns and their corresponding 3D models using consistent vertex

IDs on the mesh. Such dual annotations help align sewing patterns

from different garments into a standardized 2D space, eliminat-

ing positional ambiguity and facilitating more effective learning.

Additionally, these landmarks are consistently projected onto multi-

view 2D images, significantly enriching existing fashion landmark

datasets and improving the accuracy of fashion landmark estimation

and retrieval models, ultimately offering comprehensive support for

diverse fashion AI applications.

6.1.3 Data Formation And Multi-modal Augmentation. For each gar-

ment, we partition its raw 2D patterns into individual panels 𝑃𝑖 and
compute their physical dimensions d𝑖 and axis-aligned bounding

boxes B𝑖 . We then rasterize each cloth piece’s normalized 3D mesh

𝐶𝑖 into a 256×256×4 geometry image 𝐼𝑖 , and construct the Garmage

representation for the garment (Section 4.1).

The original sewing information is stored as vertex–vertex pairs

(𝑣𝑧 , 𝑣𝑏 ) in the cloth piece meshes. During Garmege rasterization,

each vertex 𝑣 is projected to a 2D pixel coordinate𝑢 ∈ R2 in its panel
image 𝐼𝑖 . We record the tuple (𝑖, 𝑢), where 𝑖 is the panel index, and
reformat each sewing pair into a paired panel-pixel representation:

𝑠𝑘 =
(
(𝑖, 𝑢 (𝑎)

𝑘
), ( 𝑗, 𝑢 (𝑏 )

𝑘
)
)
, S = {𝑠𝑘 }𝑀𝑘=1, (13)

where 𝑠𝑘 denotes the 𝑘-th sewing connecting pixel 𝑢
(𝑎)
𝑘

(rasterized

from vertex 𝑣𝑎) on the 𝑖−th panel and 𝑢
(𝑏 )
𝑘

(rasterized from vertex

𝑣𝑎) on the 𝑗−th panel.

Furthermore, to train GarmageNet under diverse conditions, we

align each Garmage G with four modalities:

• A manually annotated short sentence captures each gar-

ment’s category, silhouette, and design details according to

a set of professionally defined dimensions (Figure 8). During

modeling, we ask the designers to label all applicable dimen-

sions for a given garment asset and leverage Qwen3 [Yang

Table 1. Panel counts (#Panels) and mean average precision (AP) for se-

mantic segmentation by our fine-tuned PointTransformer v3, used to derive

point-cloud embeddings for conditional Garmage synthesis. The uniformly

high AP values across all categories confirm the model’s robustness in

extracting panel-level semantics from unstructured point clouds, thereby

providing a reliable conditioning signal.

Category collar sleeve body front body back body side

#Panels 9807 22576 34138 22608 2857

AP 0.95 0.97 0.94 0.94 0.40

Category skirt/pant front skirt/pant back skirt/pant side hat stripe

#Panels 28782 25242 3491 2965 1142

AP 0.93 0.95 0.40 0.98 0.69

Category cuff waist hem pocket ruffles

#Panels 9509 16880 3088 15571 2498

AP 0.98 0.96 0.79 0.93 0.42

et al. 2025] to reformat the annotation as a CLIP-compatible,

comma-separated string, with the first segment always de-

noting the garment category. During training, we randomly

delete at most 4 design detail descriptions.

• A set of line-art sketches and clay renderings to cap-

ture each garment’s visual characteristics. These images are

rendered from 24 uniformly sampled camera viewpoints

arranged on a circle centered on the garment. The circle’s

radius is automatically adjusted so that, in the frontal view,

the garment could nearly fill the frame. All sketches and

clay renderings are output at 3840× 2048 resolution, and we

record each camera’s transformation matrix in the standard

NeRF format.

• Apoint cloud sampled from the garmentmesh using Poisson-

disk sampling (Open3D) to capture its geometric detail. To

closely mimic real-world scans or multi-view reconstruc-

tions, which emphasize the exterior surface, we adapt sam-

pling density by occlusion: outer panels are sampled at a

high density, while inner panels use a sparser density. We

randomly downsample these point clouds at varying rates

to improve model robustness and performance.

