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Abstract

We propose a novel approach to reconstruct complete
3D deformable models over time by a single depth camera,
provided that most parts of the models are observed by the
camera at least once. The core of this algorithm is based
on the assumption that the deformation is continuous and
predictable in a short temporal interval. While the cam-
era can only capture part of a whole surface at any time
instant, partial surfaces reconstructed from different times
are assembled together to form a complete 3D surface for
each time instant, even when the shape is under severe de-
formation. A mesh warping algorithm based on linear mesh
deformation is used to align different partial surfaces. A
volumetric method is then used to combine partial surfaces,
fix missing holes, and smooth alignment errors. Our exper-
iment shows that this approach is able to reconstruct visu-
ally plausible 3D surface deformation results with a single
camera.

1. Introduction
Recent advances in camera self-calibration and stereo-

scopic vision have made it possible to create high-quality

3D models using a single hand-held camera (e.g., [23]) or

even from community photo collections [10]. However,

most of these techniques are limited to static objects. Typ-

ical treatment for dynamic scenes has been widely stud-

ied using an array of surrounding cameras, (e.g., [15, 33]).

Compared to a single camera, a camera array is cumber-

some, less affordable, and not practical to carry around for

outdoor capturing activities. Using a single depth camera or

stereo camera pair to capture a dynamic scene is a challeng-

ing problem since it can capture only the visible part of a dy-

namic object at each time instant. Fortunately, the underly-

ing dynamic nature of the scene can be used to help provide

more samples over time. In the simplest case, if the object is

rigid or articulated, this model-completion task becomes the

well-studied Structure-from-Motion (e.g., [28, 12]) problem

using 3D point registration. Here, we would like to develop

a similar technique for time-varying objects deforming arbi-

Figure 1. The input to our system is range data (1st row) captured

by a single camera at different times, which is simulated with the

data shared by [6]. And the output is a sequence of watertight 4D

models (2nd row) reconstructed from a dynamic object. The 3rd

row shows one 3D model in different views.

trarily but predictably, so that visible partial surfaces can be

assembled together to complete a water-tight object surface.

Existing non-rigid Structure from Motion (SFM) tech-

niques (e.g., [3, 29] can only handle small deformation or

viewpoint changes. Encouraged by the recent development

of full-frame range sensors and the rapid progress in stereo

matching research, we expect that color+depth maps cap-

tured in the video rate will be practically available soon.

The focus of this paper is how to fuse partial deformable

surfaces over time to form a complete model. In general,

this deformable model completion task is an ill-posed prob-

lem [29] — the occluded part can be in any shape at any in-

stant. Fortunately most dynamic cases behave continuously

in a short temporal interval as we observe in the real world,

even though this may not be valid in rare cases when ex-

treme deformation happens under an sudden impulse (such

as the popping of a balloon). Under this assumption, we

seek to produce a visually plausible model that is deform-

ing naturally, and consistent with the input.

Our entire modeling pipeline can be separated into three
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steps. In the first step, an image sequence is captured using

a depth camera (or a stereo camera). Each captured depth

map defines a partial surface of a deforming object at each

time instant, and we use the image sequence to locate tem-

poral point correspondences. Those correspondences are

then used as anchor points in the second step to warp par-

tial surfaces, so they become part of the same object surface

at the same time instant. Extended from variational linear

mesh deformation approaches [2], we propose a global de-

formation algorithm in order to warp all partial surfaces to-

gether to their destination positions in a single step. After

that, partial surfaces are assembled together into a complete

watertight surface using a volumetric method in the third

step. All surfaces are also optimized in order to complete

missing regions and remove remaining errors at the same

time. Compared with the ground truth deformation data,

our experiment shows that our approach can accurately re-

cover the time-varying 3D shape sequence of a deforming

object (as shown in Figure 1).

Our work is closely related to the modeling and motion

tracking techniques by Pekelny and Gotsman [22]. Simi-

lar to our setup, they also aim to build a complete model

over time with a single depth camera. By assuming the de-

formation as articulated and piecewise rigid, Pekelny and

Gotsman [22] can estimate each rigid transformation com-

ponent and use them to merge partial surfaces over time us-

ing the Iterative Closest Point (ICP) method. Our method

can deal with both rigid and non-rigid smooth deformations

and does not require manual segmentation of different com-

ponents.

