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Fig. 1. Efficient multi-domain cloth simulation on CPU. This paper introduces a CPU-based high-performance cloth simulation framework based
on domain decomposition. The core of our algorithm is a parallel scheme that fits the hardware architecture of the multicore CPU. Unlike existing GPU
algorithms, CPU parallelization should focus more on convergence as the total number of available cores is limited. We show how this high-level idea is
integrated with the projective dynamics pipeline at both local and global stages. Our method is able to deliver good runtime performance that is comparable
to the state-of-the-art GPU counterparts and high-quality animations. The teaser figure highlights some results of our algorithm, featuring a virtual character
dressed in various garments performing a diverse range of actions, including handstands, tossing, dancing, and walking. Those garment models are of high
resolution, and they are divided into domains as visualized in the figure. When the time step size is set h = 1/120, our method only uses 300 - 400 ms to
simulate one frame, which is more than one order faster than existing CPU simulators.

Whenever the concept of high-performance cloth simulation is brought up,
GPU acceleration is almost always the first that comes to mind. Leveraging
immense parallelization, GPU algorithms have demonstrated significant
success recently, whereas CPU methods are somewhat overlooked. Indeed,
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the need for an efficient CPU simulator is evident and pressing. In many sce-
narios, high-end GPUs may be unavailable or are already allocated to other
tasks, such as rendering and shading. A high-performance CPU alternative
can greatly boost the overall system capability and user experience. Inspired
by this demand, this paper proposes a CPU algorithm for high-resolution
cloth simulation. By partitioning the garment model into multiple (but not
massive) sub-meshes or domains, we assign per-domain computations to
individual CPU processors. Borrowing the idea of projective dynamics that
breaks the computation into global and local steps, our key contribution is
a new parallelization paradigm at domains for both global and local steps
so that domain-level calculations are sequential and lightweight. The CPU
has much fewer processing units than a GPU. Our algorithm mitigates this
disadvantage by wisely balancing the scale of the parallelization and con-
vergence. We validate our method in a wide range of simulation problems
involving high-resolution garment models. Performance-wise, our method is
at least one order faster than existing CPU methods, and it delivers a similar
performance compared with the state-of-the-art GPU algorithms in many
examples, but without using a GPU.

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.



51:2 « Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu Jiang, Kui Wu, and Yin Yang

CCS Concepts: « Computing methodologies — Physical simulation.

Additional Key Words and Phrases: Cloth simulation, Parallel computation,
GPU algorithm, CPU algorithm

ACM Reference Format:

Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu
Jiang, Kui Wu, and Yin Yang. 2025. High-performance CPU Cloth Simulation
Using Domain-decomposed Projective Dynamics. ACM Trans. Graph. 44, 4,
Article 51 (August 2025), 17 pages. https://doi.org/10.1145/3731182

1 Introduction

Cloth simulation stands as a cornerstone of realism for digital con-
tent generation [House and Breen 2000], making garments flow
with smoothness, dresses cascade with elegance, and fabrics fold
with precision. It remains a challenging problem for high-resolution
garment models. This is because two-way coupled unknown de-
grees of freedom (DOFs) lead to a large-scale nonlinear system,
and the computation complexity grows super-polynomially w.r.t.
the DOF count. GPGPU, due to its excellent throughput and paral-
lelizability, has become the mainstream solution for performance
improvement [Bolz et al. 2003; Zeller 2005]. By solving unknown
DOFs in parallel, recent GPU methods deliver remarkable results
even for complex garment models [Lan et al. 2024; Li et al. 2023;
Wu et al. 2022]. However, reliance on GPUs can introduce practi-
cal obstacles. GPUs are also the key hardware for other important
computing tasks e.g., rendering and shading, for which they were
originally designed. Moreover, many commodity computers may
not have high-end GPUs capable of enabling meaningful perfor-
mance improvements. On the other hand, efficient simulation using
the CPU is a relatively unexplored problem. In contrast to GPUs, a
CPU core excels in faster clock cycles, abundant high-speed cache,
and more well-rounded ISA (instruction set architecture). Multicore
CPUs also have a substantial potential for improving simulation
performance. Nevertheless, one should never “copy-and-paste” an
existing GPU algorithm for a CPU platform, whose parallelism ar-
chitecture is better suited for handling fewer but more sophisticated
computing tasks.

This paper proposes a cloth simulation framework that can be
greatly accelerated on a multicore CPU. We opt for projective dy-
namics (PD) [Bouaziz et al. 2014] as the backbone for our pipeline.
Being a variation of the quasi-Newton method [Liu et al. 2017],
PD offers decent convergence and good potential for paralleliza-
tion. In the meantime, we observe that the design/manufacture of
clothing normally starts with patternmaking, after which various
parts, such as the sleeves, front/back panels, hems etc., are sewn
together. Such structure-wise composition of a garment model nat-
urally matches the domain decomposition methods (DDMs) [Smith
1997]. Our method synergizes with those two ingredients algorith-
mically with an efficient CPU-based parallelization.

Concretely, during the global solve, we keep a small set of key
DOFs two-way coupled while decoupling less essential DOFs at do-
mains. This allows the domain-level parallelization of forward/back
substitution. Our domain-decomposed PD global solver exactly
solves the global matrix, and it is one order faster than the off-the-
shelf libraries like MKL [Wang et al. 2014] or Eigen [Guennebaud
et al. 2010] using a multicore CPU. When the constraint set varies,
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e.g., due to collisions and self-collisions, we devise a compact dual
formulation for relaxing colliding DOFs and exploit the domain-
parallelized global solver as a strong pre-conditioner. The local stage
of the vanilla PD is GPU-friendly as each constraint is processed
independently. Such massive parallelization slows the overall con-
vergence and becomes less effective on the CPU. Instead, we switch
to a Gauss-Seidel (GS) projection strategy, making this operation
sequential within the domain but parallelizable across domains. Our
framework also includes a new CCD processing algorithm using
Halley’s method, which converges 10 — 15% faster than Newton’s
method for solving cubic polynomials.

Previous work, such as PARFES [Fialko 2019], introduced parallel
forward/backward substitution algorithms for linear FEM that could
potentially accelerate PD global steps. However, our global step solv-
ing approach differs fundamentally from PARFES. PARFES performs
block LSLT decomposition of sparse symmetric matrices and iden-
tifies parallelizable independent tasks through an elimination tree
converted to a supernodal structure. Our method leverages geomet-
ric and topological properties inherent to the problem. Specifically,
we permute degrees of freedom (DOFs) based on their types to cre-
ate predictable sparse patterns in the factorization. This enables
parallel forward/backward substitution for redundant DOFs with-
out requiring the construction and analysis of an elimination tree,
resulting in a more direct parallelization approach tailored to our
specific problem structure.

We have tested our method in a wide range of complex garment
simulation scenes, and our CPU-based simulation produces high-
quality results with a strong runtime performance that matches the
state-of-the-art GPU algorithms. A concrete example is shown in
the teaser (Fig. 1), where the dressed virtual avatar performs several
interesting motions with different garments. Our CPU simulator
only needs a few hundred milliseconds to simulate each frame (with
the time step size 1/120). This is more than an order faster than
vanilla PD-based cloth simulation using multi-threading.

