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Fig. 1. GarmageNet in Action: A diverse and sophisticated collection of garment assets automatically generated by our GarmageNet framework, along with
their corresponding Garmages—our unified 2D-3D representation that encodes both sewing patterns and detailed geometry for seamless integration with
existing garment modeling workflow. Altogether, GarmageNet generates garments across the spectrum of design complexity: from intricate multi-layered
ensembles (3rd and 5th) and striking asymmetric styles (2nd and 4th) to form-fitting corsets requiring precise drape and structural fidelity (1st).

Realistic digital garment modeling remains a labor-intensive task due to
the intricate process of translating 2D sewing patterns into high-fidelity,
simulation-ready 3D garments. We introduce GarmageNet, a unified gen-
erative framework that automates the creation of 2D sewing patterns, the
construction of sewing relationships, and the synthesis of 3D garment initial-
izations compatible with physics-based simulation. Central to our approach
is Garmage, a novel garment representation that encodes each panel as a
structured geometry image, effectively bridging the semantic and geometric
gap between 2D structural patterns and 3D garment shapes. GarmageNet
employs a latent diffusion transformer to synthesize panel-wise geometry
images and integrates GarmageJigsaw, a neural module for predicting point-
to-point sewing connections along panel contours. To support training and
evaluation, we build GarmageSet, a large-scale dataset comprising over 10,000
professionally designed garments with detailed structural and style anno-
tations. Our method demonstrates versatility and efficacy across multiple
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application scenarios, including scalable garment generation from multi-
modal design concepts (text prompts, sketches, photographs), automatic
modeling from raw flat sewing patterns, pattern recovery from unstruc-
tured point clouds, and progressive garment editing using conventional
instructions-laying the foundation for fully automated, production-ready
pipelines in digital fashion. Our code and dataset will be publicly available.

CCS Concepts: « Computing methodologies — Shape modeling; Re-
construction; Hierarchical representations; Shape representations.

Additional Key Words and Phrases: Garment Modeling, Garment Dataset,
Diffusion Generation

1 INTRODUCTION

Realistic digital clothing plays a vital role in entertainment and
gaming by enhancing character immersion, and in fashion and
e-commerce by accelerating product development and reducing
costs. Despite this demand, 3D garment modeling—which spans



line-art creation, sewing pattern generation, and physics-based sim-
ulation—remains labor-intensive and technically complex. While
learning-based methods have made notable strides in 2D design,
automating the full pipeline is still challenging due to intricate ge-
ometry and expert-dependent tasks such as manual pattern drafting
and garment initialization. These slow, skill-intensive processes
are poorly suited to the fast fashion industry’s need for speed and
scalability. As deep neural networks (DNN) continue to advance, a
central question emerges: can they truly automate sewing pattern
generation and simulation-ready 3D garment modeling?

Garments are constructed from multiple flexible 2D panels joined
through sewing patterns that define their final 3D shape, motion,
and fit on the human body. The core challenge in digital garment
modeling lies in capturing both 3D continuous geometry and 2D
discrete structure. These patterns are not just templates. They en-
code vital semantic information that governs the transformation
from 2D fabrics to complex 3D garments. Effective modeling must
therefore preserve both 3D geometric integrity for realistic draping
and appearance, and 2D structural correctness to maintain sewing
relationships. Without a carefully designed representation, enforc-
ing such structural constraints within neural networks can limit
their flexibility and compromise geometric fidelity. To be fully ef-
fective and efficient, learning-based garment modeling must bridge
the gap between 2D structural patterns and 3D garment geometry.

Recent learning-based approaches have made strides in garment
modeling but remain constrained by trade-offs between 2D struc-
ture and 3D fidelity. Forward garment modeling operates in the
sewing-pattern domain. They leverage sequential or diffusion-based
frameworks to generate either vector-quantized sewing patterns
with edge-wise sewing correspondence and rigid-transformation
based 3D initialization [He et al. 2024; Li et al. 2025; Liu et al. 2024a;
Nakayama et al. 2024], or to emit the parameters and programs of a
parametric pattern-making DSL such as GarmentCode [Bian et al.
2024; Korosteleva and Sorkine-Hornung 2023; Zhou et al. 2024].
These methods then employ conventional cloth simulators to drape
the generated patterns onto a target avatar. Although they preserve
structural correctness by explicitly generating sewing patterns, they
lack complete spatial context and therefore often fail to reproduce
fine fold details and realistic drape geometry (Figure 2 (b)). In con-
trast, Backward garment modeling [Rong et al. 2024; Tochilkin et al.
2024; Xiang et al. 2024; Yu et al. 2025a; Zhang et al. 2024; Zhao et al.
2025] follows a geometry-first strategy, and mapping multi-modal
design inputs directly into a draped 3D garment. These methods
often employ continuous, optimizable implicit representations, such
as distance or occupancy fields, as their underlying encoding to
preserve geometric fidelity. However, because the structural infor-
mation in UV or sewing pattern space is inherently discrete and
discontinuous, making it difficult to integrate into such represen-
tations. As a result, these methods discard structural information
at the representation level (Figure 2 (c)), rendering it extremely
challenging, if not impossible, to recover sewing patterns after gen-
eration [Srinivasan et al. 2025; Yu et al. 2024]. These limitations
highlight the need for a unified framework that combines the struc-
tural integrity of 2D sewing patterns, the geometric precision of
3D drapes, and seamless compatibility with physics-based cloth
simulation workflows—precisely the objectives of GarmageNet.

(a) The Magic of Wearing

(b) Forward Garment Modeling (c) Backward Garment Modeling,

Fig. 2. Problems in forward modeling and backward modeling. The magic
of wearing (a) indicates that the same sewing pattern could lead to various
draping statuses, raising the problem of Forward Modeling, which focuses
on sewing pattern structure but fails to ensure draping alignment with the
input (b). On the other hand, Backward Modeling focuses on draping
alignment but fails to preserve structure integrity in UV space (c).

In this paper, we introduce GarmageNet, the first unified frame-
work, to our knowledge, that automatically generates 2D sewing
patterns, infers sewing relationships, and produces simulation-ready
3D garment initializations. GarmageNet enables a variety of practi-
cal applications, including scalable garment generation from multi-
modal design concepts (text prompts, sketches, photographs), au-
tomatic modeling from raw flat sewing patterns, pattern recovery
from unstructured point clouds, and progressive garment editing
via conventional instructions.

At the core of GarmageNet is a novel garment representation
called Garmage, designed to bridge the gap between 2D sewing
patterns and 3D garment geometry by drawing inspiration from
geometry images [Gu et al. 2002]. A Garmage consists of a structured
set of per-panel geometry images, where sewing patterns define
the UV space, the alpha channel encodes the 2D panel contour,
the 2D bounding box captures the length-width ratio, and the 3D
bounding box represents the spatial relationship of the panel to the
human body. Serving as both a 2D image-based and 3D geometric
representation, Garmage offers two key advantages: it retains the
flexibility of standard image formats for easy integration with image-
based algorithms, and it enables direct reconstruction of simulation-
ready 3D garments.

Building upon Garmage, our GarmageNet formulates garment
synthesis as a latent diffusion process. It first learns a compact man-
ifold of admissible garment panel variations by encoding each cloth
piece’s quasi-static 3D geometry and corresponding 2D panel shape
into a fixed-size latent token. Leveraging this latent space as a strong
prior, we then introduce a diffusion transformer (DiT) that learn-
ing to produces valid assemblies of these latent tokens, ultimately
yielding a complete Garmage capable of precisely delineating de-
tailed 3D garment geometry while preserving panel-wise structural
information.

To integrate Garmage into existing garment modeling pipelines,
we propose GarmageJigsaw, a model for recovering sewing rela-
tionships between Garmage panels. Unlike traditional curve-based
stitching definitions, GarmageJigsaw defines sewing as point-to-
point connectivity along panel boundaries, extracted from Gar-
mage’s alpha channel. The model consists of two neural compo-
nents: a Point Classifier to identify stitching points, and a Stitch
Predictor to infer stitching pairs. Panel contours are then converted
into Bézier curves using angle-detecting convolutional kernels to



identify corners, and predicted point-to-point stitches are refor-
matted into edge-to-edge connections to ensure compatibility with
pattern design software.

GarmageNet requires a suitable dataset for training. However, the
absence of efficient, flexible garment representations—coupled with
a lack of large-scale, high-quality datasets that link 3D garments
with 2D sewing patterns—has significantly hindered progress in
this domain. To address this, we introduce GarmageSet, a large-
scale dataset of over 10,000 professionally designed garments, each
represented as a Garmage annotated with precise sewing patterns,
structural details, and style attributes. GarmageSet not only supports
the effective training and evaluation of GarmageNet but also demon-
strates its ability to convert additional unstructured sewing patterns
into well-organized Garmage representations. This establishes a
self-reinforcing feedback loop: newly generated data expands the
training corpus, progressively enhancing the quality, diversity, and
generalization of GarmageNet’s outputs. We summarize our main
contributions as follows:

e We introduce GarmageNet, a novel uniform generation frame-
work capable of producing complex and simulation-ready

garments from various input modalities, including text prompts,

sketch images, raw sewing patterns, or unstructured point
clouds.

e We introduce Garmage, a novel and compact representa-
tion that seamlessly encodes a garment’s discrete sewing
pattern structure and continuous draping geometry into
fixed-length latent tokens, facilitating efficient integration
with diffusion-based generative models and multi-modal
cross-attention conditioning.

e We introduce GarmageJigsaw to recover sewing relation-
ships between Garmage panels by predicting point-to-point
stitches along panel contours and convert Garmage into
production-ready! garment assets, facilitating downstream
editing of sewing patterns, material properties, and dynamic
simulations.

e We introduce GarmageSet, an initial dataset of high-fidelity
Garmages with detailed structural and style annotations. We
further demonstrate that GarmageNet’s generation capabili-
ties can expand this dataset, establishing a scalable feedback
loop for continuous improvement.

e Our framework surpasses existing forward and backward
garment modeling approaches and unlocks a range of prac-
tical applications, including scalable multi-modal garment
generation (from text, sketches, or photos), automatic 3D
reconstruction from flat patterns, sewing-pattern recovery
from point clouds, and interactive garment editing with
intuitive commands.