To the best of our knowledge, we present the first method

to generate a complete deformable model using a single

depth camera. This is made possible by two main technical

contributions: a global linear method to fuse all deformable

meshes into a complete model and a volumetric method to

refine the 4D model for hole-filling and smoothing. With

the wider availability of depth sensors, we hope that our ap-

proach can eventually push the continued digitalization of

our world toward dynamic scenes.

2. Related Work and Preliminary Results
Our proposed framework was motivated by the demon-

strated success of Structure from Motion (SFM) tech-

niques(e.g., [23, 10]), which was originally limited to static

scenes. It has been recently extended to reconstruct dy-

namic non-rigid scenes by making extra assumptions about

shape deformation. The motion of a non-rigid time-varying

object can be decomposed into a rigid transformation and

non-rigid deformation. Represented by a set of sparse fea-

ture points and their motions, shape deformation has been

successfully reconstructed using different models, includ-

ing a combination of several basic shapes [1, 3], Gaussian

distributions [29],or based on Probabilistic Principal Com-

ponents Analysis [30]. Different from existing techniques,

our goal is to generate a complete 3D shape sequence of

dynamic objects with large deformations and occlusions.

In order to obtain a complete dynamic model from dy-

namic scenes, a camera array system is usually deployed to

capture objects from different views (e.g., [15, 33]). Sur-

face reconstruction can then be done using either Multi-

view stereo algorithms [24, 9], or Shape from Silhouette

techniques [16, 18, 4]. Unfortunately, missing regions

caused by occlusions are still hardly avoidable no matter

how many cameras are used in most real cases. How to

intelligently fill in these missing regions remains an open

problem for the dynamic reconstruction problem. In addi-

tion, a multi-camera array system is complicated and cum-

bersome to use, given the fact that it has to span a large area

for enough capturing coverage.

Hole filling is also known as a common problem in the

geometric modeling community. Many methods have been

developed to address this issue (e.g., [5, 25, 14, 21]). Typ-

ically, they are focused on high-quality static models that

are acquired using laser range scanner with relatively small

missing parts. The problem we are trying to solve here is

significantly more challenging. We allow 3D models ac-

quired by time-of-flight (TOF) sensors as our input, since

a laser range scanner can hardly capture dynamic scenes.

Compared with those from range scanners, TOF sensors

contain more noise, and they are only 50% complete at most

(one depth map for each instant ).

Dynamic reconstruction from sparse cameras has be-

come an active research topic recently in both graphics and

vision, due to its usability in many future applications. In

addition to Pekelny and Gotsman’s work [22], deforming

objects are modeled as a 4D hyper-surface in [31] and [19]

with spatial-temporal smoothness. Missing regions can then

be filled up by sampling over the 4D surface. Unfortu-

nately, they were more focused on dynamic objects with

minor deformation, and these techniques will have difficulty

in reconstructing complete 3D models with our single-view

setup.

3. Method
This work focuses on how to assemble surface patches

captured at different time instants for the same dynamic ob-

ject into a complete 4D space-time model. We assume that

the individual surface patches have already been acquired

using existing vision techniques [32, 8] or any commercial

video-rate depth cameras.

Figure 2 shows the major steps of our algorithm. The

inputs to our system are multiple color-depth image pairs

captured at different time instants. In the initialization step,

correspondences among salient features extracted from dif-

ferent frames are established by any tracking algorithms,

typically SIFT in our experiment. In addition, the depth
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Figure 2. The flow chart of our overall algorithm.

maps are triangulated into 3D meshes. The second step es-

timates a rigid transformation for each frame to map sur-

face patches from all frames into a reference global coor-

dinate, where they roughly align with each other. A linear

mesh deformation method is then applied in the next step to

warp one mesh to another, while preserving local details,

which is the core of our algorithm. We break down the

presentation into several subsections, first introducing the

basics for pairwise warping, then extending it to a global

alignment scheme. The issue of severe occlusion is also

discussed. Finally in the smoothing and refinement step,

meshes are merged into a single dynamic 3D model by vol-

umetric methods, with temporal coherence among models

from different frames enforced.

3.1. Initial Alignment

Here we decompose the motion of a deformable object

into a rigid part and non-rigid part. The goal is to sepa-

rate a potentially large rigid translation and rotation from

a relatively small surface deformation, preventing the later

deformation estimation process being biased by the large

rigid motion.