2 Related Work

Being one of the core problems of computer graphics and animation,
there exists a vast number of excellent contributions on the topic of
cloth simulation. This section briefly reviews a few representative
studies that are most relevant to our work.

Cloth simulation. Given a piece of cloth model, a common practice
is to discretize its geometry with a mass-spring network [Choi and
Ko 2002; Liu et al. 2013; Provot et al. 1995] or a triangle mesh [Etzmuf}
et al. 2003; Volino et al. 2009]. Early techniques choose to use explicit
integration with small time steps [Provot et al. 1995]. The stability is
improved by switching to the implicit integration [Baraff and Witkin
1998], at the cost of assembling and solving the resulting linearized
systems. Kim [2020] later explained the fundamental connection
between the Baraff-Witkin formulation [Baraff and Witkin 1998]
and the anisotropic finite element methods (FEM) [Bathe 2006].

Cloth dynamics concerns in-plane stretching and out-off-plane
bending. A wide range of material models have been proven ef-
fective for capturing the in-plane resistance, including Kirchhoff-
Love [Chen et al. 2018], corotational [Etzmuf3 et al. 2003], orthotropic
formulations [Volino et al. 2009] or even data-driven materials [Wang
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et al. 2011]. Handling inextensible fabrics necessitates additional
nonlinear penalties, such as Neo-Hookean [Li et al. 2021; Lu et al.
2024] or spline-based models [Xu et al. 2015]. Strain-limiting tech-
niques [Thomaszewski et al. 2009; Wang et al. 2010] provide an
easy fix for strong length and area preservation. Bending behavior
is typically formulated on hinge elements through dihedral angles
between adjacent triangles [Bridson et al. 2005; Grinspun et al. 2003;
Wang et al. 2023]. Leveraging in-plane inextensibility, Bergou et al.
[2006] developed an efficient quadratic bending model based on
mesh’s mean curvature.

GPU-based simulation. The high computational cost of solving
nonlinear systems arising from implicit integration has long been
a major challenge in cloth simulation. A widely adopted strategy
is to re-formulate the force equilibrium into its variational coun-
terpart [Gast et al. 2015; Kharevych et al. 2006]. This formulation
brings an optimization perspective, enabled a more efficient implicit
integration through sophisticated optimization techniques, espe-
cially when handling nonlinear constraints. Apart from force-based
method and its variational energy form, constraint-based methods
formulate the equilibrium configuration with a set of predefined
constraints. Within this framework, constraints can be addressed
locally and inexactly through techniques like constraint projec-
tion [Goldenthal et al. 2007], offering computational advantages and
flexibility in handling the simulation. For instance, position-based
dynamics (PBD) [Macklin et al. 2016; Miller et al. 2007] projects
the position of a set of points directly, respected to the constraint
groups. Projective dynamics or PD [Bouaziz et al. 2014] presents
a global and local alternation scheme to approximately solve the
nonlinear quadratic system. PD quickly becomes a popular simula-
tion modality because its local projections are trivially parallelizable.
Instead of solving the global system exactly e.g., using Cholesky fac-
torization, iterative linear solvers can be used, such as Jacobi [Lan
et al. 2024, 2022; Wang 2015], GS [Fratarcangeli et al. 2016] and
preconditioned conjugate gradient (PCG) [Tang et al. 2013]. For
more general and nonlinear models, sophisticated GPU algorithms
can both accelerate the per-stencil computation and global system
solving. In these methods, per-stencil computation is lightweight
and independent and the linear solving can be accelerated through
traditional GPU operators such as SpMV. However, such a massive
parallelization is less suitble for CPU platform, given its distinct
hardware architecture where each computation unit is equipped
with sophisticated control logic and high computational capability,
instead of sheer core quantities.

Multigrid & domain decomposition method. The multigrid method
boosts simulation efficiency when a large number of DOFs are
present [Bornemann and Deuflhard 1996; Trottenberg et al. 2001]. It
has been extensively employed to solve Poisson systems in fluid sim-
ulation [McAdams et al. 2010; Molemaker et al. 2008]. While both
incorporate meshes at different resolutions (geometrical meshes as
input or algebraically logical meshes) to hierarchically eliminate os-
cillations or smooth errors, the geometric multigrid (GMG) [Georgii
and Westermann 2006] utilizes spatial discretization (e.g., meshes or
uniform grids) of different resolutionsas input to construct the re-
striction and prolongation operator. Xian et al. [2019] used a sparse
sampling scheme to sparsify the coarse level matrices that effectively

addresses the matrix density problem in Galerkin multigrid meth-
ods. The algebraic multigrid (AMG), on the other hand, approaches
the construction by generating a subspace of the low-frequency
dynamics regardless of real hierarchical geometry inputs, which
shares a similar nature of model reduction [O’Brien et al. 2003;
Pentland and Williams 1989]. For example, Li et al. [2023] used a
B-spline subspace, and Tamstorf et al. [2015] built the subspace by
QR decomposition on near-kernel components. Nonlinear multigrid
is also an effective method e.g., as in [Wang et al. 2018], which up-
dates the residue and system matrix periodically to incorporate the
nonlinearity. Zhang et al. [2022] developed a progressive simulation
method, which calculates high-resolution cloth deformation given
input coarse poses. This method was later generalized to dynamic
shell and cloth simulations [Zhang et al. 2024].

The domain decomposition method or DDM is another closely re-
lated method [Toselli and Widlund 2006]. Similar to multigrid, DDM
aims to handle very large-scale simulation problems for HPC [Ya-
mazaki et al. 2014]. In graphics, DDM is often used with reduced-
order models to enrich local dynamics. Barbi¢ and Zhao [2011]
designed a substructuring algorithm assuming the interfaces among
domains are small and nearly rigid. It is particularly effective for
plant simulation [Zhao and Barbi¢ 2013]. Yang et al. [2013] com-
bined modal warping [Choi and Ko 2005] and component mode
synthesis (CMS) [MacNeal 1971] to build local subspaces from the
interface deformation. Kim and James [2011] coupled domains with
springs to avoid inter-domain locking. Wu et al. [2015] also utilized
a spring-based domain coupling with Cubature sampling [An et al.
2008]. Recently, Li et al. [2019] developed a domain decomposi-
tion method that achieves subdomain coupling through quadratic
penalty potentials at interfaces, eliminating the requirement for
dual variables in formulation. Peiret et al. [2019] introduces a novel
Schur complement-based substructuring approach for efficiently
simulating stiff multibody systems with contact. A key ingredient
in DDM is the coupling mechanism among domains. Classic DDM
is designed for large-scale FEM, where direct solvers should not be
used. When decomposing the mesh into domains, interface DOFs
are duplicated, leading to finite element tearing and interconnecting
(FETI) method [Farhat and Roux 1991]. Many variations have been
proposed, aiming to improve the convergence of the linear system
e.g., see [Farhat et al. 2000]. FETI-DP [Farhat et al. 2001] is a PCG
based DDM, which solves a coarse problem as the pre-conditioner
of multi-domain PCG iterations.