2 RELATED WORK

In this section, we review advances in garment modeling (Sec-
tion 2.1), datasets (Section 2.2), and structural object modeling (Sec-
tion 2.3) that inspired the design of GarmageNet.

'We define “production-ready” as assets derived from real-world manufacturing data
(in contrast to purely synthetic datasets such as GarmentCode), conforming to industry-
grade quality standards, and fully compatible with existing garment production
workflows.

2.1  Garment Modeling

Traditional garment modeling involves complex, labor-intensive
steps such as pattern making, sewing identification, and cloth ar-
rangement. Berthouzoz et al. [2013] introduced a machine learning-
based sewing identification algorithm, but it requires manual gar-
ment initialization and carefully designed parsers for extracting pan-
els and styling elements. Liu et al. [2024d] proposed an automatic
initialization algorithm through panel classification and heuristic
optimization, but it still relies on complete sewing patterns.

In learning-based garment modeling, early work like NeuralTai-
lor [Korosteleva and Lee 2022] focused on reconstructing sewing
patterns from unstructured point clouds. Later research evolved
into two main approaches: Vector quantization-based methods,
which transform sewing patterns into 1D sequences, such as Dress-
Code [He et al. 2024] and SewFormer [Liu et al. 2023], which use GPT
and Transformer architectures for text- and image-to-pattern gen-
eration. Alpparel [Nakayama et al. 2024] and SewingLDM [Liu et al.
2024a] further advanced tokenization for more complex patterns.
Code-generation methods like Design2GarmentCode [Zhou et al.
2024] and ChatGarment [Bian et al. 2024] use large language mod-
els (LLMs) to generate parametric pattern-making DSLs (domain-
specific language), such as GarmentCode [Korosteleva and Sorkine-
Hornung 2023], supporting large-scale dataset generation.

Implicit garment modeling methods often rely on unsigned dis-
tance fields (UDF) [Yu et al. 2025a], manifold distance fields [Liu
et al. 2024b], and Gaussian splatting [Liu et al. 2024c; Rong et al.
2024] to handle non-watertight garment geometry, and employ diffu-
sion or GAN-based generative models to generate visually pleasant
garment assets, with vivid dynamics [Rong et al. 2024; Xie et al.
2024]. However, how to transform those implicit representations
into triangular or quadrilateral meshes relies on a solid iso-surface
extraction algorithm, which remains quite a challenging problem.

With the rise of image generative models, recent approaches
[Elizarov et al. 2024; Yan et al. 2024] have used the geometry image
representation [Gu et al. 2002; Sander et al. 2003] for 3D geom-
etry generation. Although constructing consistent UV spaces is
challenging for general objects, these methods work well for gar-
ment modeling due to the inherent structure of its well-defined UV
space (i.e., sewing patterns) that adhere to industrial standards. For
example, ISP [Li et al. 2024a,b] uses geometry images to capture
garment deformations, while Yu et al. [Yu and Wang 2024] applied
super-resolution to improve fine-grained simulation efficiency.

2.2  Garment Datasets

Learning-based 3D garment generation relies on high-quality datasets,
which fall into three categories: scanning-based, simulation-based,
and sewing pattern-based.

Scanning-Based Datasets [Anti¢ et al. 2024; Bhatnagar et al. 2019;
Ho et al. 2023; Lin et al. 2023; Ma et al. 2020; Pons-Moll et al. 2017;
Tiwari et al. 2020; Wang et al. 2024b; Xu et al. 2023; Zhang et al.
2017] capture realistic garment appearances and shapes; however,
isolating semantically meaningful parts from the raw scans remains
a labor-intensive process, heavily reliant on manual efforts. As a
result, these datasets typically lack sewing patterns that match the
garment assets. Additionally, they are mostly derived from existing



(a) Design Input

Text: A midi-length A-line dress featuring a fitted bodice with a sharp
shirt collar, puffed elbow-length sleeves, and a gently flared skirt with
clean vertical seams. A horizontal waist seam subtly defines the silhouette,
while the minimalist, monochrome design emphasizes elegance and

structure, making it ideal for refined, timeless looks.

(b)

Point Cloud

Line-Art

(d) Simulated Garment

Fig. 3. Overview of our GarmageNet framework, which seamlessly converts multi-modal design inputs—including text descriptions, sewing patterns, line-art
sketches, and point clouds (a)—into simulation-ready garment assets (d). Central to our framework is the novel Garmage representation (b), a unified 2D-3D
structure encoding each garment as a structured set of per-panel geometry images. Leveraging Garmage, our approach efficiently recovers vertex-level
sewing relationships and detailed 3D draping initializations (c), enabling direct and high-quality garment simulation.

commercial garment asset libraries, limiting their scale and design
diversity.

Simulation-based datasets often include [Bertiche et al. 2020; Black
et al. 2023; Gundogdu et al. 2019; Jiang et al. 2020; Narain et al. 2012;
Patel et al. 2020; Santesteban et al. 2019; Xiang et al. 2020; Zou
et al. 2023], which use physics engines to simulate and enhance
the physical plausibility of synthetic 3D garments. While these
datasets are more efficient to produce than 3D scanning datasets,
they generally suffer from limited garment style diversity, poor
garment deformation, and low-quality paired images, reducing their
practical use for real-world image data tasks.

Additionally, sewing pattern-based datasets [Korosteleva et al.
2024; Korosteleva and Lee 2021] use parametric modeling to create
garment models from sewing patterns, offering UV information
but often focusing on simpler, single-layer styles. These datasets
struggle with representing complex garments due to their lack of
multi-layer structures and intricate sewing patterns, limiting their
scalability and ability to model detailed, multi-layer garments.

2.3 Structural Object Modeling

Recent advancements in structural object modeling have enhanced
the generation and reconstruction of Boundary Representation (B-
rep) models, enabling more complex 3D shape synthesis for CAD
applications. BRepGen [Xu et al. 2024] uses a diffusion-based ap-
proach to generate B-rep models hierarchically, capturing intricate
geometries, while SolidGen [Jayaraman et al. 2022] employs autore-
gressive neural networks to predict B-rep components with indexed
boundary representation, facilitating high-quality CAD model gen-
eration. ComplexGen [Guo et al. 2022] detects geometric primitives
and their relationships to create structurally faithful CAD models.

StructureNet [Mo et al. 2019], DPA-Net [Yu et al. 2025b], and
TreeSBA [Guo et al. 2025] focus on basic geometric shapes but strug-
gle with non-rigid structures and sewing relationships in garments.
StructEdit [Mo et al. 2020] targets local editing of geometric bodies,
suitable for regular shapes but limited for flexible, multi-layer gar-
ments. 3D Neural Edge Reconstruction [Li et al. 2024c] reconstructs
rigid object contours but does not handle flexible garment modeling.

Fracture assembly methods like PuzzleFusion++ [Wang et al.
2024a] and Jigsaw [Lu et al. 2024] infer matching relationships
for rigid objects but fail with garments, where misaligned contours
and segment-to-segment connections are common. In Garmage,
we adapt this approach by treating panels as "fractures," predict-
ing relationships between their contour points to establish sewing
connections. Unlike rigid objects, garment contours may not align
perfectly, and Garmage addresses this by incorporating garment-
specific properties, such as curvature, edge smoothness, and sewing
constraints in a learning-based framework.

3 OVERVIEW

Traditional digital garment modeling demands expert intervention
to draft 2D sewing patterns and manually arrange panels around
articulated avatars for physics-based simulation. Although learning-
based approaches have begun to automate pattern creation, they
typically lack explicit 3D geometric guidance, resulting in imprecise
outputs and difficulty in handling complex draping behaviors.

Our approach introduces the first unified learning-based garment
creation framework built upon a dual 2D/3D representation that
embeds both sewing-pattern structure and quasi-static drape ge-
ometry in a unified image format. As illustrated in Figure 3, our
method accepts multi-modal design inputs, including textual de-
scriptions, design sketches, scanned point clouds, and raw sewing
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Fig. 4. Overview of our GarmageNet architecture. During the geometry
encoding stage (top), each garment is encoded into a set of fixed-size (72-
dimensional) latent vectors using a Variational Autoencoder (VAE). These
compact latent representations serve as training targets for the subsequent
diffusion generation stage (bottom). In the diffusion stage, we employ a
diffusion transformer (DiT) denoiser, integrating multi-modal conditions,
including line-art sketches, raw sewing patterns, and point clouds via cross-
attention mechanisms to effectively guide and control the garment genera-
tion process.

patterns, and transfers those design inputs into Garmages with a
specially-designed diffusion transformer (DiT).