6.2 Dataset Statistics

As summarized above, GarmageSet contains 14,801 professionally

modeled garments spanning five major categories—tops (2,888),

coats and outerwear (2,293), pants (857), skirts (1,523), and dresses

(6,454)—plus 786 items in various minor categories. Each garment

is annotated along nine professionally-defined design dimensions

with over a hundred part-wise variations (Figure 8), yielding a com-

binatorial design space of more than 2.9454 × 1011 topologically

distinct configurations. Although smaller in size, GarmageSet covers

substantially richer variation than GarmentCodeData [Korosteleva

et al. 2024], which is limited to basic modifications (e.g., a single

dart type for FittedShirt and one lapel style defined in SimpleLapel).

To quantify structural complexity, we randomly sample 10,000
garments (and 10,000 panels) from each dataset and compare statis-

tics in Figure 10. GarmageSet garments average 13.59±7.89 panels
and 46.01±26.45 per garment, with 8.62±5.01 edges per panel. By

contrast, GarmentCodeData provides only 10.82±6.29 panels and
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Fig. 10. Dataset statistics comparing GarmageSet and GarmentCodeData [Korosteleva et al. 2024]. Histograms illustrate (a) panels per garment, (b) edges per

panel, (c) per garment, (d) mesh vertices per garment, and (e) mesh faces per garment distribution among the 10, 000 sampled garments (or 10, 000 panels)
from both datasets. Dashed lines indicate the mean and standard deviation for each distribution. GarmageSet exhibits higher average values and broader

variance across all metrics, indicating enhanced structural complexity and superior drape fidelity.

30.26±17.59 per garment, with 6.75±4.20 edges per panel, indicating
significantly lower structural richness. We present the per-category

panel count and average segmentation precision in Table 1.

In terms of 3D drape fidelity, by setting the particle distance

to 6mm during simulation, GarmageSet features 72,560.5±27,886.7
vertices and 141,064.1±55,899.8 faces per asset; while GarmentCode-

Data only has 13,998.86±8,658.42 vertices and 26,400.82±16,751.82 faces,
demonstrating that GarmageSet delivers over fivefold higher mesh

resolution and substantially richer structural detail. Figure 11 presents

representative samples from GarmageSet, visually demonstrating its

high geometric fidelity and intricate structural detail. For example,

complex garment foldings and shirrings (c,f); multi-layered design

(d), irregular splits (a,i,e,h) that hard to achieve with GarmentCode.

7 EXPERIMENTS

In this section, we first detail the implementation and training pro-

tocols for GarmageNet and GarmageJigsaw then quantify our frame-

works’ performance by evaluating sewing-pattern recovery quality,

3D geometry fidelity, and sewing accuracy.

7.1 Implementation Details

We randomly reserved 1,024 garment assets from GarmageSet for

validation, using the remaining 13,777 assets for training.

GarmageNet was trained on a single NVIDIA A100 GPU over 1–2

days using a two-stage protocol. In the latent-encoding stage, we

trained the VAE for 200 epochs with a batch size of 256, using the

AdamWoptimizer at a learning rate of 5×10−4. This stage completes

in approximately 2 hours. In the diffusion-generation stage, we

employ a standard DDPM scheduler and train the denoiser for 20,000

epochs with a batch size of 4,096, which takes approximately 12

hours. In conditional generation with text prompts or point clouds,

we need to incorporate augmentations such as randomword dropout

in prompts, variable point-cloud sampling densities, and on-the-

fly embedding computation. Thus, extends total training time to

roughly 24 hours.

We trained GarmageJigsaw using two NVIDIA RTX 4090 GPUs

with a batch size of 28. The training was initialized with a learn-

ing rate of 1 × 10−3, which was gradually decreased using cosine

learning rate decay, ultimately reaching 2 × 10−5 at the end of the

training process. We train ourGarmageJigsaw for 100 epochs, taking

approximately 27 hours in total.

Table 2. Comparison of generation quality, diversity, and efficiency be-

tween GarmageNet, Omage[Yan et al. 2024], and Surf-D[Yu et al. 2025a].