Since we do not need to precisely align the surface

patches into the reference frame, and all the detailed warp-

ing will be handled by the next global alignment step, a

rough rigid transformation is enough. The feature corre-

spondences between frames are mapped to 3D point corre-

spondences which could be used to estimate a rigid trans-

formation by absolute orientation( [13]). Although abso-

lute orientation is used to estimate the transformation of a

rigidly moving object, it can still give a rough estimate of

the dominating rigid motion of the object when combined

with RANSAC [7]. The transformation between two non-

overlapping frames will be estimated by accumulating the

pairwise ones between consecutive frames.

3.2. Warping Between Two Consecutive Frames

Different from constraining the problem by traditional

epipolar geometry as in [27], we assume the object is under

an arbitrary, non-linear deformation in long term, but lin-

early continuous locally in a short time. Therefore, surface

patches can be warped to shapes in neighboring frames us-

ing linear mesh deformation, given sufficient feature point

correspondences.

Let be a polygon mesh defined by a pair of

vertices 1 and edges , the 1-ring neigh-

borhood of a vertex is the set of its adjacent vertices

and the degree denotes the number

of vertices in .

Given on 0 and on 1 be a correspondence pair

representing the same feature point over a deforming object,

the warping process on mesh 1 from 1 to 0 changes to

, which should be close to , implying that 0 and 1

will represent part of the same object. On the other hand,

the warping process should minimize the mesh deformation

as much as possible in order to maintain shape details. This

can also be considered as a constraint to calculate warping

over uncontrolled vertices in 1.

In the mesh deformation community, surface shapes are

usually described locally by Laplacian coordinates for ver-

tices. The Laplacian coordinate for vertex is de-

fined by applying the Laplican-Beltrami operator over the

vertex coordinate:

i
i

(1)

1
2 (2)

in which and are two angles opposing to the edge

as in [17]. When the mesh is regular and nearly uni-

formly defined, Equation 1 can be simplified as:

i

(3)

Since the goal of a warping procedure is to move specified

control points closer to their target positions and still main-

tain the mesh shape as much as possible, mathematically,

this can formulated as a quadratic energy functional mini-

mization problem as in [26]:

2 2
(4)

in which is the vertex position after warping, and is

the correspondence subset ( ). The first sum mea-

sures the shape similarity before and after warping using

Laplacian coordinates, whose least square solution is a lin-

ear system:

M V L V

1

2 L

1

2 (5)

M is the laplacian matrix of the mesh. The second term

gives the sum of squared differences over all control points,

whose solution is given by:

M V U U

0

1 (6)

169



Similar to an identity matrix, M is a non-square matrix

composed of zeros and ones, in which a row stands for a

control vertex and a column stands for a mesh vertex. Each

row has exactly one non-zero entry if and only if that control

vertex is the corresponding mesh vertex.

Stacking ML and MI together, we obtain an over-

determined linear system in order to find the overall least

square solution to Equation 4:

M
M V

L
U (7)

Since X, Y and Z coordinates are independent in Equa-

tion 4, they can either be solved separately in three matrix

systems, or simultaneously as a single system, in which case

the matrix system will be three times larger.

Equation 7 produces plausible applaudable results when

the deformation is small, but if the shape undergoes large ro-

tation or scaling, the Laplacian coordinate is not a good de-

scriptor since it is well known as affine-variant. The Lapla-

cian coordinate of a vertex is actually a vector in 3D space

that originates from the centroid of its neighbors and ends

at the vertex. For example, if a mesh performs rotation, the

Laplacian coordinates of its vertices should also rotate with

the same angle along the same axis. Unfortunately, this can-

not be properly handled by Laplacian coordinates in Equa-

tion 4. In order to address this issue, we apply an explicit

affine transformation together with the warping procedure

to account for any large affine transformation; thus the first

term in Equation 4 becomes:

2
(8)

in which is an estimated local affine transformation for

. Since the Laplacian coordinate is determined by the 1-

ring neighborhood of , can be calculated from the 1-

ring neighborhood as well. By describing as a function

of , the estimation of can be implicitly contained into a

single system with as the only unknowns. Unfortunately,

this becomes a non-linear optimization problem since is

nonlinearly determined by , which is known to be diffi-

cult to solve. Instead of using an exact solution, we adopted

the method proposed in [26] to simply approximate as a

linear function of if the rotation angle is small. Specifi-

cally, we first define in the homogeneous coordinates:

3 2

3 1

2 1
(9)

By definition, an optimal should minimize the following

functional:

i

2
(10)

Let t 1 2 3 be the vector of the un-

knowns in , Equation 10 can be rewritten as:

t V
i

2
(11)

in which

x z y

y z x

z y x

...
(12)

and

V
i

x

y

z

...