We argue that DDM naturally fits the multicore CPU. As a co-
dimensional problem, cloth domain partition tends to yield fewer
boundary DOFs, which eases the coupling issue. Garments are often
designed and fabricated via patches, meaning they have been de-
composed into domains already. On the downside, cloth dynamics
is highly nonlinear, and existing DDMs are not applicable directly.
In this paper, we show how to integrate PD with DDM to enable
highly efficient cloth simulation on the CPU.

3 Vanilla Projective Dynamics

Given a time integration scheme such as implicit Euler, PD aims to
solve a variational optimization for each time step:

1
argminE = [(x, %) + ¥(x), [ = —[[M2(x-2)|%. (1)
x 2h?

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.



51:4 « Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu Jiang, Kui Wu, and Yin Yang

Here, x is the unknown variable we need to compute for the next
time step i.e., the position of all the cloth vertices. z = x* + hx™ +
h2M~'f,,; is a known vector depending on the previous position x*,
velocity x*, and an external force f,,;. M is the mass matrix, and h
is the time step size. The objective function E consists of the inertia
potential (I) penalizing accelerated movements, and the elasticity
potential (¥) characterizing the deformation of the cloth.

PD splits the optimization of Eq. (1) into two steps, namely the
local step and the global step. For the i-th constraint C;, the local
step is in the form of:

. Wi
arg min ?l |A;Six — Biyil|®, s.t.Ci(y;) =0. ()

Here, S; is a selection matrix picking DOFs pertaining to C; from x
ie., x; = S;x. A; and B; map the positional DOFs of x; and y; to the
specific coordinate that the constraint C; measures. y; refers to the
so-called target position of C; — the position closest to the current
value of x; that keeps C; satisfied. Intuitively, the local step aims to
lower ¥ in a Jacobi-like manner. The target position is essentially
the local optimum at C; for minimizing ¥.

The global step is a standard linear solve in the form of Kx = b:

M M
ﬁ + Z WISITA;FAISI X = Fz + Z W,SlTA;rB,y, . (3)
i i

K b

Eq. (3) relaxes the inertia potential I while averaging duplicated
DOFs y; to generate a global solution of x since a DOF could have
multiple replicates if it is involved in multiple constraints. PD takes
several alternations between the local step and the global step, and
we refer to each full cycle of local and global steps a L-G iteration.

4 Domain-decomposed Global Solve

PD is often considered a fast simulation algorithm because 1) the lo-
cal step is parallelizable, and 2) if the constraint set does not change,
the global matrix becomes constant and can be pre-factorized. How-
ever, these advantages are significantly diminished on a CPU plat-
form, and we need a re-designed scheme, which deploys the paral-
lelization at the domain level.

We first set aside collision constraints and assume the global ma-
trix K is constant. This assumption allows us to pre-factorize K e.g.,
using Cholesky decomposition as K = LLT, and Eq. (3) can then be
solved with one forward substitution and one backward substitution
of L. Substitution is costly with the complexity of O(N?), where N
is the size of the global matrix. More importantly, forward/backward
substitution is inherently sequential, and multiple CPU cores hardly
help. Therefore, even with K being constant, global solve remains
the bottleneck of the pipeline. By decomposing Eq. (3) into multiple
sub-systems or domains, we show that it is possible to parallelize the
forward/backward substitution in a primal-dual manner. This par-
allel global solve lays the foundation of our CPU-based simulation
method.

4.1 DOF Classification

We start with a subdivision of an input cloth mesh. Each sub-mesh
forms a domain, which consists of a set of edge-connected triangles,
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as shown in Fig. 2. For each domain, we can assemble the counterpart
of Eq. (3) such that: K/x/ = b/. The superscript j suggests the
domain index.

The decomposition naturally classi-
fies domain vertices into internal ver-
tices and boundary vertices. As the name
suggests, an internal vertex is exclu-
sively owned by a single domain, while
a boundary vertex is shared among ad-
jacent domains. Subscripts I and B are
used to denote the corresponding ver-

tex category i.e., x} and xlj3 are DOF
values of internal and boundary ver-
tices. Let Np be the total number of 7 (@) and boundary ver-
boundary DOFs of the whole mesh and ;¢ (@ + ®). The latter is fur-
Nlj3 be the number of boundary DOFs  ther grouped into corner ver-
of the j-th domain. It should be noted tex (@) and duplicate vertices
that N < 2; Né because boundary (@). The superset of internal
vertices are overcounted at domains.  vertices and duplicate vertices
Among all the boundary DOFs, we are collectively named as re-
designate a sub-group of No DOFs as mainder vertices (@ + ®).
corner DOFs. By default, corner DOFs
are those shared by more than two domains i.e., they are at corners.
The user may also manually include more boundary DOFs as corners.
The other boundary DOFs are named as duplicate DOFs — they are
duplicated by two neighbor domains. In other words, N é =N, é + Né,

Fig. 2. DOF types. We cate-
gorize vertices as internal ver-

where Né and Né stand for the numbers of duplicate and corner
DOFs of domain j. All of the Nlé non-corner DOFs of the domain
are called remainder DOFs. It is easy to verify that N/ = NIj + Né =
Né + Né. We then re-write K/x/ = b’ block-wisely as:

J J
SR

C

j j
Kip  Kjc
J J
KRC KC C

with subscripts R and C denoting the corresponding vertex category.

4.2  Primal-dual Formulation

The interface compatibility constraints require that boundary DOFs
have the same values at different domains. We use different strate-
gies to enforce this constraint for corner vertices and duplicate
vertices. Specifically, we impose a set of equality constraints for the
duplicate vertices such that:

> xShxp =0, )
j

where S{) e RWs-Ne )xNig is the selection matrix, which picks out
the domain’s duplicate DOFs xi), and re-indexes it globally for all
the Np — N¢ non-corner boundary DOFs. On the other hand, the
interface constraint is implicitly enforced at corner DOFs using the
minimal coordinate xc. That said, xc contains all the N corner
DOFs of the mesh without duplication, and we use another selection

matrix Sé € RNONE o map between xé and x¢ such that xé =
Séx‘c.

Next, we expand the first row of Eq. (4) at the domain’s remainder
DOFs and maintain the interface compatibility constraint by the
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dual variable A at duplicate DOFs. The residual at corner DOFs is
summed over all the domains and solved collectively at xc. This
leads to:

j J oo g
KgpXp -+ KycSexc = by

Z SL Kjexp+ Y L K} oSkxc = ) BLbl. = bc.
J J

Here, A € RNB—NC is the globally-indexed constraint force, i.e., the
Lagrange multiplier corresponding to the interface constraint of
Eq. (5).

From the first line of Eq. (6) we have:

x) = Kby (b -

~siA,
©)

Sh A - KjeShae), )

which implies x{2 can now be calculated in parallel at domains
as long as we can compute the dual variable A. To this end, we
substitute Eq. (7) back to Eq. (5) to build the primal-dual version of

the global system:

[GRR Gre A _ [ bl*i’ (8)
G;C —Gcc Xc —bé ’
where

Grr = ZSDKI]ZR si) e R(NB=Nc)x(Np— NC)

e R(NB —NC)XNC’

_ J i e o
Gre = ZSDKRR KicSe €
J

_ JT i o G i i e @) - WNEXN,
GCC—ZSC KeeSe = ZSC KRCKRR KgcSe € RTCTC,

¥ _ J i i - mNE-N,
R_ZSDKRRbRERB s

J JT g™ N,
ZSC K Kl b} € RNC.