Quality metrics include Minimum Matching Distance (MMD, ×10−3),
Jensen–Shannon Divergence (JSD), point-cloud FID (p-FID), and point-cloud

KID (p-KID), where lower values indicate better fidelity. Diversity is mea-

sured by Coverage (COV, %), and efficiency is assessed based on inference

GPU memory usage (Mem.) and inference speed (measured in seconds).

Method
Quality Diversity Efficiency

MMD (↓) JSD (↓) p-FID (↓) p-KID (↓) COV (↑) Mem. (↓) Duration (↓)
Surf-D 21.57 0.7907 46.61 0.1718 16.02% 7 GB 25.7s
Omages 9.3 0.1185 29.38 0.1271 28.16% 3.3 GB 120s
Ours 1.1264 0.0337 15.34 0.029 41.02% 4 GB 8s

7.2 Evaluation And Comparison

As previously demonstrated, GarmageNet can synthesize complete

garment assets, encompassing 2D sewing patterns, sewing corre-

spondences, and high-resolution 3D initializations. Accordingly, we

evaluate its generation quality across these core dimensions.

7.2.1 3D Garment Asset Quality. We compare GarmageNet’s gar-

ment generation quality against two representative non-watertight

asset synthesis paradigms. The first is Omage [Yan et al. 2024], which

typifies geometry-image-based 3D generation pipelines akin to our

approach. The second is Surf-D [Yu et al. 2025a], an implicit-field

method that generates surfaces via unsigned distance functions.

Table 2 presents the comparison results according to five metrics:

• MinimumMatching Distance (MMD) measures the aver-

age closest-distance between each real sample and its gen-

erated counterpart (units of 10−3). A lower MMD indicates

that, on average, every real garment has a very similar coun-

terpart among the generated set.

• Jensen–Shannon Divergence (JSD) quantifies the over-

all distributional discrepancy. A lower JSD means that the

probability distributions of real and generated samples are

more similar.

• Point-cloud FID (p-FID) and KID (p-KID) assess genera-

tion fidelity using learned feature embeddings, with lower

values indicating the generated feature distribution are closer

to those of the real data.

• Coverage (COV) is the fraction of real samples matched by

at least one generated sample (in percentage %). A higher

COV indicates broader exploration of the real data manifold,

i.e., greater diversity.
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Fig. 11. Representative examples from our GarmageSet, demonstrating the dataset’s rich diversity in garment categories, styles, and intricate folding patterns.

Each asset includes detailed 3D garment meshes, corresponding point clouds, multi-view sketches, and Garmage representations, highlighting the dataset’s

capability to support complex garment modeling tasks, from layered structures and asymmetric silhouettes to precise fitting and sophisticated draping

behaviors.
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Fig. 12. Unconditional garment generation comparison between GarmageNet, Omage [Yan et al. 2024], and Surf-D [Yu et al. 2025a]. GarmageNet (left

block) produces simulation-ready assets complete with vectorized sewing patterns, vertex-wise stitch relationships, and fine-grained 3D draping initializations

(a,b,c,d). In contrast, Omage’s outputs (top right) exhibit incomplete panels (g), grid-like tessellation artifacts (f), erroneous stitching between non-adjacent

panels (h), and spurious triangles that connect a panel’s boundary vertices back to the global origin (e). Surf-D’s meshes (bottom right) suffer from unwanted

holes (i, l) and frayed, irregular boundaries (j, k). These close-up comparisons highlight GarmageNet’s superior geometric fidelity, coherent panel topology,

and artifact-free mesh integrity.

For a fair comparison, all baseline methods were retrained on the

full GarmageSet under the unconditional generation setting. Specif-

ically, Omage [Yan et al. 2024] was trained at a resolution of 64× 64,

requiring approximately 50 hours for training and consuming 3.3MB

of memory with an inference time of 120 seconds per sample. Surf-

D [Yu et al. 2025a] was trained at a resolution of 512, where the VAE

module took four days to train on two RTX 4090 GPUs, followed by

20 hours of diffusion model training. To compute point-cloud FID

and KID scores, we adopt the pretrained PointNet++ feature extrac-

tor provided by Point-E [Nichol et al. 2022]. Each method generated

128 random samples using a single NVIDIA GeForce RTX 3060 for

evaluation. As reported in Table 2, GarmageNet outperforms both

Omage and Surf-D in terms of generation fidelity, diversity, and

computational efficiency.