(13)

is a vertex vector of and its neighborhood. t can then be

calculated from V i :

t 1 V
i

(14)

By creating a new matrix using the coordinates in (

as follows:

(15)

we can then calculate as:

t 1 V i (16)

1 is solely defined on , so it can be

computed in advance, meaning that is linear func-

tion of V i . By stacking all together into a large

vector T , a large sparse matrix M can be constructed

using submatrices such that:

T M V (17)

Replace the right hand side of equation 5 with T :

M V M V (18)

or,

M M V (19)

Replacing the corresponding part in equation 7 with equa-

tion 20, we get the linear equation that can stitch two pieces

of mesh with rotation and scaling between them.

M M
M V

0
U (20)
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3.3. Warping All Frames Simultaneously

A naive approach to obtain a complete 3D shape is to

simply assemble two surface patches each time. For ex-

ample, in order to create the shape surface at frame , the

surface patch at frame is first combined with frame into

a new surface which is combined with frame , so on

and so forth. By keeping doing so we combine all surface

patches together into the desired shape at frame . Since lo-

cal temporal correspondences between two adjacent frames

determine the warping procedure in each step, errors can be

easily accumulated from frame to frame, causing misalign-

ment between surface patches. Another reason we need a

global method is that sequential warping cannot deal with

occlusion. We will discuss this in detail in the occlusion

handling section.

We develop a global warping algorithm in order to warp

surface patches in all frames altogether to the destination

frame in a single step. This gives a single linear system with

unknowns as the final positions of vertices in the destination

frame. As an extension from the local warping algorithm, a

global warping matrix system lists all Laplacian constraints

as Diagonal sub-matrices as shown in Equation 21.

Q1

Q2

. . .

Q 1

Q +1

. . .

Q

V1

V2
...

Vd 1

Vd+1
...

Vn

(21)

in which Q ML MT is the Laplacian constraint, is

the number of frames, and is the destination frame index.

Feature correspondence constraints are imposed by adding

more rows into equation 21. For example, if a correspon-

dence exists from frame to frame , the following row will

be added to the matrix system in equation 21 as a corre-

spondence constraint:

th

(22)

is the index of the vertex into the vector of unknowns in

equation 21. Accordingly, the position of the correspond-

ing vertex in frame d should be added to the end of the vec-

tor on the right hand side of equation 21. If frame has a

correspondence point in frame , which is also unknown, a

different row will need to be added to the matrix:

th

(23)

Here, and indicate the matching vertices’ position in the

vector of unknowns, and a 0 should be added to the end of

Figure 3. The need for occluded feature interpolation: 1st row

from left to right: frame 16, 17 and 18 of a walking giraffe toy.

Note that one leg is completely occluded in frame 17. 2nd row

shows the reconstructed results of frame 17 without and with the

occlusion handling. As can be seen in the left image, the occluded

leg is largely distorted. After features are interpolated, it is cor-

rected in the right image.

the right hand side vector ensuring that these two vertices

be at the same 3D position after warping.

This global method is in spirit similar to bundle adjust-
ment. However our formulation is linear while typical bun-

dle adjustment is formulated as non-linear optimization that

requires iterative methods.

3.4. Occlusion Handling

Since both the camera viewpoint is moving and the ob-

ject is deforming, the least square doesn’t necessarily yield

the correct position. As illustrated in figure 3, to complete

the 3D model of frame 17, the occluded leg needs to be re-

covered with the information from its neighboring frames

16 and 18. One possibility is that this leg is topologically

connected to the visible surfaces, and will be pulled to a cer-

tain position under the laplacian constraint. This approach

will result in incorrect warping (figure 3) when the leg itself

is moving during these frames.

A more sophisticated approach is to use the tracked fea-

tures to predict their occluded positions. The features are

first extracted and stored for each frame. In the next step, we

establish a global feature pool by searching the feature set of

each frame for those that are visible in multiple frames. The

global features are recorded along with their frame num-

bers and corresponding 3D positions. With those globally

tracked features, the occluded part can be interpolated or

extrapolated under the continuous motion assumption. Fig-

ure 3 shows the correct result by this method.

3.5. Smoothing and Refinement

After the warping procedure, surface patches are aligned

together to cover the shape of an object at the same time in-

stant. In this section, they will be merged together to form

171



a single surface. Instead of manipulating meshes directly,

we choose to use an Eulerian approach by volumetric rep-

resentation for several major reasons. First of all, a volu-

metric representation can easily handle topological changes

among different meshes. Secondly, a volumetric represen-

tation can fix missing holes and misalignments, which are

often caused by image noise, correspondence errors, occlu-

sions or other errors. Last but not least, an Eulerian ap-

proach is straightforward to implement and it does not re-

quire the complicated re-meshing process.