After generation, we extract 2D sewing contours by thresholding
the alpha channel of the generated Garmage and reconstruct each
cloth panel’s 3D shape by denormalizing the Garmage’s RGB chan-
nels with the panel’s bounding box. To recover stitching topology,
our GarmageJigsaw module jointly leverages 2D silhouette features
and 3D proximity of contour points, producing point correspon-
dences that we fit with Bézier curves to yield manufacturable seam
lines. As a result, our method extracts, from the generated Garmage,
the garment’s 2D sewing patterns, sewing relationships, and vertex-
wise fine-grained initial 3D geometry positioned around a digital
avatar—ready for physics-based simulation.

The effectiveness of our framework depends on a comprehensive,
multimodal garment corpus, which we call GarmageSet. To support
all input pathways, each entry in GarmageSet pairs a ground-truth
Garmage (with per-panel geometry images, dimensions, and bound-
ing boxes) with four aligned modalities: a natural-language descrip-
tion, a line-art sketch, a vectorized sewing pattern, and a uniformly
sampled point cloud of the draped garment. GarmageSet spans 15k
outfits across varied styles and categories, and provides the rich
supervision necessary to train and evaluate GarmageNet.

4 GARMAGENET

While intertwining 3D geometry and 2D structure pose challenges
for learning-based garment encoding and generation, it confers a
unique advantage: garment assets inherently possess well-structured
and semantically meaningful UV spaces (i.e., their sewing patterns).
Each texel in a sewing-pattern panel simultaneously maps to a point
on its corresponding 3D cloth piece, creating a natural bridge be-
tween structure and geometry. Garmage exploits this insight by
converting each cloth piece into a panel-aligned geometry image,

whose color channels encode the piece’s quasi-static 3D geometry
and whose alpha channel delineates the panel contour. By harness-
ing the complementary strengths of 2D and 3D representations,
Garmage enables efficient, high-quality 3D garment creation with-
out sacrificing structural fidelity.

4.1 The Garmage Representation

Traditionally, a garment asset is represented as a set of 3D cloth
pieces C = {Ci}f\] , and their corresponding 2D sewing pattern

panels P = {Pi}l{i 1» where each panel in the sewing pattern maps
directly to a cloth piece in 3D space.

In Garmage, we model a garment as a set of per-panel geometry
images [Gu et al. 2002; Sander et al. 2003], each of which simultane-
ously encodes a panel’s 2D contour and its normalized 3D shape.

Formally, we define

N

G ={P.c}Y, = {(DiBL I}, 1)

where D; = (hj, w;) € R? gives the i—the panel’s physical height
and width dimension (in meters) aligned with the fabric’s warp and
weft; B; = (0;,5;) € R® specifies the axis-aligned bounding box of
cloth piece C;, parametrized by its center o; € R® and half-extents
s; € R%; and I; € RFFXWX4 j5 3 4-channel image patch whose first
three channels encode C;’s geometry normalized by B; and whose
alpha channel delineates the panel contour as an occupancy map.

To construct each image patch I;, we rasterize the cloth piece C;
under its panel P;’s UV parameterization at a uniform resolution
(H = W = 256). Before rasterization, we rotate the 2D panel P;
so its warp direction aligns with the v* axis, then normalize its
coordinates to [—1, 1] by its physical dimension D; = (hj, w;). Si-
multaneously, we map every 3D vertex v; € C; into normalized
space via (vj —0;)/s; € [-1, 1]3 using its bounding box B; = (0;, 5;).
At each pixel center up, € [-1, 1]? (corresponding to a 3D point p),
we test whether p falls inside any triangle of the cloth piece; if so,
we find the containing triangle’s vertices j and their barycentric
weights ;(p) € R3 to p, then set

(Zjﬂj(up)vjs_ima 1), p €Ci,

((o, 0,0), o), @

Li(up) =
e otherwise.

Rasterizing panels with sharp features (e.g., dart tips) requires care-
ful handling of boundary aliasing. Following [Yan et al. 2024], we
run the rasterization at an initial high 1024 X 1024 resolution and
subsequently downsample to the target resolution 256 X 256 via
sparse pooling.

4.2 Diffusion-based Garmage Generation

Garment panels serving similar functions often exhibit similar shape
features and consistent spatial relationships relative to the human
body. For instance, bodice panels typically feature characteristic
structural elements such as necklines and armholes and are gener-
ally positioned over the chest region in 3D space. This regularity
implies a strong correlation between a panel’s silhouette (encoded in
the alpha channel of I;) and the geometry status of its corresponding



cloth piece (the remaining channels in [;), motivating the compres-
sion of Garmages into a unified latent space that simultaneously
captures both silhouette and geometry.

4.2.1 Latent Encoding. Consider the geometry-image component
I; of the i—th panel in a Garamge G, we leverage UNet-based varia-

tional autoencoder (®g(-), @4 (+)), to compress J; into a 64-dimensional

latent vector

Dg :R256X256X4 — R64, g (Ii) =7,

D (Z) ~ I;. ®

CI)Z) ZR64 N R256X256X4,

To further reinforce 2D-3D correlation in the latent space, during
training we randomly mask out the geometry channels of I; with
probability 0.25 before passing it through the encoder ®g(-), and
forcing the decoder ® ¢ (+) to reconstruct the geometry part solely
from the panel’s silhouette during inference. This masking scheme
also enables flexible Garmage generation from raw sewing patterns.

After latent compression, any garment can be represented as a
set of fixed-length latent tokens,

G =T ={T;}

where N represents the number of panels in each garment, D; € R?
represents the 2D physical dimension of the panel, B; € R is the
axis-aligned bounding box of its corresponding cloth piece and
Z; € R% is the geometry latent.

We train the autoencoder with MSE loss to minimize the recon-
struction error, along with a low-weighted (4,4 = 1e — 6) KL diver-
gence term between the encoder’s approximate posterior g (z|I)
and a standard normal distribution p(z) = N(0, 1):

N N
i=1 = {(Di®B;® Zi)}i:1 e RN%72 @

N
1
Lene = N ; II; = @p (z0)ll5 + AregDir[qos (211 I p(2)]. (5)

4.2.2  Diffusion Generation. Based on the learned Garmage latent
space, we train a diffusion transformer (DiT) to map random sam-
ples from the standard normal distribution ¢ -~ N(0, 1) to valid
Garmages based on various user input conditions c. Specifically,
in the forward process, we gradually interpolate the input token
7 with random noise through 0 < ¢ < 1000 timesteps turning it
into noisy states 7; = \/a; 7o + V1 — az€; at each timestep. In the
backward process, we linearly embeds the noised latent {Zl-,t}l{i 1
into patch tokens, embeds the 2D dimension and 3D bounding box
{Di:® B,-,t}fi , into position tokens, and add them together with
the embedded timesteps to construct the noisy state, and train the
diffusion transformer ¥g (-) to recover the added noise from the
previous timestep ¢ — 1 to t, conditioned on the input condition c:

‘Pg . RNX72 — RNX72, \Pg (T, £, C) ~ €,
Wg(Tr,t,c) = DiT(PosEmb(Dt ®B;) + MLP(Z,), t, c), ©)
D; ®B; = {Dj; ®Bi )Y, e RNX8, 7, = {7; )N, e RN*64,

We train ¥g (+) using mean-squared error between the predicted
noise ¥ (7, ¢, t) and added noise €;:

Ly =By 75, |lle = ¥ (To, ¢, 0113, ™

where €; denotes the Gaussian noise added at timestep ¢. All panels
in a Garmage are denoised in parallel while the self-attention mech-
anism of the Transformer backbone implicitly models the connec-
tions between panels, ensuring structural validity of the generated
garment. For convenience, we zero-pad each garment to have a
fixed number of panels N = 32 during training and discarding any
panels whose bounding box volume |B;| < 0.075 or 2D dimension
IID;||> < 1e7* at inference time to accommodate panel number
variance.

4.2.3 Dealing with Conditions. During diffusion training, each de-
sign modality is first encoded into its own latent space by a pre-
trained encoder and then injected into the Garmage denoiser via
cross-attention. Text prompts are mapped to a 1024-dimensional
text latent using the CLIP text encoder; Line-art sketches are passed
through a pretrained DINOv2 vision transformer, also yielding a
1024-dimensional image latent; and unstructured point clouds are
processed by a PointTransformer v3 (PTv3) fine-tuned on Garmage-
Set for panel segmentation tasks, producing a 1024-dimensional
point latent [Wu et al. 2024].

Unlike other modalities, raw sewing pattern conditioned genera-
tion is natively supported by GarmageNet via our VAE’s masking
scheme (Section 4.2.1), which allows for inferring the full 4-channel
geometry from the silhouette alone. Consequently, when a sewing
pattern is provided, its 2D dimensions Dy and geometry latents
Z, are known a priori, leaving only the 3D bounding-box By to
be recovered via diffusion. In practice, at each diffusion step ¢, we
corrupt Dy and Zg to their noised version Dy, Z; at timestep ¢, con-
catenate them with B;, and allow the network to iteratively denoise
B; toward the desired By.

It is worth noting that while Garmage inherits the geometry
image representation, our panel-wise geometry image representa-
tion enables more efficient latent compression. Combined with the
carefully designed GarmageNet architecture, which emphasizes the
spatial and connectivity relationships between panels, our frame-
work achieves significant improvements in both generation quality
and efficiency compared to existing 3D generation methods based
on geometry images, such as Omage[Yan et al. 2024] (Table2).

5 GARAMGE PROCESSING

With GarmageNet, we can synthesize complete Garmages from
conventional design input, the next challenge is to integrate these
rasterized panel images into traditional garment-modeling pipelines,
which requires vectorizing panel contours and reestablishing sewing
relationships. In the following section, we introduce GarmageJig-
saw, a dedicated module that leverages Garmage’s embedded 2D
silhouettes and 3D spatial cues to robustly infer vertex-wise sewing
correspondences, followed by post-processing routines that yield
production-ready, vector-format sewing patterns.