Expanding the ﬁrst row of Eq. (8) allows us to solve A via:
A = Gpg (by — Grexc) - )

The rh.s. of Eq. (9) needs the information of x¢, which can be solved
by substituting Eq. (9) back into the second line of Eq. (8):

Gioxc = b} — Gp-Grpby, for G- = Goe — GpGrrGre.  (10)

After obtaining the corner DOFs x¢, and the dual variable A, the
remainder DOFs at each domain can then be solved in parallel.
The computational procedure of our domain decomposed global
solve is outlined in Fig. 3, which includes three major steps of com-
puting corner DOFs x¢, dual variables A, and the remainder DOFs at
each domain x}j2 respectively. As K is assumed constant at this point,
all the matrices can be pre-assembled and pre-factorized (as colored
in red in the figure). Instead of performing global forward/backward
substitution of K=, our formulation only needs forward/backward

substitutions at domains’ remainder DOFs i.e., KRR , which are pro-
cessed in parallel. In addition, we need to solve G/, and Ggg for
corner DOFs and the multiplier. They correspond to two linear sys-
tems of Ne X N¢ and (Ng — N¢) X (N — N¢). Fortunately, it is
reasonable to assume that N¢ is a small quantity, and solving x¢
using pre-factorized G/, is efficient. Suppose there are D domains

A < Gip (b — Greze)
Solve for A

Tc < G(( (b* GI«‘GRRb;)
Solve for ¢

Solve for wﬁz

Fig. 3. Domain-decomposed global solve. Our primal-dual global system
consists of three steps, namely solving for x¢, A, and x{z. This algorithm
allows most forward/backward substitution to be carried out in parallel at
domains’ remainder DOFs, highlighted with light orange boxes. As a result,
the performance of global solve can be accelerated linearly w.r.t. the number
of CPU cores.

of roughly the same size. We have the DOFs of domain j as N}, J x %
which suggests the tlme complexity of the domain- decomposed

global solve is O (D . ﬁ + max (N2, C)).

Discussion. Strictly speaking, Eq. (8) is not a conventional primal-
dual version of the original PD global problem. Firstly, the multiplier
is only activated at duplicate DOFs. Corner DOFs, because they are
globally indexed as xc, do not generate interface constraints. This
strategy allows a straightforward formulation of A because duplicate
DOFs are shared by exactly two domains, and we do not need extra
safeguards for the vertex shared by more than two domains to make
sure dual DOFs are linearly independent. The primal variable xj,
on the other hand, is condensed to corner DOFs. The condensation
reduces the size of the primal part of the global system from N to
N¢ and makes G a dense matrix.

4.3 Domain Decomposition

The performance of our method is closely relevant to how domains
are decomposed Intuitively, we would like to make each Kj

RN2*Nk as small as possible so that the complexity of solving x
can be effectively suppressed. Load balance is another 1mportant
aspect. Since solving xJ{2 is parallelized at domains, it is preferred
that domains are of similar sizes so that the computation at each
thread completes roughly at the same time.

We also need to solve x¢ and A, which must be processed one
after the other. With pre-factorized G(, and Ggg, the performance
depends on N¢ and Ng — N¢. Unfortunately, reducing Né and re-
ducing Np are a pair of conflicting objectives — smaller domains
have more boundary DOFs and fewer internal DOFs. Therefore, it
is helpful to manually pick more corner vertices to lower Ng — N¢.

In our implementation, we utilize the graph partitioning tool
METIS library [Karypis and Kumar 1997] to decompose the input
garment mesh. METIS includes a multilevel graph cut algorithm
minimizing boundary vertice count while balancing domain sizes.
It allows explicit control over the number of domains and the maxi-
mum allowable ratio between the largest and smallest domain sizes.

4.4 Non-conforming Decomposition

As shown in Fig. 4, many digital garment models are not formed
as a single monolithic triangle mesh. Instead, they are constructed
by piecing together from multiple patches. The boundaries of those
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patches are often not conforming. Practically, they are seamed via
barycentric interpolations on interfacing edges or triangles.

Our method can be
conveniently generalized
to tackle non-conforming . .
domains. An example is ‘
shown in Fig. 5 (a), where
two domains are coupled
via a non-conforming in-
terface. The interface com-
patibility constraints ap-
ply to three orange and
four green vertices — non-
conforming domains lead
to mismatching x{). We
solve this ambiguity by
always applying the con-
straint to the domain with fewer duplicate DOFs i.e., the orange
domain in this exmaple. This strategy avoids potential overconstrain-

({0
i

Fig. 4. Non-conforming domain decom-
position. Our method can be generalized to
handle non-conforming domains.

ing so that Ggg is well-conditioned. Slj) becomes an interpolation

matrix for the green domain — at the corresponding rows, S}, con-
tains barycentric coordinates of local vertices for the neighboring
duplicated vertices, which are being constrained. In this example,
we have a nine-dimension dual variable A.
A more generic setup is illus-

trated in Fig. 5 (b), where multi- ()

ple patches intersect. Unlike in con-
forming domain decomposition, the
intersection point generally does
not coincide with a mesh vertex,
and the involving corner vertices
are not full-rank. Therefore, Goc in Fig. 5. Non-conforming do-
Eq. (8) becomes singular. The rem- mains. Our domain-decomposed
edy is to further condense x¢ to aset 8lobal solver accommodates non-
of linearly independent freedoms conforming domains. Duplicate

- . . . DOFs (a) and corner DOFs (b)
Xc i.e., the actual intersecting loca- .

. . . are processed by condensing
tions among multiple domains (plus | global step solve to a subset
other user-selected corner vertices ¢ independent DOFs to avoid
and/or conforming corner vertices) overconstraining.
such that xc = Bexc, where B the
barycentric interpolation matrix. By projecting the second line of
Eq. (8) into the column space of B, the condensed primal variable
X¢ is computed via:

fc = Ggl (bi - GleGrbr) (11)
where

A T i i o gl i i i i el o R
Gee = ZBC Sc KeeSeBe = Z B( S¢ KpcKig KpeSeBes
J J

A J i el i pi
Grc = Z SpKir KpcScBes
J

~ _ T jT jT jT jfl ]
bi. = Blbc - " Bl S. Ky Ky, bi.
J
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Constraint
graph G—5—8>7

1—2—4—3,

8—6—5—15 Spanning
7—3—4>2 trees

Fig. 6. Sequential local projection. We construct a constraint graph for
each domain and extract several spanning trees. Our Gauss-Seidel local
projection follows a DFS traversal of a spanning tree. DFS traversal always
starts with a constraint with vertices whose positions are prescribed (e.g.,
fixed vertices), as highlighted in orange.

Here, Bé is the local interpolating matrix of the j-th domain. The

dual variable A and per-domain remainder variable x{z are solved
afterwards.

5 Domain-decomposed Local Projection

The vanilla PD employs a Jacobi-like scheme at the local step to
maximize the capacity of parallelization. This strategy is particularly
well-suited for the GPUs as it handles a large number of constraints
concurrently. Given the disparity in the number of processing cores,
the CPU is clearly at a disadvantage. Being a CPU procedure, our
method trades off some parallelizability to achieve better conver-
gence.