Figure 12 presents unconditional generation results from Gar-

mageNet alongside those of Surf-D and Omage. Omage produces a

single multi-chart geometry image for the entire garment, making

its outputs vulnerable to irregular UV chart packing; addressing

this requires a much larger network and longer training times. As

shown, Omage’s results appear coarse and often suffer from missing

panels. Surf-D exemplifies a backward modeling approach, using an

unsigned distance field (UDF) for generation and then extracting a

triangle mesh. Consequently, it generates only a single, monolithic

mesh without any explicit sewing-pattern structure, and the UDF-

to-mesh conversion can introduce holes. In contrast, GarmageNet

delivers panel-aware garments with complete and crisp per-panel

structure, and fine-grained draping status.
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Fig. 13. Qualitative comparison of drape initialization methods on four representative garments: (a) complex overlapping panels, (b) multi-layered ruffles, (c)

tie-closure details, and (d) flipped lapels. For each case, we show the input sewing pattern with ground-truth stitches (left) and the draped results under (from

left to right) rigid panel transformations, the optimization-based method [Liu et al. 2024d], and our GarmageNet per-vertex initialization.

Table 3. Ablation study on sewing relationship recovery, comparing the

performance of GarmageJigsaw trained with both 2D and 3D features

versus models trained with only 2D or 3D features. The table reports key

metrics including point classification precision (CP), recall (CR), average

matching distance in millimeters (AMD), topological accuracy (tACC), and

topological precision (tP).

CP (↑) CR (↑) AMD (↓) tACC (↑) tP (↑)

GarmageJigsaw 99.16 97.13 6.610 96.79 98.68
3D-feat Only 99.27 96.99 7.790 96.36 97.96
2D-feat Only 99.21 97.12 10.59 96.28 97.70

7.3 Sewing PatternQuality

We compared the sewing patterns generated by GarmageNet against

those produced by the state-of-the-art forward modeling approach

of Zhou et al.[Zhou et al. 2024], which arranges rigidly transformed

panels around an avatar. As described in Section 4.2.3, we solicited

garments from bothmethods—conditioned on the same text prompts

or sketches—and asked professional pattern makers to evaluate

them on two criteria: (1) agreement with the original description

or sketch, and (2) the visual quality and smoothness of the panel

outlines. The user study and CLIP score in Table 4 shows that Gar-

mageNet’s generated panels significantly outperform the baseline

in both agreement and aesthetic quality.

7.3.1 Sewing Accuracy Evaluation. The GarmageJigsaw module,

used for sewing recovery, is composed of two key components: the

point classifier and the sewing predictor. To thoroughly assess the

performance of GarmageJigsaw, we evaluate these two modules

separately.

The point classifier operates as a binary classifier, and we evaluate

its performance using precision and recall. The classification pre-

cision (CP) measures the proportion of correctly identified sewing

points (i.e., true positives) among all predicted positives, while the

classification recall (CR) indicates the proportion of true posi-

tive predictions among all sewing points in the ground truth. As

shown in Table 3, the point classifier achieves a precision of 99.16%

and a recall of 97.13%, indicating strong performance in identifying

sewing points.

For the sewing predictor, we first evaluate the panel-level topo-

logical quality of the generated sewing patterns with:

• Accuracy (tACC): The proportion of correctly predicted

sewing connections (correct sewing pairs) out of all pre-

dicted connections. Higher values indicate better topological

correctness.

• Precision (tP): The proportion of correctly predicted sewing

connections out of all predicted connections, where higher

values reflect fewer false positives.

Additionally, we evaluate vertex-level sewing quality using Av-

erage Matching Distance (AMD), which calculates the average

Euclidean distance between predicted sewing correspondent and

ground truth correspondent for all vertices (in millimeters). Lower

AMD values indicate better alignment between predicted and actual

sewing positions.

Table 3 summarizes the evaluation results with ablation studies

on using only 2D or 3D features for sewing relationship recovery.