5.1 Boundary Point Sampling

Conventional garment modeling systems define sewing relation-
ships as continuous curve-to-curve correspondences. While straight-
forward, this edge-based scheme often introduces ambiguity due to
ill-defined edge separation and complex many-to-many mappings
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Fig. 5. lllustration of stitch representation ambiguity and our point-wise
solution. Existing edge-based methods suffer from inconsistencies due to
arbitrary edge splits: in (a) and (b), the red lines depict the same physical
stitch, yet their extracted edge features (shown below) differ in both length
and parameter encoding. In contrast, our point-wise stitching (c) directly
anchors stitch correspondences to mesh vertices in physical space, producing
consistent, robust sewing relationships independent of panel tessellation.

(Figure 5). In contrast, we represent sewing relationships as con-
nectivity between boundary vertices of cloth pieces, which are not
subject to further subdivision.

As noted above, each panel in Garmage is represented by a four-
channel image patch I; € R?°6%250X4 \whose alpha channel [I;]4
delineates the panel contour. We extract the set of 2D contour points
as:

ol; € Rkixz, and
al; = {up : [Ii]4(up) > 0} \ {u : ([Ii]4 GA)(up) > 0},

where ©A denotes binary erosion with structuring element A, and k;
refers to the number of contour points from image patch I;. Denoting
[Ii]o:3 as the remaining geometric channels from I;, we retrieve the
corresponding 3D points for dI; from [;]¢:3 and denormalize them
into world coordinate with the panel’s corresponding bounding box
B;:

®

pli € Rkixg, pli = Denorm( [I;]o:3(0I;), B; ) 9)
Note that panels may yield nonuniform point densities, we apply
resampling under predefined particle distance to pI;, ensuring that
adjacent contour samples across all panels exhibit consistent 3D
distances, producing normalized inputs for our GarmageJigsaw
correspondence module.

5.2 Sewing Relation Recovery

With the resampled contour points, GarmageJigsaw recovers point-
to-point sewing by jointly leveraging 2D silhouette and 3D geomet-
ric features. As shown in Figure 6, we first extract per-point features
using two PointNet++ encoders, ®,(-) on the 3D contour points
pl € REX3 and @,4(+) on the 2D pixels ol € RK*2, These features
are concatenated and fused through a series of point-transformer
blocks ¥, (-) to yield a 128-dimensional per-point feature matrix

feRrKxz oo \yp(cpp(pl) ® y(al) )

(10)
pl= {p;}Y, € RE*® and o1 = {o1;} )Y, e RE*2,

Here, K = }; k; is the total number of contour points across all
panels. A point classifier head @ (-) then selects the subset f* €
RK"™X128 of candidate sewing points by predicting sewing probabil-

ity based on the point features f.
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Fig. 6. Overview of sewing relationship recovery and simulation-ready
sewing pattern reconstruction from the generated Garmage (a). Unlike
previous edge-based methods, we predict vertex-level sewing relationships.
Specifically, we first sample boundary points (c) from the generated Gar-
mage representation. Our GarmageJigsaw takes the boundary points as
input, and leverages a point classifier to identify sewing versus non-sewing
points (d), followed by a stitch predictor that recovers point-to-point stitches
(e), represented as an adjacency matrix. Concurrently, we extract vectorized
sewing patterns (b) from the Garmage and transfer the predicted point
stitches onto these vectorized patterns (f). We then reconstruct triangle
meshes from the vectorized sewing pattern with a Delaunay triangulation
constraint by the predicted stitches. Finally, we retrieve vertex-wise draping
status from the generated Garmage, leading to a simulation-ready triangle
mesh that can be directly integrated into any conventional cloth simulation
engine to produce the physically plausible garment (g).

To predict pairwise correspondences, we apply two MLP heads
Qprime (1) and @gyq1(+) to disentangle primal and dual features:

+ K*x128 _ +
fi)rime €R > fp;ime = cI)prime (f ),

(11)
K*x128
faea € R fla = Paval (F),

and combine them with a learnable symmetric weight matrix A €
R128X128 followed by a Sinkhorn normalization [Cuturi 2013] to
produce the adjacency probability matrix:

+ T +
(fprime) Aaf; dual

A = Sinkhorn(exp(
T

)) e [0, 11Kk (12)
Here, A;j = Aj; denotes the probability of a sewing exists between
the i-th and j-th contour points, and 7 is a temperature parameter
according to [Lu et al. 2024]. The probability matrix A is processed
with the Hungarian algorithm [Fischler and Bolles 1981], yielding
the final point-to-point correspondences for seam reconstruction.

The entire GarmageJigsaw model is trained end-to-end with two
complementary loss terms: a binary cross-entropy loss L, that
supervises the predicted sewing-point probabilities against ground-
truth labels y; € {0,1}, and a matching loss L .icn that aligns
the predicted adjacency matrix A with the ground-truth matrix
Ag:. Notably, to prevent the network from trivially minimizing
L nch by omitting sewing pairs, we pad A into a K X K matrix with
zero columns and rows corresponding to non-sewing points, and
compute the matching loss on the whole contour points set (pL, dI).



We train GarmageJigsaw on vertex-wise sewing data where each
stitch is represented as a tuple of vertex IDs (Sec. ??). In our ground-
truth assets, sewn vertices are perfectly coincident with zero 3D
Euclidean distance. However, the generated Garmages through dif-
fusion often exhibit small seam gaps. To make the network robust to
these artifacts, we apply the following data augmentations: First, we
inwardly offset each panel’s boundary facets toward its centroid by a
random distance between 2 mm and 8 mm, transferring the original
sewing relationships to these offset boundaries. Next, we introduce
anisotropic noise parallel to seam directions at true sewing points,
and isotropic noise to all other points along the offset boundary.
Finally, we slightly perturb each panel’s 3D bounding-box center
and scale, as well as its 2D pattern dimensions to compensate for
the generated positional noise.

5.3 Sewing Pattern Reconstruction

In conventional garment-modeling workflows, sewing patterns are
represented as vectorized curves, with sewing relationships explic-
itly defined between these curve segments. To integrate Garmage-
generated results seamlessly into existing pipelines, we must convert
the predicted point-to-point sewings into curve-to-curve correspon-
dences and vectorize the panel contours.

To vectorize the Garmage panel contours, we first detect corner
points exhibiting sharp turning angles along the contour point set I
by employing a specially designed 1D convolutional filter. We then
fit piecewise B-spline curves to contour points between adjacent
corners, resulting in smooth, compact vector representations for
each panel. This vectorization process effectively smooths slanted
boundaries (e.g., the last panel of the 4—th garment in Figure 1)
and fills small noisy holes (e.g., the 2—nd panel of the 5—th gar-
ment in Figure 1). Subsequently, we employ a heuristic algorithm
to cluster point-to-point stitches predicted by GarmageJigsaw into
curve-level sewing correspondences directly on these vectorized
B-spline segments.

Finally, we triangulate each sewing-pattern panel into a mesh us-
ing constrained Delaunay triangulation [Rognant et al. 1999], guided
by the vectorized panel contours and inferred sewing relationships.
Specifically, the boundary facets of each cloth piece mesh consist
of contour points uniformly resampled according to the sewing
correspondences, ensuring smooth and well-aligned seams between
adjacent panels.

Vertex positions for these triangulated meshes are determined by
sampling the corresponding 3D coordinates from their associated
Garmage geometry images using bilinear interpolation, resulting in
a fine-grained initial draping state. In contrast to existing garment
modeling frameworks that typically rely on coarse rigid transforma-
tions to position each panel, our Garmage-based approach provides
vertex-level precision in the initial 3D placement. This capability
allows us to accurately capture intricate folding behaviors and nu-
anced garment structures.

6 GARMAGESET

As noted, Garmage’s vertex-level sewing and precise 3D initializa-
tion excel at modeling intricate drapes and folds, whereas existing
datasets [Korosteleva et al. 2024; Luo et al. 2024; Zhu et al. 2020]
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(a) Panel Semantic Definition (b) Sewing Pattern (c) 3d Garment
Fig. 7. Garment structure definition and corresponding visualization on both
sewing pattern space and 3D garments. (a) Color-coded definitions of eight
structural (e.g., body front, sleeve) and seven decorative (e.g., pocket, ruffle)
panel classes. (b) A sewing-pattern layout annotated by these semantic
labels. (c) The corresponding 3D draped garment on the standard avatar,
with each panel rendered according to its semantic class.

are restricted to simple, flat garments and cannot fully evaluate
our framework. To address this gap, we assembled a professionally
curated, industrial-grade dataset GarmageSet showcasing complex
folding behaviors and multi-layer structures, complete with manu-
ally validated structural and style annotations, as well as multimodal
augmentations including line-art sketches and sampled point clouds.

6.1 GarmageSet Construction

GarmageSet comprises N = 14,801 unique garments spanning five
major clothing categories like tops (Figure 11 (d.i)), pants, skirts,
dresses, outerwears and several minor categories like bras (Figure 11
(d)), vests (Figure 11 (j)), pajamas efc. All garments are draped onto
an A-posed standard avatar? to diminish the geometric variance
brought by body sizes and poses.

6.1.1 Data Acquisition. Building GarmageSet entirely by hand
would be prohibitively time-consuming. To scale the dataset con-
struction efficiently, we adopt a component-centric strategy inspired
by GarmentCode [Korosteleva and Sorkine-Hornung 2023]. As il-
lustrated in Figure 9, we first construct a structured component
library from in-the-wild sewing patterns and then task professional
modelers with assembling garments by randomly selecting compo-
nents, applying design modifications (e.g., adjusting width or length,
or adding decorative features), and combining them into complete
garments.