Concretely, we downscale the local step parallelization from the
constraint level to the domain level. Intuitively, this approach treats
¥/ i.e., the elasticity potential of a domain, a type of generalized
constraint and computes its target position sequentially in a Gauss-
Seidel manner. The procedure of computing a constraint’s target
position remains unchanged per Eq. (2). Departing from the vanilla
PD, after y; is computed we further solve a small-size linear system:

M:
(h—zl + Z WlA;rA,
i

It is easy to see that Eq. (12) is simply a constraint-level global
system that extracts columns and rows from Eq. (3) pertaining to
constraint i. The Lh.s. is pre-factorized, and the solving is highly
efficient given its low-rank nature. X; offers a good estimation of
the newly updated position without solving the full global system
exactly. As we move forward to the next constraint i + 1, vertices
shared with constraint i will fetch the values from X;, which reflects
the most updated local information, for calculating its own target
position y;1.

It is known that such a Gauss-Seidel-like relaxation scheme is
biased toward a specific traversal order. We avoid this issue by
pre-computing several paths of constraint iteration. As shown in
Fig. 6, we construct a constraint graph of the domain to encode the
topological connectivity of all the constraints. Each node on the
graph represents a constraint involving several mesh vertices, i.e., a
triangle in this example. Two constraints are connected by an edge
if they share mesh vertices. Since we do not consider collision/self-
collision at this point, the constraint graph can be pre-built. We
then build several spanning trees of the graph. Ideally, any graph
edge should be present in at least one of the spanning trees. A DFS
(depth-first search) is performed for each spanning tree, and the

h?

. M;
X = —lZ,' + Z W,ATB,y, (12)
i
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sequence of the node visits during the DFS traversal gives the order
of our local projection. It is worth noting that the position of a vertex
may be prescribed as an imposed boundary condition.

Taking Fig. 6 as an example,
two red vertices of the top left
and right are fixed. Our DFS al-
ways starts from a constraint
(in orange) with such prescribed
vertices (as they do not have
dynamic freedoms) to track the
strain propagation across the
mesh. The per-domain local pro-

e Fig. 7. Biased residual with fixed
jection alternates among those Gs relaxation. GS iteration sequen-

pre-computed iteration paths. tially relaxes each constraint within
As shown in Fig. 7, this strat- a domain. If the order of the con-
egy effectively removes the bias straint transversal is fixed, GS tends
of GS-based projection. After all produce patterned residual i.e., bias.
the domain-level local projec- We pre-compute multiple paths given

the domain constraint graph and al-
ternate GS iterations with different
paths. This fully avoids the bias issue.

tions are completed, the global
step solve follows, and we move
to the next L-G iteration.

6 Collision-aware Global Solve

The discussion so far assumes the constraint set of the system does
not change. This assumption does not hold in cloth simulation,
where collisions and self-collisions are pervasive. Since PD handles
collisions as a type of constraint, the global step matrix varies under
different collision configurations. In this section, we show how
to exploit our domain-decomposed pre-factorization to efficiently
handle collision-in-the-loop global systems.
The presence of collisions and self-collisions alters Eq. (3) to:

(K + AK)(x + Ax) =b + Ab. (13)

That said, we explicitly label the change of global step matrix AK,
vertex position adjustment Ax, and the increment of r.h.s. vector Ab
that are brought by the detected collision constraints. In practice,
we often solve the collision-free global system Kx = b first and use
the corresponding x for collision detection. Therefore, the unknown
we are looking to solve for is Ax. Expanding Eq. (13) yields:

(K + AK)Ax = Ab — AKx. (14)

We stack all the collision DOFs into a compact vector % € RX, where
K is the total number of collision DOFs. The notation (-) suggests
the variable is for collision DOFs. We also use the subscript k to
specify the index of a collision constraint to differentiate it from
other constraints, which are indexed with i.

Recall that the selection matrix Sy picks DOFs out of x for the k-th
collision. We now split this operation into two steps — a collision
selection matrix § € RF*N first retrieves all the colliding DOFs
ie., £ = 8x; after that S extracts DOFs associated with the k-th
collision from %. As § is constant for all the collision constraints,
this splitting reveals the structure of AK:

AK = Z wiST AL AiSk = Z wiSTST AT ALSiS = STAKRS, (15)
k k

where we have:

AK = Z wiST AL A € REXK, (16)
k

We follow the strategy as in [Lan et al. 2024] and set Ay as an
identity matrix for collision constraints making AK diagonal.

Substituting Eq. (15) into Eq. (14) and applying the Woodbury
identity [Hager 1989] yield:

R ~ a1
Ax = (K + STAKS) (Ab — AKx) = K~ (Ab — AKx)
R N ~ PO N
KT (AI(1 + SK’lsT) SK-'(Ab - AKx). (17)

We then project Eq. (17) into the row space of S. Intuitively, doing so
condenses the problem size and prioritizes the solving for colliding
DOFs. Left-multiplying $ at its both sides of Eq. (17) with some
manipulations results in a linear system of:

HA=d, (18)
where:
R . . R N N -1
A=AA+I, AH=AK" (SK”ST) ,
d =SK~'(Ab - AKx), A =SK '(Ab-AKx) - SAx,
and I is a K by K identity matrix.

Unlike other constraints, collisions embody a type of hard con-
straint. Hence, we always have wy > wj;. It can be shown that

ad <k |(3678T) T < <1 ao)
k
then we have:
0<e=|pAH|| <1, (20)
where € := || AH|| is the spectral norm i.e., the maximum eigenvalue
of AH. Because
|H|| = |AH + I|| < [|AH]|| + 1] =€ + 1,

we can then posit that the spectral radius of H is bounded as:
1<p(I:I)<e+1zﬁ+l. (21)
Wk

In other words, p(H) is greater than but very close to one. This
property inspires us to use the steepest descent (SD) method to solve
Eq. (18) given the fact that the linear system can be solved with one
SD iteration if its spectral radius equals one.

A reasonable initial guess of A for starting SD iteration is Ay —d,
which assumes Ax = 0. The corresponding residual 7 of Eq. (18)
then becomes:

N N N ~ A\ "1 .
#=d—Hly =-AK" (SK"lsT) SK~'(Ab—AKx).  (22)

Even with our domain-wise pre-factorization, evaluating # remains
prohibitive. To avoid this difficulty, we ignore r.h.s DOFs for non-
colliding vertices by replacing Ab— AKx with $TS(Ab — AKx). This
strategy cancels out (SK~'8T)~, and the residual can be efficiently
approximated as:

7~ —AK"1S(Ab — AKx). (23)

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.
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The SD iteration is then updated via:
ST .
Aede——0 1 i+ (24)

FTAHF +77r T+ 5

by leveraging the spectral property of AH i.e., Eq. (21).

Multiplying $7$ to Ab — AKx discards the influence from non-
colliding DOFs to Ax. To recover this information, we finalize our
collision-aware global solve with a couple of full PCG iterations over
Eq. (14). At this point, it is expected that residual errors at collision
DOFs Ax are well relaxed with SD iterations for Eq. (18). Therefore,
K~! stands as a (very) strong pre-conditioner for CG iterations.
While K is never factorized as a whole, our domain-decomposed
global solver efficiently calculates y = K~! p for any right vector p

by solving y = Kp.