These results confirm that combining both 3D and 2D features

enables GarmageJigsaw to achieve more robust stitching recovery

with lower AMD value and topological accuracy.

7.4 Fine-Grained 3D Initialization Evaluation

To quantify the benefits of GarmageNet’s vertex-level initializa-

tions, we compare its simulation succession rate (SSR) against two

baselines: (1) rigid transformations-based initialization as used in

GarmentCodeData [Korosteleva and Sorkine-Hornung 2023]; and

(2) optimization-based initialization from raw sewing patterns [Liu

et al. 2024d].

We collect 150 sewing patterns with ground truth stitching rela-

tionships from GarmageSet, recover their initial drape status with

GarmentNet and drape onto our standard Size S avatar using identi-

cal simulation settings as [Liu et al. 2024d] and compare the SSR as

garments draped successfully onto the avatar without observable

self-collision, body-collision, sliding errors etc. For the rigid baseline,

we leverage the per-panel semantics in GarmageSet (Section 6.1.3)
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to assign each panel a fixed pose, using standard rigid placement

for body, skirt, and front/back panels, and cylindrical arrangement

for tubular components such as sleeves and collars.

As a result, GarmageNet achieves an SSR of 91.41%, substantially

higher than rigid initialization (59.38%) and on parwith optimization-

based initialization (93.75%).

Figure 13 presents representative cases, from which we can con-

clude that our fine-grained, per-vertex placements could provide

robust draping initialization for complex designs (a), multi-layered

garment (b), ties (c) and flipping lapels, while the other methods

failed.

8 APPLICATIONS

We demonstrate the practical versatility and effectiveness of the

proposed GarmageNet framework through four application scenar-

ios that cover the full spectrum of digital garment modeling. These

include interpreting abstract design concepts, automatically gener-

ating 3D garment assets from raw sewing patterns, reconstructing

manufacturable sewing patterns from unstructured data, and per-

forming conventional garment asset editing based on simple textual

inputs. These scenarios showcase GarmageNet’s ability to accurately

translate diverse inputs into structurally sound and visually com-

pelling garment assets, bridging the gap between creative ideation

and real-world garment production.

8.1 Design Concept to Garment Generation

Generating garments directly from high-level design concepts, such

as textual descriptions or minimalistic line-art sketches, significantly

streamlines fashion design workflows, particularly in rapid proto-

typing and initial visualization stages. Unlike traditional methods

that necessitate detailed technical specifications, GarmageNet inter-

prets natural language prompts and simple sketches to automatically

produce structurally correct and visually coherent 3D garments.

Qualitative evaluations supported by detailed X-ray renderings

and UV-aligned normal maps reveal that GarmageNet effectively

captures original design intents. The generated garments exhibit

clearly defined seam structures, realistic draping, andwell-articulated

folds—key elements often compromised in outputs from existing

frameworks such as Design2GarmentCode (forward generation)

and Hunyuan3D v2.5 (backward generation).

Figure 14, 15 provide qualitative evaluations of garments gener-

ated from text prompts and line-art sketches, compared against two

state-of-the-art baseline models: the forward generation approach,

Design2GarmentCode[Zhou et al. 2024], trained on GarmentCode-

Data [Korosteleva et al. 2024], and the backward generation method,

Hunyuan3D v2.5 [Zhao et al. 2025], trained on massive 3D assets.

For each generated garment, we present X-ray renderings to reveal

the underlying geometric structures and UV-aligned normal maps

to intuitively assess the quality of the generated sewing patterns

and the detailed fold structures. Our outputs demonstrate clear and

accurate seam structures, precise garment draping, and refined folds

which are inadequately represented by the baseline methods.

Leveraging the line-art sketch-conditioned GarmageNet as a base-

line, our framework could further enable image-guided garment

generation. Specifically, we employ a LoRA fine-tuned FLUX model

(Appendix ??) to translate photographic images into representative

line-art sketches. These sketches subsequently guide the Garmage

generation process, with results illustrated in Figure 16, underscor-

ing the model’s enhanced versatility and real-world applicability.