To build the component library, we collect a diverse set of raw
sewing patterns and engage professional pattern makers to anno-
tate them following the hierarchical garment structure definitions
detailed in Sec. 6.1.2. This process yields a well-organized collection
of reusable garment parts, categorized by role (e.g., bodice, sleeve,
collar) and tagged with stylistic attributes curated by experienced
fashion designers and pattern makers?, as shown in Figure 8.

We then randomly sample valid combinations of components
from the library and use QWen3 to propose 1-3 modification instruc-
tions for each combination, such as altering silhouette proportions
or adding style-specific elements. These modified configurations

%Size S mannequin with Asian size 84.
3Some style tags and illustrations are adapted from Fashionpedia[Fashionary 2016].
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Fig. 8. Design space for GarmentSet. Each garment in GarmageSet is annotated along nine professionally defined design dimensions, including silhouette (8
options), darts/pleats (7), waistline (7), hemline (7), neckline (28), collar (17), opening (5), shoulder (6), and sleeve (23). Except for silhouettes, most of those design
dimensions have a “/” option indicating that a particular dimension does not apply to the given garment (e.g., sleeve types are irrelevant for skirts or pants).
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Fig. 9. Overview of our GarmageSet construction process. We first build a component library (b) by structuring sewing patterns collected in the wild (a).
Professional modelers then randomly select several components from this library, apply design modifications such as adjusting width, length, or adding
decorative details, and assemble them to create diverse, composed 3D garments (c). This approach enables efficient construction of a high-quality dataset

capturing extensive design variability and structural complexity.

are assigned to professional garment modelers, who manually im-
plement the design changes and assemble the components into
finalized 3D garments.

This scalable and structured data acquisition process, carried out
over eight months by a team of more than ten expert pattern makers
and modelers, resulted in an industrial-scale dataset comprising
2,881 tops, 2,293 outerwear pieces, 857 pants, 1,523 skirts, 6,454
dresses, and 786 garments from other categories such as sportswear,
bras, pajamas and cheongsam.

6.1.2  Garment Structure Definition. As illustrated in Figure 7, gar-
ments exhibit a hierarchical structure comprising panels, edges, and

landmarks, each capturing distinct semantic and geometric charac-
teristics essential for garment design and construction. To accurately
represent and leverage these hierarchical details, we introduce a
structured annotation scheme that clearly defines panel-level se-
mantics, structural lines, and fashion landmarks, as described below.
Panel-level semantics are established by professional pattern mak-
ers based on panel shape, functional role, and placement relative to
the human body. As shown in Figure 7, we identify eight structural
classes— , , body front, body back, body side, skirt/pant
front, skirt/pant back, and skirt/pant side—as well as seven dec-
orative classes—hat, stripe, R R , and
Annotators assign these semantic labels dlrectly on the 2D sewing



patterns using a customized LabelStudio [Tkachenko et al. 2025]
annotation tool. We leverage this panel-level semantics to finetune
Point Transformer v3 for point cloud embedding during conditional
Garmage generation.

Utilizing per-panel semantic annotations, we extract five types
of structural lines that define interfaces between semantic panel
groups. The neckline delineates boundaries between front/back
bodice and collar panels; armholes separate bodice panels from
sleeve panels; defines the interface between waist panels
and adjacent bodice or skirt/pant panels (or directly between bodice
and skirt/pant panels if waist panels are absent); marks
the junction between sleeves and cuffs or the lower edge of sleeves
if cuffs are absent; and hemline represents the boundary between
bodice/skirt/pant panels and hem panels, or the lower edge of these
panels when hem panels do not exist. During training, we augment
our dataset by perturbing these structural lines, simulating realistic
variations in sleeve length, garment length, waist height, and other
key design parameters.

Fashion landmarks serve as critical reference points for precise
garment construction and fitting. Examples include the shoulder
tip (SH), bust point (BP), ,and

. These landmarks are annotated on both the 2D sewing
patterns and their corresponding 3D models using consistent vertex
IDs on the mesh. Such dual annotations help align sewing patterns
from different garments into a standardized 2D space, eliminat-
ing positional ambiguity and facilitating more effective learning.
Additionally, these landmarks are consistently projected onto multi-
view 2D images, significantly enriching existing fashion landmark
datasets and improving the accuracy of fashion landmark estimation
and retrieval models, ultimately offering comprehensive support for
diverse fashion Al applications.

6.1.3  Data Formation And Multi-modal Augmentation. For each gar-
ment, we partition its raw 2D patterns into individual panels P; and
compute their physical dimensions d; and axis-aligned bounding
boxes B;. We then rasterize each cloth piece’s normalized 3D mesh
C; into a 256 X 256 X 4 geometry image I;, and construct the Garmage
representation for the garment (Section 4.1).

The original sewing information is stored as vertex—vertex pairs
(vz,vp) in the cloth piece meshes. During Garmege rasterization,
each vertex v is projected to a 2D pixel coordinate u € R? in its panel
image I;. We record the tuple (i, u), where i is the panel index, and
reformat each sewing pair into a paired panel-pixel representation:

se=(Gul™), Gou)). S={sHL,, (13)

where s; denotes the k-th sewing connecting pixel u](ca) (rasterized

(b)

. (rasterized from vertex

from vertex v,) on the i—th panel and u
vg) on the j—th panel.
Furthermore, to train GarmageNet under diverse conditions, we

align each Garmage G with four modalities:

e A manually annotated short sentence captures each gar-
ment’s category, silhouette, and design details according to
a set of professionally defined dimensions (Figure 8). During
modeling, we ask the designers to label all applicable dimen-
sions for a given garment asset and leverage Qwen3 [Yang

Table 1. Panel counts (#Panels) and mean average precision (AP) for se-
mantic segmentation by our fine-tuned PointTransformer v3, used to derive
point-cloud embeddings for conditional Garmage synthesis. The uniformly
high AP values across all categories confirm the model’s robustness in
extracting panel-level semantics from unstructured point clouds, thereby
providing a reliable conditioning signal.

Category

#Panels 9807 22576 34138 22608 2857
AP 0.95 0.97 0.94 0.94 0.40

#Panels 28782 25242 3491 2965 1142
AP 0.93 0.95 0.40 0.98 0.69

Category waist hem pocket ruffles

#Panels 9509 16880 3088 15571 2498
AP 0.98 0.96 0.79 0.93 0.42

et al. 2025] to reformat the annotation as a CLIP-compatible,
comma-separated string, with the first segment always de-
noting the garment category. During training, we randomly
delete at most 4 design detail descriptions.

o A set of line-art sketches and clay renderings to cap-
ture each garment’s visual characteristics. These images are
rendered from 24 uniformly sampled camera viewpoints
arranged on a circle centered on the garment. The circle’s
radius is automatically adjusted so that, in the frontal view,
the garment could nearly fill the frame. All sketches and
clay renderings are output at 3840 X 2048 resolution, and we
record each camera’s transformation matrix in the standard
NeRF format.

e A point cloud sampled from the garment mesh using Poisson-
disk sampling (Open3D) to capture its geometric detail. To
closely mimic real-world scans or multi-view reconstruc-
tions, which emphasize the exterior surface, we adapt sam-
pling density by occlusion: outer panels are sampled at a
high density, while inner panels use a sparser density. We
randomly downsample these point clouds at varying rates
to improve model robustness and performance.

6.2 Dataset Statistics

As summarized above, GarmageSet contains 14,801 professionally
modeled garments spanning five major categories—tops (2,888),
coats and outerwear (2,293), pants (857), skirts (1,523), and dresses
(6,454)—plus 786 items in various minor categories. Each garment
is annotated along nine professionally-defined design dimensions
with over a hundred part-wise variations (Figure 8), yielding a com-
binatorial design space of more than 2.9454 x 10!! topologically
distinct configurations. Although smaller in size, GarmageSet covers
substantially richer variation than GarmentCodeData [Korosteleva
et al. 2024], which is limited to basic modifications (e.g., a single
dart type for FittedShirt and one lapel style defined in SimpleLapel).

To quantify structural complexity, we randomly sample 10,000
garments (and 10,000 panels) from each dataset and compare statis-
tics in Figure 10. GarmageSet garments average 13.59.7 39 panels
and 46.01196.45 per garment, with 8.6245; edges per panel. By
contrast, GarmentCodeData provides only 10.82.¢ 29 panels and



(a) Number of Panels Per Garment (b) Number of Edges Per Panel

Fig. 10. Dataset statistics comparing

(b) Number of Stitches Per Garment

(e) Number of Vertices Per Garment

(d) Number of Triangle Faces Per Garment

and GarmentCodeData [Korosteleva et al. 2024]. Histograms illustrate (a) panels per garment, (b) edges per

panel, (c) per garment, (d) mesh vertices per garment, and (e) mesh faces per garment distribution among the 10,000 sampled garments (or 10, 000 panels)
from both datasets. Dashed lines indicate the mean and standard deviation for each distribution. GarmageSet exhibits higher average values and broader
variance across all metrics, indicating enhanced structural complexity and superior drape fidelity.

30.26417.59 per garment, with 6.75.44 20 edges per panel, indicating
significantly lower structural richness. We present the per-category
panel count and average segmentation precision in Table 1.