Discussion. In a nutshell, our
collision-aware global step iso-
lates the solve for Ax using
the Woodbury formula. The key
strategy is to build a dual ver-
sion of this problem in a re-

100

104

Relative error
>
e

duced space i.e., to solve A so *-]

that we can fully utilize the e
fact that collision constraintsare " o 20 40 60 so 100
much stiffer than other compli- Time (ms)

ance constraints such as bending
or edge length preserving. The
unique structure of PD matri-
ces helps extract important spec-
tral information of H so that the
dual problem can be solved ef-

Fig. 8. SD & PCG. We drape a square
tablecloth over the teapot, and plot
the convergence curve w.r.t. computa-
tion time. There are 270k DOFs on the
cloth, and 70K collision constraints.

i 5 The time step size is set as 1/120.
fectively with the SD method. gp jterations for the dual problem of

The remaining residual error is
smoothed with PCG using the
domain-decomposed (collision-

Eq. (24) effectively reduce the need for
full PCG iterations at a very low cost.
It saves about 70% computation time

free) global matrix. We find that if one chooses to use PCG to solve the
solving the reduced dual prob- collision-aware global system directly.
lem of Eq. (18) is critical to our

performance gain. A representative user case is shown in Fig. 8.
In this example, a piece of square tablecloth of 270K DOFs drapes
over a teapot. The time step is h = 1/120. We examine the system
convergence under conditions with the highest number of collisions
(~ 70K). After five SD iterations, the relative error is lowered to 5%,
which takes about 25 ms. Two extra PCG iterations are followed to
converge the system. If we directly use PCG to solve Eq. (14) (with
the pre-conditioner), we end up with over 20 iterations. In other
words, several inexpensive SD iterations of Eq. (18) bring the total
number of PCG iterations down from 20 to 5. The computation time
is shortened by about 70%.

7 Experiments

We have tested our method in a wide range of simulation cases.
The experiments are performed with both AMD and Intel platforms
with an AMD Ryzen Threadripper PRO 5975WX 32-core CPU, and
an Intel i9-13900K 24-core CPU. We use CHOLMOD [Chen et al.
2008] on the AMD platform and MKL on the Intel platform. The

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

CPU parallelization is handled with TBB library [Pheatt 2008]. Sim-
ulation parameters and timing information are reported in Tab. 1,
and the visualization of the time breakdown is shown in Fig. 10.
We also analyze the per frame time with respect to the number of
active contact pairs for the given example (Fig. 11). Our method
shows relatively stable performance (235 — 341 ms) across a range of
contact pair quantities (65— 118K pairs) in this case. Unless specified,
our default time step size is 1/120 running with 32 threads on the
5975WX CPU. We normalize the garment into a unit box, and we
use ||Ax|| = 1e—3 as the default convergence condition. Please refer
to the accompanying video for more animation results.

7.1 Multi-domain Global Solve

We first report a detailed study on the performance of the pro-
posed multi-domain global solver when collision is not taken into
account. While the global step matrix can be pre-factorized, the
forward/backward substitution is a sequential operation, and multi-
threading does not help improve the performance. Our method is
able to fully exploit CPU cores and parallelize domain-level compu-
tations. Fig. 9 visualizes the timing statistics for solving the global
matrix for a square tablecloth of different resolutions using different
numbers of domains and threads. We run the test on both AMD (32
cores) and Intel (24 cores) platforms. Our baseline is single domain
global solve using the pre-factorized global matrix. In general, the
solving time is quickly lowered as more CPU cores are used. We
use different color bars to visualize total times used for solving G-
and Ggg for Eqs (9) and (10), which is not parallelizable (in orange)
and for solving KéR at domains (in blue). The time statistics is con-
sistent with our previous analysis. With the increase in the number
of participating cores, the total time used for solving K}{;R decreases.
On the other hand, the time used for solving Gf,. and Ggr remains
stable as those two computations are sequential. The increase in
domain count also lowers the solving time for K}é r- When domains

become smaller with fewer remainder DOFs, solving time of K}éR at
each domain declines quadratically. However, when the domain de-
composition gets denser, Grg becomes a bigger matrix, and we can
clearly observe a steady increase of orange bars w.r.t. the increase
of the number of domains. In some cases, solving the dual variable
A takes more time than solving the primal variable xz. As a result,
more domains negatively impact the runtime performance.

Another interesting notice is the efficiency improvement does not
always perfectly align with the number of threads. We first need to
have a sufficient number of domains to match the available number
of computing cores. For instance, if the mesh is only decomposed
into four domains, pushing the simulation to 16 or 32 threads is
not helping. The performance gets worse as each thread is assigned
with fewer hardware resources. If the mesh resolution is not fine
enough, parallel solve also becomes less effective. A “sweet spot”
is making the domain count similar to the number of processing
cores. For instance, our AMD CPU has 32 cores, and we often find
generating 32 domains gives good speedup. The Intel CPU used in
this test has 24 cores. However, they are not equally powerful, with
8 performance cores and 16 efficiency cores. This hardware-level
variation may explain the differences in large-scale multi-domain
solves.
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Fig. 9. Multi-domain global solve with different numbers of domains & CPU threads. We report the global solve time using domain-decomposed
parallel solver on square cloth meshes of different resolutions with 60K, 180K, 600K, and 3M DOFs. The mesh is decomposed into 4, 8, 16, 32, 64 and 128
domains respectively. The domain partition is shown at the bottom. Compared with the baseline using the off-the-shelf numerical library i.e., the left bar in all
the plots, which performs the global solve on the entire mesh, our method brings multifold speedups. The test runs on both the AMD CPU (left) and the Intel

CPU (right) using different numbers (4 - 32) of threads.

L-G warm start

One time step Collision handling

O Broad phase
I Narrow phase
O SD solve

I PCG solve

O L-G warm start O Local projection
O Collision detection @ Global solve
O Collision-aware global solve

O Misc.

Fig. 10. Time breakdown. We visualize the breakdown of the computation
time used for one time step of a typical animation frame, where the character
in a t-shirt and shorts is performing a single-hand handstand. There are
376K DOFs in this example (91K collision constraints). The time step size is
set as h = 1/120, and the total time used at this frame is 240 ms.