A comprehensive user study involving 20 professional fashion

designers, pattern makers, and 3D apparel modelers validated our

findings quantitatively. Each participant is asked to review 48 out-

puts (24 text-guided and 24 sketch-guided randomly sampled from

1000+ generated results) and select which method’s result was best

under three criteria:

• Agreement with the input prompt (i.e. how well the 3D

garment matches the described or drawn design);

• Garment Aesthetic (overall visual and geometric quality

of the 3D garment model);

• Sewing Pattern Aesthetic (quality and plausibility of the

underlying pattern structure, as evident in the model and

its UV seams).

The aggregated preference results (normalized percentages of selec-

tions for each model) in Table 4 indicate GarmageNet significantly

outperformed the baselines across all metrics, being preferred in

over 60% of cases for Agreement, 85% for Garment Aesthetic, and

approximately 90% for Sewing Pattern Aesthetic in text-guided gen-

eration; and 77% for Agreement. 68.75%for Garment Aesthetic and

97.66% for Sewing Pattern Aesthetic. Further, GarmageNet achieved

the highest normalized CLIPScore (0.3076), confirming superior

semantic alignment with text descriptions.

8.2 Automatic Garment Modeling

Beyond its broad relevance in virtual reality and gaming, digital

garment modeling also plays a critical role in apparel manufacturing

by enabling manufacturers to visualize and validate sewing patterns

before physical garment production. GarmageNet could naturally

support this need by seamlessly converting raw 2D sewing patterns

into accurate, fully draped 3D garment models without manual inter-

vention. As discussed earlier, through the masked training scheme

during latent encoding (Section 4.2.1), GarmageNet can seamlessly

generate complete garment assets from raw sewing patterns, by

providing fine-grained 3D initialization through the Garmage repre-

sentation and establishing vertex-level stitching relationships using

GarmageJigsaw.

Figure 17 presents garment generation results from raw sewing

patterns. We highlight several of the original sewing pattern panels

and their corresponding generated Garmage. The result indicate

that GarmageNet effectively handles the task of automatic garment

asset modeling based on sewing patterns, even for unconventional

patterns like the hem panels in Figure 17 (a,f); Furthermore, despite

the absence of explicit symmetry constraints during training, gen-

erated garments consistently display natural symmetry, illustrated

by the highlighted panels in Figure 17 (a,c,f).

8.3 Sewing Pattern Recovery

Advancements in 3D scanning and multi-view reconstruction tech-

nologies have greatly facilitated capturing realistic garment shapes,

typically represented as unstructured point clouds. However, such

raw 3D data lacks the structured information essential for garment
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Fig. 14. Text conditioned garment generation results and comparison with Design2GarmentCode [Zhou et al. 2024] and Hunyuan 3D 2.5 [Zhao et al. 2025]
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Fig. 15. Line-art guided garment generation results and comparison with Design2GarmentCode [Zhou et al. 2024] and Hunyuan 3D 2.5 [Zhao et al. 2025].
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Method
Text-Guided Generation Line-Art Guided Generation

Agreement Garment Aesthetic Sewing Pattern Aesthetic CLIPScore Agreement Garment Aesthetic Sewing Pattern Aesthetic

GarmageNet + GarmageJigsaw 62.50% 85.00% 90.42% 0.3076 77.34% 68.75% 97.66%
Design2GarmentCode [Zhou et al. 2024] 4.17% 7.92% 9.58% 0.2955 0.0% 10.16% 2.34%
Hunyuan 3D v2.5 [Zhao et al. 2025] 33.33% 7.08% 0.00% 0.3016 22.66% 21.09% 0.0%

Table 4. User study results for generation quality comparison of ourmethod against state-of-the-art (SOTA) forward generation techniqueDesign2GarmentCode

(trained on GarmentCodeData), and backward generation technique Hunyuan3D 2.5. Here, Agreement evaluates the alignment between the generated

garment and the design input (text or line-art sketch). Garment Aesthetic evaluates the geometric quality of the generated 3D garment asset, while Sewing

Pattern Aesthetic evaluates the quality of the generated sewing pattern. We provide CLIPScore as an additional agreement evaluation on text-guided garment

generation.