In terms of 3D drape fidelity, by setting the particle distance
to 6mm during simulation, GarmageSet features 72,560.5+27 886.7
vertices and 141,064.1.55 399 8 faces per asset; while GarmentCode-
Data only has 13,998.86.+5 ¢58.42 Vertices and 26,400.82.+1¢,751.82 faces,
demonstrating that GarmageSet delivers over fivefold higher mesh
resolution and substantially richer structural detail. Figure 11 presents
representative samples from GarmageSet, visually demonstrating its
high geometric fidelity and intricate structural detail. For example,
complex garment foldings and shirrings (c,f); multi-layered design
(d), irregular splits (a,i,e,h) that hard to achieve with GarmentCode.

7 EXPERIMENTS

In this section, we first detail the implementation and training pro-
tocols for GarmageNet and GarmageJigsaw then quantify our frame-
works’ performance by evaluating sewing-pattern recovery quality,
3D geometry fidelity, and sewing accuracy.

7.1

We randomly reserved 1,024 garment assets from GarmageSet for
validation, using the remaining 13,777 assets for training.

GarmageNet was trained on a single NVIDIA A100 GPU over 1-2
days using a two-stage protocol. In the latent-encoding stage, we
trained the VAE for 200 epochs with a batch size of 256, using the
AdamW optimizer at a learning rate of 5x10~%. This stage completes
in approximately 2 hours. In the diffusion-generation stage, we
employ a standard DDPM scheduler and train the denoiser for 20,000
epochs with a batch size of 4,096, which takes approximately 12
hours. In conditional generation with text prompts or point clouds,
we need to incorporate augmentations such as random word dropout
in prompts, variable point-cloud sampling densities, and on-the-
fly embedding computation. Thus, extends total training time to
roughly 24 hours.

We trained GarmageJigsaw using two NVIDIA RTX 4090 GPUs
with a batch size of 28. The training was initialized with a learn-
ing rate of 1 x 1073, which was gradually decreased using cosine
learning rate decay, ultimately reaching 2 x 107> at the end of the
training process. We train our GarmageJigsaw for 100 epochs, taking
approximately 27 hours in total.

Implementation Details

Table 2. Comparison of generation quality, diversity, and efficiency be-
tween GarmageNet, Omage[Yan et al. 2024], and Surf-D[Yu et al. 2025a].
Quality metrics include Minimum Matching Distance (MMD, x1073),
Jensen-Shannon Divergence (JSD), point-cloud FID (p-FID), and point-cloud
KID (p-KID), where lower values indicate better fidelity. Diversity is mea-
sured by Coverage (COV, %), and efficiency is assessed based on inference
GPU memory usage (Mem.) and inference speed (measured in seconds).

Method Quality Diversity Efficiency
MMD(]) JSD(]) p-FID(]) p-KID(]) COV (1) Mem. (])  Duration (])
Surf-D 21.57 0.7907 46.61 0.1718 16.02% 7GB 25.7s
Omages 9.3 0.1185 29.38 0.1271 28.16% 3.3 GB 120s
Ours 11264  0.0337 15.34 0.029 41.02% 4GB 8s

7.2 Evaluation And Comparison

As previously demonstrated, GarmageNet can synthesize complete
garment assets, encompassing 2D sewing patterns, sewing corre-
spondences, and high-resolution 3D initializations. Accordingly, we
evaluate its generation quality across these core dimensions.

7.2.1 3D Garment Asset Quality. We compare GarmageNet’s gar-
ment generation quality against two representative non-watertight
asset synthesis paradigms. The first is Omage [Yan et al. 2024], which
typifies geometry-image-based 3D generation pipelines akin to our
approach. The second is Surf-D [Yu et al. 2025a], an implicit-field
method that generates surfaces via unsigned distance functions.
Table 2 presents the comparison results according to five metrics:

e Minimum Matching Distance (MMD) measures the aver-
age closest-distance between each real sample and its gen-
erated counterpart (units of 1073). A lower MMD indicates
that, on average, every real garment has a very similar coun-
terpart among the generated set.

e Jensen—Shannon Divergence (JSD) quantifies the over-
all distributional discrepancy. A lower JSD means that the
probability distributions of real and generated samples are
more similar.

e Point-cloud FID (p-FID) and KID (p-KID) assess genera-
tion fidelity using learned feature embeddings, with lower
values indicating the generated feature distribution are closer
to those of the real data.

e Coverage (COV) is the fraction of real samples matched by
at least one generated sample (in percentage %). A higher
COV indicates broader exploration of the real data manifold,
i.e., greater diversity.



(a) dress; fitted X-silhouette, mid-length, formal style; short sleeves with puffed shoulders, conventional collar, side slits (f) dress; fitted silhouette, floor-length, formal style; sleeveless, high-low hemline, straight neckline, waist seam with
at hem, half-open front placket, concealed button closure, princess seams, vertical darts at bust and waist.

belt detail, princess seams, central closure (likely hidden or minimalistic)

Garment Asset Point Cloud Multi-view Sketches Garmage Garment Asset Point Cloud Multi-view Sketches Garmage

(b) outerwear coat; straight silhouette, knee-length, workwear style; stand collar with yellow fur trim, long sleeves with

outerwear (cape coat); loose silhouette, calf-length, casual style; hooded collar, cape-style construction, concealed
ribbed cuffs, single-breasted opening with visible buttons, side seam pockets, welt seams, central closure. (g) Capeicoat 8 P pe:sty

front closure, side seam pockets, raglan sleeves, banded hemline, princess seams.
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Garment Asset Point Cloud Multi-view Sketches Garment Asset Point Cloud Multi-view Sketches Garmage
T-shirt; loose H-line silhouette, hip length, casual style; off-shoulder neckline, short sleeves with ruffled detailing, h sweater and cardigan (hoodie); loose H-line silhouette, regular length, casual style; hooded neckline, long sleeves with ribbed cuffs,
(C) no closure, princess seams, side seam construction. ( ) drop shoulder construction, banded hemline, front kangaroo pocket, side seam construction, no visible darts or pleats, no closure.
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) Vet fitted Xesilhouette, cropped length, casual styl; leeveless, round neckline, banded hemline, searmless (i) vestsloose Heline silhouettregularlength,casual syleVeneck, leeveless, conventional hemiine, front zp cosure
( ) construction, princess lines, no closure. patch pockets, side seam construction
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Garment Asset Point Cloud Multi-view Sketches Garmage Garment Asset Point Cloud Multi-view Sketches Garmage

pants; straight silhouette, ankle-length, casual style; multiple pockets (front and side), elastic waistband, fly-front i) jumpsuit and overall; straight silhouette, ankle-length, casual style; cross-back straps, front zipper closure, side
(e) opening, flat front design, welt seams, no visible darts or pleats. ) &5 pockets, sleeveless, high-waisted, no waist pleats or darts.
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Fig. 11. Representative examples from our GarmageSet, demonstrating the dataset’s rich diversity in garment categories, styles, and intricate folding patterns.
Each asset includes detailed 3D garment meshes, corresponding point cloudsimulti-view sketches, and Garmage representations, highlighting the dataset’s
capability to support complex garment modeling tasks, from layered structures and asymmetric silhouettes to precise fitting and sophisticated draping
behaviors.
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Fig. 12. Unconditional garment generation comparison between GarmageNet, Omage [Yan et al. 2024], and Surf-D [Yu et al. 2025a]. GarmageNet (left
block) produces simulation-ready assets complete with vectorized sewing patterns, vertex-wise stitch relationships, and fine-grained 3D draping initializations
(a,b,c,d). In contrast, Omage’s outputs (top right) exhibit incomplete panels (g), grid-like tessellation artifacts (f), erroneous stitching between non-adjacent
panels (h), and spurious triangles that connect a panel’s boundary vertices back to the global origin (e). Surf-D’s meshes (bottom right) suffer from unwanted
holes (i, ) and frayed, irregular boundaries (j, k). These close-up comparisons highlight GarmageNet’s superior geometric fidelity, coherent panel topology,

and artifact-free mesh integrity.

For a fair comparison, all baseline methods were retrained on the
full GarmageSet under the unconditional generation setting. Specif-
ically, Omage [Yan et al. 2024] was trained at a resolution of 64 X 64,
requiring approximately 50 hours for training and consuming 3.3MB
of memory with an inference time of 120 seconds per sample. Surf-
D [Yu et al. 2025a] was trained at a resolution of 512, where the VAE
module took four days to train on two RTX 4090 GPUs, followed by
20 hours of diffusion model training. To compute point-cloud FID
and KID scores, we adopt the pretrained PointNet++ feature extrac-
tor provided by Point-E [Nichol et al. 2022]. Each method generated
128 random samples using a single NVIDIA GeForce RTX 3060 for
evaluation. As reported in Table 2, GarmageNet outperforms both
Omage and Surf-D in terms of generation fidelity, diversity, and
computational efficiency.

Figure 12 presents unconditional generation results from Gar-
mageNet alongside those of Surf-D and Omage. Omage produces a
single multi-chart geometry image for the entire garment, making
its outputs vulnerable to irregular UV chart packing; addressing
this requires a much larger network and longer training times. As
shown, Omage’s results appear coarse and often suffer from missing
panels. Surf-D exemplifies a backward modeling approach, using an
unsigned distance field (UDF) for generation and then extracting a
triangle mesh. Consequently, it generates only a single, monolithic
mesh without any explicit sewing-pattern structure, and the UDF-
to-mesh conversion can introduce holes. In contrast, GarmageNet
delivers panel-aware garments with complete and crisp per-panel
structure, and fine-grained draping status.
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Fig. 13. Qualitative comparison of drape initialization methods on four representative garments: (a) complex overlapping panels, (b) multi-layered ruffles, (c)
tie-closure details, and (d) flipped lapels. For each case, we show the input sewing pattern with ground-truth stitches (left) and the draped results under (from
left to right) rigid panel transformations, the optimization-based method [Liu et al. 2024d], and our GarmageNet per-vertex initialization.