Nevertheless, our method offers substantial performance gain. In
high-resolution simulations, the global solve becomes an order faster.
This timing performance is nowhere close to GPU-based global

'y

350 350
3251 325
23004 300
8 .
E21sqe 275
250 250
25 ; . : . 225

9 100
# Active contact pairs (K)

120

Fig. 11. Relationship between active contact pairs and time. We ana-
lyze the per frame time with respect to the number of active contact pairs.
While a significant increase in active contact pairs typically slows down
simulations, our method shows relatively stable performance across a range
of contact pair quantities in the given example.
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Table 1. Experiment statistics. The table below presents detailed timing statistics for all experiments discussed in the paper. # D gives the total number
of domains in the example. # DOF is the total number of simulation DOFs. # Ele. indicates the total number of elements (triangles for cloth meshes and
tetrahedrons for deformable objects). C|B|R reports the number of corner DOFs, boundary DOFs, and remainder DOFs. h is the time step size, which is set as
1/120 in most cases. The Cull|Nrw. column reports the timing information for collision handling: Cull is for broad-phase collision culling; and Nrw. is for
the narrow phase identifying all the collision constraints. p is the mass density, measured in k—gz for cloth and k—gS for deformable objects. For simulations
containing both (e.g., Fig. 22), the first value corresponds to cloth and the second to the deformable object. Mats. lists material parameters: stretching (in Pa)
and bending stiffness for cloth, or Young’s modulus (in Pa) for deformable objects. ks, k. denotes the weights (wy) for self-collision and collider collision
constraints. ||Ax|| specifies the convergence criterion. # Iter. gives the average per-time-step total number of L-G iterations. L|G|SD|PCG gives the time
consumed by the solver. L and G report timing for the collision-free warm start. SD and PCG give the computation time used for SD solve (i.e., Eq. (24))
and full PCG solve pre-conditioned with the collision-free global solver. Misc. is additional computational costs. All timing measurements presented above
represent the average time for the complete sequence. The rightmost column displays the overall simulation time, encompassing collision detection, collision
handling, local and global steps, and other processes. Min. and Max. indicate the minimum and maximum per-frame times, while Med. and Avg. represent
the median and average per-frame times respectively. All timing measurements are in milliseconds.

Scene #D | # DOF | #Ele. #CIBIR h | CulllNw. | p Mats. Ks, K¢ [|Ax]|| | #Iter. SDLllPCéJG Misc. I\Mllle:llll\::;
ClOmé?géizadillo 32 | 282K | 187K | 3K|6K[117K | s 15[32 0.5 | 2e4|2e—2 | 1e6,2¢6 | 1e—3 11 z:;g 7 iiz :13‘5‘
(Fﬁffs) 96 | 444K | 291K | 12K|24K[393K | £k 40]129 1 | 2e4]2e-2 | 1e6,2¢6 | 1e=3 | 16 6387||2901 17 ‘;6406 ||1528982
M?;;all:)“’t 64 | 324K | 212K | 4.5K|9K|319.5K | £k 45|167 0.5 | led|le=2 | le6,2¢6 | 1e-3 | 14 62;|17683 17 izi ::}1
Fas(';’l‘;“f;"w 73 | LIM | 656K | 18K|36K|966K | 1k 49196 0.3 | 2ed|2e—2 | 1e6,2¢6 | 1e-3 | 15 13597||2f383 21 222 :1 32;
Si“g(lgi:?;:;‘"‘“d 72 | 376K | 234K | 6K|12K[222K | L 31176 0.5 | led|2e—2 | 1e6,2¢6 | 1le—3 9 ;Zlgg 17 gzg :232
(}F?;'}l‘;’g 76 | 390K | 256K | 6K|12K|354K | k5 44|71 1 | 1e4|2e—2 | 1e6,2e6 | 1e—3 11 5297||170i 12 izg ::gg
Multig;?gyfif;‘:)d‘ess 89 | 315K | 206K | 12K|24K[273K | k5 3969 0.5 | le4|5e—3 | le6,2e6 | le—3 14 i?:g‘; 19 iig :gg?
R((;li’gej:z;e 84 | 519K | 343K | 12K|24K[381K | ks 27170 0.3 | 1le4|5e—3 | 1e6,2¢6 | 1le—3 8 ;89”16265 19 ggi :247147;

Ope‘};}i‘;‘f;;‘d"w 64 6M aM | 60K[120K|6M | 7i5 | 711]1,482 | 0.5 | 2ed|2e-2 | le6,2e6 | le=3 | 28 322!1: 323 56 z ggf :2: ig;
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Bar:’;irgif‘;;hip 64 | 402K | 487K | 15K|30K|386K | 7 31093 le2 5e6 le6, 1e6 | 1e—=3 | 10 32:2? 14 zig :gg

solvers. For instance, Wang [2015] used diagonally pre-conditioned
Jacobi to solve the global matrix inexactly. Each Jacobi iteration uses
less than 0.1 ms, even for high-resolution models. A key difference
lies in the fact that our method fully (exactly) solves the global
matrix, while GPU solvers only give an approximated global solution.
As a result, our method needs much fewer L-G iterations for each

time step. The exactness of the global solve is another hidden factor 21 Shoobi ot sive
for our efficiency. 0 5 10 i 20

Relative error

7.2 Multi-domain Local Solve Fig. 12. Multi-domain local solve. Our local projection is different from

Our local solve is also specifically designed for the multicore CPU.
As discussed in Sec. 5, we use a hybrid constraint relaxation scheme,
with GS-based sequential update within the domain and a Jacobi-
like update across domains. We note that local GS relaxation con-
verges the system more effectively compared with the Jacobi method
employed in the vanilla PD framework. To better illustrate this ad-
vantage, we show a side-by-side comparison between these two
different constraint projection schemes in Fig. 12. The simulation is
a standard draping test of a tablecloth with two corners fixed.
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the vanilla PD, which is sequential within a domain and parallelized across
domains. At each domain, we relax constraint in a GS manner alternating
among several pre-computed traversal orders. In this simple but representa-
tive example, our method uses much fewer L-G iterations compared with
the Jacobi-based parallel projection scheme. In this example, the global
matrix is always exactly solved.

We decompose the mesh into 64 domains, as shown in the fig-
ure. As the global step matrix is exactly solved, the total number
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Fig. 13. Comparison with PD-Jacobi (GPU). We plot the convergence
curves of our method and PD-Jacobi [Wang 2015] in a simple simulation,
where the square tablecloth deforms under gravity with two top corners
fixed. We use 32 domains for our method. Our method uses much fewer L-G
iterations in all setups. Due to the GPU parallelization, PD-Jacobi becomes
more efficient when h = 1/240. If the time step size is set more aggressively
to 1/120 or 1/60, our method re-takes the performance advantage.

of L-G iterations is a good indicator reflecting the quality of the
local projection. To this end, we plot the convergence curves using
Jacobi local projection and our method. Our local projection shows
a noticeable advantage compared with vanilla PD, which prioritizes
parallelization.

7.3 Halley-based CCD processing

Our method is compatible with existing collision handling approaches
such as the nonlinear penalty method [Wu et al. 2020], constraint-
based barrier method [Lan et al. 2022], or exponential penalty [Lan

et al. 2024]. For the broad-phase collision detection, we employ

parallel linear BVH [Karras 2012] with AABB as leaf nodes to con-
struct the scene acceleration structure and perform intersection

queries. This structure is updated at each time step. The refitting

and querying typically take less than 15% of the total runtime.

We use different strategies for garment-garment collisions and
garment-collider collisions. Specifically, for garments and external
colliders (e.g., floor, obstacle, or the body of an avatar), we simplify
collision detection to pairs between garment vertices and collider
primitives. For self-collisions, we consider all types of collision
pairs between vertices and primitives after the broad-phase culling.
We generate the collision constraints through projecting the tar-
get positions in the local step as in [Lan et al. 2022]. We set the
weight of collision constraints wy as a big constant, typically two
orders bigger than other constraint weight w; (as reported in Tab. 1).
This makes the steepest descent highly effective for collision-aware
global solving.