Fig. 16. Image-guided Garmage generation results. We transfer the image

to line-art sketches (top right corner) with a LoRA finetuned FLUX model,

then use the transferred sketch as input condition to control the generation

of Garmage. The generated Garmages and simulated garment assets are

demonstrated on the right side.

production, thus necessitating effective methods for recovering

structured sewing patterns from unstructured 3D representations.

GarmageNet addresses this critical industry challenge by accu-

rately transforming point-cloud data of draped garments into struc-

tured Garmages, successfully recovering detailed sewing patterns.

Figure 18 showcases recovered sewing patterns, highlighting intri-

cate folds and precise seam alignments. These recovered patterns

closely match their original counterparts, demonstrating high accu-

racy in panel shapes, seam definitions, and adherence to industry

production standards.

Qualitative analysis indicates that GarmageNet robustly identifies

precise panel boundaries, seam connections, and garment folds from

noisy input data, achieving reliable sewing pattern recovery even

in complex garment configurations. This functionality positions

GarmageNet uniquely within digital garment pipelines, effectively

linking unstructured scan data to structured, production-ready gar-

ment assets, thereby significantly enhancing practical applicability

in apparel manufacturing workflows.

8.4 Progressive Generation and Editing

Beyond generating garments directly from text prompts, our frame-

work also supports advanced garment editing functionalities, such

as adding, deleting, or replacing components of an existing garment.

This capability significantly enhances the flexibility of the design

process, allowing designers to iteratively refine garments based on

new inputs while preserving key structural features.

Recall from Eq. 1 that a Garmage consists of a set of panels, each

represented by a 2D dimension 𝐷𝑖 , a 3D axis-aligned bounding box

𝐵𝑖 , and a normalized geometry image patch 𝐼𝑖 . After generating a
garment using text prompts, users can modify the original prompts

to reflect desired changes, such as removing or replacing specific

garment components.

When a text prompt is updated, the garment is regenerated, and

the newly generated panels are compared against the original pan-

els based on their 2D dimensions and 3D bounding boxes. Panels

with high similarity are marked for retention, while those with low

similarity are flagged for modification. The editing process is akin

to inpainting in image generation models, where only the panels

requiring modification are regenerated. Retained panels are treated

in a way similar to diffusion-based denoising, where the original

features are preserved and augmented with noise according to the

current timestep, guiding the model to retain the established charac-

teristics of those panels. In this way, the modifications are localized

to the relevant areas of the garment without disrupting the overall

design, and new panels are generated in a manner that ensures

smooth transitions at the interfaces between modified and retained

panels (e.g., sleeve holes), maintaining coherence in both geometry

and design.

Figure 19 illustrates the process where we first generate a fitted,

sleeveless dress from text prompts (a), then add long sleeves to the

dress (b), and modify the sleeves to puff sleeves (c). Next, we add
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Fig. 17. Automatic garment modeling from raw sewing patterns. Given flat sewing patterns without sewing relationship, For clarity, we highlight specific

panels in the sewing patterns to help readers identify the correspondence between the generated Garmage and the raw sewing pattern.

Fig. 18. Point-cloud-conditioned garment synthesis with GarmageNet. Each row (a–f) shows: (left) an unstructured, sparse point cloud captured from a

draped garment; (center) the generated Garmage representation—consisting of per-panel geometry images (colored) and inferred panel contours (outlined);

and (right) the final simulation-ready 3D garment asset, obtained by vectorizing the extracted sewing patterns, recovering vertex-wise stitches, and applying

physics-based draping. These results demonstrate GarmageNet’s ability to transform noisy, incomplete point clouds into fully structured sewing patterns and

high-fidelity draped garments. We note, however, that the network may be leveraging the non-uniform sampling density of the input point clouds—implicitly

revealing panel structure—to achieve these reconstructions.
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Fig. 19. Interactive garment editing using conventional design instructions.

Starting from an initial Garmage (top-left), users issue sequential edits—e.g.

replacing a round neckline with a shirt collar, adding a fitted waist, and

switching to a standing collar—while all unchanged panels remain in grey

and only the edited panels (in color) are updated in their geometry im-

ages. Each intermediate Garmage is decoded into a full garment asset and

re-simulated, demonstrating how our framework seamlessly incorporates

standard pattern-making edits into the generation and draping pipeline.

standing lapel collars to the dress (d) andmodify them to shirt collars

(e). Finally, if the user is dissatisfied with the generated result, we

can even modify the entire initial bodice panels (f).