Table 3. Ablation study on sewing relationship recovery, comparing the
performance of Garmagejigsaw trained with both 2D and 3D features
versus models trained with only 2D or 3D features. The table reports key
metrics including point classification precision (CP), recall (CR), average
matching distance in millimeters (AMD), topological accuracy (tACC), and
topological precision (tP).

CP(1) CR(I) AMD() tacc() (1)
GarmageJigsaw 99.16 97.13 6.610 96.79 98.68
3D-feat Only 99.27 96.99 7.790 96.36 97.96
2D-feat Only 99.21 97.12 10.59 96.28 97.70

7.3 Sewing Pattern Quality

We compared the sewing patterns generated by GarmageNet against
those produced by the state-of-the-art forward modeling approach
of Zhou et al.[Zhou et al. 2024], which arranges rigidly transformed
panels around an avatar. As described in Section 4.2.3, we solicited
garments from both methods—conditioned on the same text prompts
or sketches—and asked professional pattern makers to evaluate
them on two criteria: (1) agreement with the original description
or sketch, and (2) the visual quality and smoothness of the panel
outlines. The user study and CLIP score in Table 4 shows that Gar-
mageNet’s generated panels significantly outperform the baseline
in both agreement and aesthetic quality.

7.3.1  Sewing Accuracy Evaluation. The GarmageJigsaw module,
used for sewing recovery, is composed of two key components: the
point classifier and the sewing predictor. To thoroughly assess the
performance of GarmageJigsaw, we evaluate these two modules
separately.

The point classifier operates as a binary classifier, and we evaluate
its performance using precision and recall. The classification pre-
cision (CP) measures the proportion of correctly identified sewing
points (i.e., true positives) among all predicted positives, while the
classification recall (CR) indicates the proportion of true posi-
tive predictions among all sewing points in the ground truth. As
shown in Table 3, the point classifier achieves a precision of 99.16%

and a recall of 97.13%, indicating strong performance in identifying
sewing points.

For the sewing predictor, we first evaluate the panel-level topo-
logical quality of the generated sewing patterns with:

e Accuracy (tACC): The proportion of correctly predicted
sewing connections (correct sewing pairs) out of all pre-
dicted connections. Higher values indicate better topological
correctness.

e Precision (tP): The proportion of correctly predicted sewing
connections out of all predicted connections, where higher
values reflect fewer false positives.

Additionally, we evaluate vertex-level sewing quality using Av-
erage Matching Distance (AMD), which calculates the average
Euclidean distance between predicted sewing correspondent and
ground truth correspondent for all vertices (in millimeters). Lower
AMD values indicate better alignment between predicted and actual
sewing positions.

Table 3 summarizes the evaluation results with ablation studies
on using only 2D or 3D features for sewing relationship recovery.
These results confirm that combining both 3D and 2D features
enables GarmageJigsaw to achieve more robust stitching recovery
with lower AMD value and topological accuracy.

7.4 Fine-Grained 3D Initialization Evaluation

To quantify the benefits of GarmageNet’s vertex-level initializa-
tions, we compare its simulation succession rate (SSR) against two
baselines: (1) rigid transformations-based initialization as used in
GarmentCodeData [Korosteleva and Sorkine-Hornung 2023]; and
(2) optimization-based initialization from raw sewing patterns [Liu
et al. 2024d].

We collect 150 sewing patterns with ground truth stitching rela-
tionships from GarmageSet, recover their initial drape status with
GarmentNet and drape onto our standard Size S avatar using identi-
cal simulation settings as [Liu et al. 2024d] and compare the SSR as
garments draped successfully onto the avatar without observable
self-collision, body-collision, sliding errors etc. For the rigid baseline,
we leverage the per-panel semantics in GarmageSet (Section 6.1.3)



to assign each panel a fixed pose, using standard rigid placement
for body, skirt, and front/back panels, and cylindrical arrangement
for tubular components such as sleeves and collars.

As a result, GarmageNet achieves an SSR of 91.41%, substantially
higher than rigid initialization (59.38%) and on par with optimization-
based initialization (93.75%).

Figure 13 presents representative cases, from which we can con-
clude that our fine-grained, per-vertex placements could provide
robust draping initialization for complex designs (a), multi-layered
garment (b), ties (c) and flipping lapels, while the other methods
failed.

8 APPLICATIONS

We demonstrate the practical versatility and effectiveness of the
proposed GarmageNet framework through four application scenar-
ios that cover the full spectrum of digital garment modeling. These
include interpreting abstract design concepts, automatically gener-
ating 3D garment assets from raw sewing patterns, reconstructing
manufacturable sewing patterns from unstructured data, and per-
forming conventional garment asset editing based on simple textual
inputs. These scenarios showcase GarmageNet’s ability to accurately
translate diverse inputs into structurally sound and visually com-
pelling garment assets, bridging the gap between creative ideation
and real-world garment production.

8.1

Generating garments directly from high-level design concepts, such
as textual descriptions or minimalistic line-art sketches, significantly
streamlines fashion design workflows, particularly in rapid proto-
typing and initial visualization stages. Unlike traditional methods
that necessitate detailed technical specifications, GarmageNet inter-
prets natural language prompts and simple sketches to automatically
produce structurally correct and visually coherent 3D garments.

Qualitative evaluations supported by detailed X-ray renderings
and UV-aligned normal maps reveal that GarmageNet effectively
captures original design intents. The generated garments exhibit
clearly defined seam structures, realistic draping, and well-articulated
folds—key elements often compromised in outputs from existing
frameworks such as Design2GarmentCode (forward generation)
and Hunyuan3D v2.5 (backward generation).

Figure 14, 15 provide qualitative evaluations of garments gener-
ated from text prompts and line-art sketches, compared against two
state-of-the-art baseline models: the forward generation approach,
Design2GarmentCode[Zhou et al. 2024], trained on GarmentCode-
Data [Korosteleva et al. 2024], and the backward generation method,
Hunyuan3D v2.5 [Zhao et al. 2025], trained on massive 3D assets.
For each generated garment, we present X-ray renderings to reveal
the underlying geometric structures and UV-aligned normal maps
to intuitively assess the quality of the generated sewing patterns
and the detailed fold structures. Our outputs demonstrate clear and
accurate seam structures, precise garment draping, and refined folds
which are inadequately represented by the baseline methods.

Leveraging the line-art sketch-conditioned GarmageNet as a base-
line, our framework could further enable image-guided garment
generation. Specifically, we employ a LoRA fine-tuned FLUX model

Design Concept to Garment Generation

(Appendix ??) to translate photographic images into representative
line-art sketches. These sketches subsequently guide the Garmage
generation process, with results illustrated in Figure 16, underscor-
ing the model’s enhanced versatility and real-world applicability.

A comprehensive user study involving 20 professional fashion
designers, pattern makers, and 3D apparel modelers validated our
findings quantitatively. Each participant is asked to review 48 out-
puts (24 text-guided and 24 sketch-guided randomly sampled from
1000+ generated results) and select which method’s result was best
under three criteria:

e Agreement with the input prompt (i.e. how well the 3D
garment matches the described or drawn design);

e Garment Aesthetic (overall visual and geometric quality
of the 3D garment model);

o Sewing Pattern Aesthetic (quality and plausibility of the
underlying pattern structure, as evident in the model and
its UV seams).

The aggregated preference results (normalized percentages of selec-
tions for each model) in Table 4 indicate GarmageNet significantly
outperformed the baselines across all metrics, being preferred in
over 60% of cases for Agreement, 85% for Garment Aesthetic, and
approximately 90% for Sewing Pattern Aesthetic in text-guided gen-
eration; and 77% for Agreement. 68.75%for Garment Aesthetic and
97.66% for Sewing Pattern Aesthetic. Further, GarmageNet achieved
the highest normalized CLIPScore (0.3076), confirming superior
semantic alignment with text descriptions.

8.2 Automatic Garment Modeling

Beyond its broad relevance in virtual reality and gaming, digital
garment modeling also plays a critical role in apparel manufacturing
by enabling manufacturers to visualize and validate sewing patterns
before physical garment production. GarmageNet could naturally
support this need by seamlessly converting raw 2D sewing patterns
into accurate, fully draped 3D garment models without manual inter-
vention. As discussed earlier, through the masked training scheme
during latent encoding (Section 4.2.1), GarmageNet can seamlessly
generate complete garment assets from raw sewing patterns, by
providing fine-grained 3D initialization through the Garmage repre-
sentation and establishing vertex-level stitching relationships using
GarmageJigsaw.

Figure 17 presents garment generation results from raw sewing
patterns. We highlight several of the original sewing pattern panels
and their corresponding generated Garmage. The result indicate
that GarmageNet effectively handles the task of automatic garment
asset modeling based on sewing patterns, even for unconventional
patterns like the hem panels in Figure 17 (a,f); Furthermore, despite
the absence of explicit symmetry constraints during training, gen-
erated garments consistently display natural symmetry, illustrated
by the highlighted panels in Figure 17 (a,c,f).