We first define a distance function , which gives the

minimum absolute distance from to any surface patches.

Let be a signed distance function representing the final

steady shape we would like to achieve, the level set formu-

lation is:

(24)

Intuitively, will first be smoothed by a mean curvature

flow. Once it gets close to surface patches , the smoothing

effect will be gradually reduced and it will cover all surface

patches. As an example, in Figure 6, the holes by invisibil-

ity are filled up with this method. Details of this technique

can be found in [20].

4. Experimental Results
We have tested our algorithms on both synthetic data and

real data. The synthetic data is generated with the 4D mod-

els shared by [6]. As in figure 5, for each frame, the renderer

outputs the depth map and tracked 3D points specified in ad-

vance. 400 out of 20000 vertices are specified as tracking

points, which are uniformly distributed on the object sur-

face. Since this data set has no color features to track, we

generate correspondences directly.

Figure 5 shows results with correct correspondences.

The complete 3D model is recovered. We further evaluated

the performance of our algorithms under imperfect track-

ing by perturbing the original matching by some amount.

Specifically, 1-pixel perturbation means matching a pixel to

one that is randomly selected from the 1-ring neighbor pix-

els of its true correspondence. 3-pixel, 5-pixel, and 10-pixel

perturbations are performed in the similar way. One pixel

distance is approximately 10mm in the real world. So, 1-

pixel perturbation is roughly a 1% perturbation in the real

3D space. Figure 4 shows the reconstructed results under

the perturbations. It can be seen that when the amount of

perturbation increases, the fine details are lost, nevertheless

the overall shape is always well recovered. Table 1 shows

the errors between the reconstructed model of frame 1 and

the ground truth.

The real data is captured by a SwissRanger depth cam-

era combined with a point grey flea color camera that pro-

vides texture information. The depth camera can produce

Figure 4. The comparison of results from different perturbations.

As perturbation amount increases, details are lost.

DimX DimY DimZ Max Dist Avg Dist

1-p 844.4 1273.7 1814.0 13.60 1.927

3-p 844.4 1273.7 1814.0 14.78 2.278

5-p 844.4 1273.7 1814.0 16.95 2.646

10-p 844.4 1273.7 1814.0 20.02 3.487
Table 1. The errors between reconstructed model of frame 1 and

the ground truth. From row 2 to row 5: 1-pixel, 3-pixel, 5-pixel

and 10-pixel perturbation. DimX, DimY, and DimZ are the size of

the model in x,y,z dimensions. Max Dist and Avg Dist are the max-

imum and average distance between the result and ground truth.

Details are lost when noise increases.

depth map at video rate. However, the qual-

ity of the depth map drops quite significantly for dynamic

scenes. So we manually animate the toy giraffe and use

temporal averaging to improve the signal-to-noise ratio of

the depth map. SIFT features are extracted for each frame

and features are tracked across different frames by search-

ing in the pool of the extracted ones. The depth camera and

color camera are almost coaxial so the mapping between

their images can be approximated by a homography. There

are about 200 features that are reliably tracked. Results in

figure 6 show that the occlusion can be well handled by our

algorithms. Figure 7 is a comparison of the models from

frame 5 before and after hole-filling and smoothing. Fig-

ure 8 shows the reconstruction of a T-shirt worn by a person

who turned around 360 degrees in front of our capture de-

vice, while moving his hands up and down.

5. Conclusion

We have developed a novel approach to reconstruct com-
plete 3D surface deformation over time by a single cam-
era. The deformable surface patches are stitched together
by mesh deformation in a global manner, and merged into a
complete model by a volumetric method. Test on both syn-
thetic and real data demonstrated that our approach works
well with even large deformation. we believe our approach
will help to simplify the difficult task of creating time-
varying models for dynamic objects.
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Figure 5. Six frames (frame 1, 10, 17, 24, 29 and 35 out of all 38 frames) are shown in this figure. 1st row shows the rendered models. The

black dots indicate the tracked features. 2nd row is the partial meshes constructed from depth maps. The 3rd row shows the reconstructed

3D models by our algorithm.

Figure 6. Frame 3,5,7,11 and 17 out of total 18 frames are shown as an example here. 1st row shows the color images of the toy giraffe.

2nd row shows the recovered models.
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