This progressive generation capability enables dynamic editing of

garment designs, allowing for incremental refinement while preserv-

ing the structural integrity and stylistic consistency of the garment.

The result is a flexible, iterative design process that leverages the

power of AI to support real-time garment adjustments and refine-

ments based on evolving design needs.

9 CONCLUSION

In this work, we introduced GarmageNet, the first end-to-end

framework for unified 2D–3D garment synthesis. At its core lies

Garmage, a novel panel-aligned geometry-image representation

that encodes both discrete sewing-pattern structure and continuous

draping geometry into a compact, image-based format. By training

a latent-diffusion transformer on Garmage tokens, our approach

supports unconditional and conditional generation from multiple

design modalities—text, sketches, point clouds, and raw sewing pat-

terns—while preserving fine-grained panel topology and delivering

high-fidelity, simulation-ready initializations.

We further presented GarmageJigsaw, a dedicated module that

leverages 2D silhouettes and 3D spatial cues to recover vertex-wise

sewing relationships, enabling seamless conversion of generated

Garmages into vectorized sewing patterns and triangulated meshes

for physics-based simulation. Comprehensive evaluations on our

industrial-grade GarmageSet demonstrate that GarmageNet out-

performs state-of-the-art forward and backward generation meth-

ods in terms of quality, diversity, and robustness, and achieves a

significantly higher simulation succession rate compared to rigid

and optimization-based initializations.

10 LIMITATIONS AND FUTURE WORK

While GarmageNet demonstrates robust multimodal garment syn-

thesis, several limitations remain. First, to contain dataset prepa-

ration costs, our framework is currently trained on an A-posed

standard avatar with size S (or Asian size 84). Although the gener-

ated Garmages can be retargeted to other body shapes via existing

auto-grading or draping algorithms, we plan to incorporate body-

size conditioning and expand our dataset in future work. However,

as Garmage could be seamlessly integrated into the existing garment

modeling workflow, we will not incorporate body pose variance

soon.

Second, our current stitching module operates only along panel

boundary facets, limiting its ability to model components that attach

along interior seams, such as a patch pocket. Extending the corre-

spondence model to handle arbitrary vertex-to-vertex relationships

is an important direction for future research.

Third, because GarmageNet is purely data-driven and does not

yet incorporate physical feedback for pattern optimization, the gen-

erated panels can self-intersect or interpenetrate, producing sim-

ulation artifacts. In future work, we will integrate differentiable

physical constraints and physics-based pattern refinement to elimi-

nate these issues.

Fourth, while panel adjacency and symmetry often play a critical

role in garment design, these structural priors are learned implicitly

by our diffusion transformer. Explicit modeling of symmetry and

hierarchical pattern relationships could further improve generation

fidelity, which is also an interesting direction for future exploration.

Finally, all training data currently use a single fabric type, so

material characteristics such as stiffness, weight, and weave are not

yet reflected in the panel shapes or drape. However, the flexibility

and scalability of our underlying diffusion-transformer backbone

have been demonstrated by recent text-to-image (e.g., FLUX) and

text-to-3D (e.g., Tripo, Hunyuan, CLAY) models. As our dataset

grows, we will incorporate more fabric types, enabling GarmageNet

to model how different materials influence both panel geometry and

overall garment drape.

Looking ahead, we plan to extend GarmageNet along several di-

rections. Incorporating body-shape conditioning will allow garment

personalization across diverse silhouettes. Integrating differentiable

physics into the generation loop can further reduce simulation

artifacts and enable material-aware draping. Finally, expanding Gar-

mageSet to cover a wider range of fabrics and decorative techniques

will enhance the model’s ability to capture nuanced material be-

haviors and stylistic details. We believe GarmageNet paves the way

for rapid, design-driven garment creation and holds promise for

applications in virtual try-on, digital fashion design, and automated

apparel manufacturing.
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