8.3 Sewing Pattern Recovery

Advancements in 3D scanning and multi-view reconstruction tech-
nologies have greatly facilitated capturing realistic garment shapes,
typically represented as unstructured point clouds. However, such
raw 3D data lacks the structured information essential for garment
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Fig. 14. Text conditioned garment generation results and comparison with Design2GarmentCode [Zhou et al. 2024] and Hunyuan 3D 2.5 [Zhao et al. 2025]
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Method ‘ Agreement

Text-Guided Generation

Line-Art Guided Generation

Garment Aesthetic ~ Sewing Pattern Aesthetic ~ CLIPScore | Agreement  Garment Aesthetic ~ Sewing Pattern Aesthetic
GarmageNet + GarmageJigsaw 62.50% 85.00% 90.42% 0.3076 77.34% 68.75% 97.66%
Design2GarmentCode [Zhou et al. 2024] 4.17% 7.92% 9.58% 0.2955 0.0% 10.16% 2.34%
Hunyuan 3D v2.5 [Zhao et al. 2025] 33.33% 7.08% 0.00% 0.3016 22.66% 21.09% 0.0%

Table 4. User study results for generation quality comparison of our method against state-of-the-art (SOTA) forward generation technique Design2GarmentCode
(trained on GarmentCodeData), and backward generation technique Hunyuan3D 2.5. Here, Agreement evaluates the alignment between the generated
garment and the design input (text or line-art sketch). Garment Aesthetic evaluates the geometric quality of the generated 3D garment asset, while Sewing
Pattern Aesthetic evaluates the quality of the generated sewing pattern. We provide CLIPScore as an additional agreement evaluation on text-guided garment

generation.

Image + Sketch Garment Asset

Generated Garmage

Fig. 16. Image-guided Garmage generation results. We transfer the image
to line-art sketches (top right corner) with a LoRA finetuned FLUX model,
then use the transferred sketch as input condition to control the generation
of Garmage. The generated Garmages and simulated garment assets are
demonstrated on the right side.

production, thus necessitating effective methods for recovering
structured sewing patterns from unstructured 3D representations.

GarmageNet addresses this critical industry challenge by accu-
rately transforming point-cloud data of draped garments into struc-
tured Garmages, successfully recovering detailed sewing patterns.
Figure 18 showcases recovered sewing patterns, highlighting intri-
cate folds and precise seam alignments. These recovered patterns

closely match their original counterparts, demonstrating high accu-
racy in panel shapes, seam definitions, and adherence to industry
production standards.

Qualitative analysis indicates that GarmageNet robustly identifies
precise panel boundaries, seam connections, and garment folds from
noisy input data, achieving reliable sewing pattern recovery even
in complex garment configurations. This functionality positions
GarmageNet uniquely within digital garment pipelines, effectively
linking unstructured scan data to structured, production-ready gar-
ment assets, thereby significantly enhancing practical applicability
in apparel manufacturing workflows.

8.4 Progressive Generation and Editing

Beyond generating garments directly from text prompts, our frame-
work also supports advanced garment editing functionalities, such
as adding, deleting, or replacing components of an existing garment.
This capability significantly enhances the flexibility of the design
process, allowing designers to iteratively refine garments based on
new inputs while preserving key structural features.

Recall from Eq. 1 that a Garmage consists of a set of panels, each
represented by a 2D dimension D;, a 3D axis-aligned bounding box
B;, and a normalized geometry image patch I;. After generating a
garment using text prompts, users can modify the original prompts
to reflect desired changes, such as removing or replacing specific
garment components.

When a text prompt is updated, the garment is regenerated, and
the newly generated panels are compared against the original pan-
els based on their 2D dimensions and 3D bounding boxes. Panels
with high similarity are marked for retention, while those with low
similarity are flagged for modification. The editing process is akin
to inpainting in image generation models, where only the panels
requiring modification are regenerated. Retained panels are treated
in a way similar to diffusion-based denoising, where the original
features are preserved and augmented with noise according to the
current timestep, guiding the model to retain the established charac-
teristics of those panels. In this way, the modifications are localized
to the relevant areas of the garment without disrupting the overall
design, and new panels are generated in a manner that ensures
smooth transitions at the interfaces between modified and retained
panels (e.g., sleeve holes), maintaining coherence in both geometry
and design.

Figure 19 illustrates the process where we first generate a fitted,
sleeveless dress from text prompts (a), then add long sleeves to the
dress (b), and modify the sleeves to puff sleeves (c). Next, we add
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Fig. 17. Automatic garment modeling from raw sewing patterns. Given flat sewing patterns without sewing relationship, For clarity, we highlight specific
panels in the sewing patterns to help readers identify the correspondence between the generated Garmage and the raw sewing pattern.
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Fig. 18. Point-cloud-conditioned garment synthesis with GarmageNet. Each row (a—f) shows: (left) an unstructured, sparse point cloud captured from a
draped garment; (center) the generated Garmage representation—consisting of per-panel geometry images (colored) and inferred panel contours (outlined);
and (right) the final simulation-ready 3D garment asset, obtained by vectorizing the extracted sewing patterns, recovering vertex-wise stitches, and applying
physics-based draping. These results demonstrate GarmageNet’s ability to transform noisy, incomplete point clouds into fully structured sewing patterns and
high-fidelity draped garments. We note, however, that the network may be leveraging the non-uniform sampling density of the input point clouds—implicitly
revealing panel structure—to achieve these reconstructions.
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Fig. 19. Interactive garment editing using conventional design instructions.
Starting from an initial Garmage (top-left), users issue sequential edits—e.g.
replacing a round neckline with a shirt collar, adding a fitted waist, and
switching to a standing collar—while all unchanged panels remain in grey
and only the edited panels (in color) are updated in their geometry im-
ages. Each intermediate Garmage is decoded into a full garment asset and
re-simulated, demonstrating how our framework seamlessly incorporates
standard pattern-making edits into the generation and draping pipeline.

standing lapel collars to the dress (d) and modify them to shirt collars
(e). Finally, if the user is dissatisfied with the generated result, we
can even modify the entire initial bodice panels (f).

This progressive generation capability enables dynamic editing of
garment designs, allowing for incremental refinement while preserv-
ing the structural integrity and stylistic consistency of the garment.
The result is a flexible, iterative design process that leverages the
power of Al to support real-time garment adjustments and refine-
ments based on evolving design needs.

9 CONCLUSION

In this work, we introduced GarmageNet, the first end-to-end
framework for unified 2D-3D garment synthesis. At its core lies
Garmage, a novel panel-aligned geometry-image representation
that encodes both discrete sewing-pattern structure and continuous
draping geometry into a compact, image-based format. By training
a latent-diffusion transformer on Garmage tokens, our approach
supports unconditional and conditional generation from multiple
design modalities—text, sketches, point clouds, and raw sewing pat-
terns—while preserving fine-grained panel topology and delivering
high-fidelity, simulation-ready initializations.

We further presented GarmageJigsaw, a dedicated module that
leverages 2D silhouettes and 3D spatial cues to recover vertex-wise
sewing relationships, enabling seamless conversion of generated
Garmages into vectorized sewing patterns and triangulated meshes
for physics-based simulation. Comprehensive evaluations on our
industrial-grade GarmageSet demonstrate that GarmageNet out-
performs state-of-the-art forward and backward generation meth-
ods in terms of quality, diversity, and robustness, and achieves a
significantly higher simulation succession rate compared to rigid
and optimization-based initializations.
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10 LIMITATIONS AND FUTURE WORK

While GarmageNet demonstrates robust multimodal garment syn-
thesis, several limitations remain. First, to contain dataset prepa-
ration costs, our framework is currently trained on an A-posed
standard avatar with size S (or Asian size 84). Although the gener-
ated Garmages can be retargeted to other body shapes via existing
auto-grading or draping algorithms, we plan to incorporate body-
size conditioning and expand our dataset in future work. However,
as Garmage could be seamlessly integrated into the existing garment
modeling workflow, we will not incorporate body pose variance
soon.

Second, our current stitching module operates only along panel
boundary facets, limiting its ability to model components that attach
along interior seams, such as a patch pocket. Extending the corre-
spondence model to handle arbitrary vertex-to-vertex relationships
is an important direction for future research.

Third, because GarmageNet is purely data-driven and does not
yet incorporate physical feedback for pattern optimization, the gen-
erated panels can self-intersect or interpenetrate, producing sim-
ulation artifacts. In future work, we will integrate differentiable
physical constraints and physics-based pattern refinement to elimi-
nate these issues.

Fourth, while panel adjacency and symmetry often play a critical
role in garment design, these structural priors are learned implicitly
by our diffusion transformer. Explicit modeling of symmetry and
hierarchical pattern relationships could further improve generation
fidelity, which is also an interesting direction for future exploration.

Finally, all training data currently use a single fabric type, so
material characteristics such as stiffness, weight, and weave are not
yet reflected in the panel shapes or drape. However, the flexibility
and scalability of our underlying diffusion-transformer backbone
have been demonstrated by recent text-to-image (e.g., FLUX) and
text-to-3D (e.g., Tripo, Hunyuan, CLAY) models. As our dataset
grows, we will incorporate more fabric types, enabling GarmageNet
to model how different materials influence both panel geometry and
overall garment drape.

Looking ahead, we plan to extend GarmageNet along several di-
rections. Incorporating body-shape conditioning will allow garment
personalization across diverse silhouettes. Integrating differentiable
physics into the generation loop can further reduce simulation
artifacts and enable material-aware draping. Finally, expanding Gar-
mageSet to cover a wider range of fabrics and decorative techniques
will enhance the model’s ability to capture nuanced material be-
haviors and stylistic details. We believe GarmageNet paves the way
for rapid, design-driven garment creation and holds promise for
applications in virtual try-on, digital fashion design, and automated
apparel manufacturing.
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