Being a co-dimensional model, CCD is always needed for narrow-
phase collision detection for cloth animation. Each CCD for a pair

Fig. 14. Comparison with PD-Coulomb (CPU). Our method is faster
than PD-Coulomb [Ly et al. 2020] by an order. In this experiment, a piece
of cloth drops on an Armadillo and falls on the floor. While PD-Coulomb is
also accelerated by CPU multithreading, the parallelization only applies at
the local projection with OpenMP. Our method can be better accelerated by
more CPU cores at both local and global steps, and it also converges faster
than PD-Coulomb due to our novel projection scheme. In this experiment,
there are 282K DOFs, and our method uses 145 ms to simulate one time
step.

of colliding primitives needs to solve a cubic polynomial f(t) = 0.
While analytic root finding for cubic equations is possible, it is not
preferred because of the numerical stability issue. Instead, numerical
root finding is commonly chosen, such as Newton’s method. We
follow the idea in [Yuksel 2022] that performs the root finding
at intervals. However, we use Halley’s method [Scavo and Thoo
1995] for its better convergence. Halley’s method is slightly more
expensive than Newton’s method for cubic problems. Nonetheless,
this complexity disparity is invisible on the CPU cores (given their
fast clock cycles).

Since f(¢) is a cubic function. Its second derivative is constant.
Halley iteration for finding the root i.e., the TOI (time of impact) of
f(t) is given as:

L wf
20 OF - f(Df" (1)

Our experiment shows that it converges 10% to 15% faster than
Newton-based root finding on average on the CPU.

(25)

7.4  Comparison with Existing GPU/CPU Algorithms

Next, we compare our method with several classic cloth simu-
lation algorithms, including PD-Jacobi [Wang 2015] (GPU), PD-
Coulomb [Ly et al. 2020] (CPU), C-IPC [Li et al. 2021] (CPU), PD-
BFGS [Li et al. 2023] (GPU), PD-IPC [Lan et al. 2022] (GPU), and
PD-EXP [Lan et al. 2024] (GPU). All the methods produce high-
quality results when converged, and the visual differences between
different methods are hardly discernable. Performance-wise, our
method significantly outperforms CPU-based methods (e.g., 10X to
100x faster compared with the multithreaded PD/FEM methods)
and achieves a runtime FPS comparable to many GPU solvers. It
is unlikely for a CPU simulator to outperform all GPU-based algo-
rithms in terms of speed. Nevertheless, we confidently regard our
method as one of the best-performing CPU solvers to date.

Comparison with PD-Jacobi (GPU). PD-Jacobi [Wang 2015] uses
Chebyshev acceleration to improve the convergence of the Jacobi
method for the global solve. It has been a popular choice for high-
performance cloth simulation due to its simplicity and convenient

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.



51:12 « Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu Jiang, Kui Wu, and Yin Yang

Fig. 15. Comparison with PD-BFGS (GPU) & C-IPC (CPU). The character in a tired skirt performs a kicking action. Fast body movements generate
interesting garment dynamics and rich self-collisions. There are 444K DOFs in the scene. All the methods produce high-quality animations. Our method uses
588 ms for solving one time step (h = 1/120), which is 2.6x faster than GPU-based PD-BFGS and 66x faster than CPU-based C-IPC.

Fig. 16. Comparison with PD-IPC (GPU). Two fabric strips are tangled
and pulled in opposite directions to form a tight knot. The left figure illus-
trates the domain partition in the rest configuration. Similar to PD-IPC,
we apply the CCD filtering after each iteration of the contact-aware global
solve. There are 324K DOFs in the scene, and 57K collision constraints. Our
method is comparable with PD-IPC, and runs at 564 ms per frame. The
runtime performance of PD-IPC for this simulation is 544 ms per frame. The
time step size is h = 1/120.

implementation, e.g., one does not even need to assemble the PD
global matrix. PD-Jacobi uses a single Jacobi iteration to approxi-
mate the solution of the global solve. This parallelism-concentrate
scheme works well for conservative time steps. When the time step
is set more aggressively e.g., 1/120 or even 1/60, or the number
of simulation DOFs is further increased, the number of L-G itera-
tions needed to converge one time step goes up substantially. This
comparison is based on a simple experiment of hanging a piece
of tablecloth. We plot the convergence curves of our method and
PD-Jacobi under three different time step sizes, and different mesh
resolutions in Fig. 13. The domain decomposition of the mesh is also
visualized in the figure. It can be clearly seen from this comparison
that our method uses much fewer L-G iterations compared with
PD-Jacobi in all situations. This is due to the combination of the
exact global matrix solve and better-converging local projection.
However, superior parallelization of the GPU makes Jacobi iteration
and per-constraint projection highly efficient. This efficiency can
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Fig. 17. Comparison with PD-EXP (GPU). In this example, we compare
our method with PD-EXP [Lan et al. 2024] to simulate a virtual fashion
show, where the character in a light midi skirt walks to the front and then
turns around. We apply an external wind field to the left to generate more
dynamic garment movements. There are 1.1M DOFs in the simulation. Due
to the subspace pre-conditioning, PD-EXP is faster than our method. It uses
734 ms to simulate one time step (h = 1/120), while our method needs 1.06
seconds on average.

compensate for the increased iteration count when h = 1/240 — we
can see PD-Jacobi converges faster in terms of computation time.
However, if the time step size increases to 1/120 or 1/60, our method
becomes more efficient. When the resolution of the mesh is further
increased, our method is faster than PD-Jacobi even for h = 1/240.

Comparison with PD-Coulomb (CPU). PD-Coulomb [Ly et al. 2020]
is a CPU-based simulation algorithm. Its main contribution is nov-
elly converting the classic Coulomb friction model to the form of
constraint projection within the PD framework. PD-Coulomb uses
OpenMP for parallelization. To make sure the comparison is objec-
tive, we implemented the same frictional constraint as in [Ly et al.
2020]. The snapshots of this experiment are shown in Fig. 14, where
we drape a piece of cloth on an Armadillo. There are 282K DOFs
and 56K collision constraints on average in this experiment. Our
method is 11X faster under the same convergence condition and
time step size.
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Fig. 18. Garments on moving avatars. Our method produces interesting and realistic garment dynamics on moving avatars. We show snapshots of different
combinations of motions and garments. In sub-figure (a), the character in a fitted t-shirt and shorts performs a single handstand. In sub-figure (b), the character
dresses with a tight white nightdress and performs a hip-hop dance on the spot. In sub-figure (c), the character wearing a loose, multi-layered long dress
performs a throwing motion. In sub-figure (d), the character dressed in a robe is swaying and warling in place. There are 376K, 390K, 315K, 519K DOFs in
sub-figures (a), (b), (c), and (d), and the simulation runs at 296 ms, 395 ms, 351 ms, 374 ms per frame, respectively.

Fig. 19. Open the window. We show a high-resolution simulation involving 6M DOFs. Each curtain has 32 domains as shown. They are pulled away from the
middle to reveal the view of a city night. At this resolution, inexact global solve will significantly increase the total number of L-G iterations (e.g., as in [Wang
2015]). Our method converges more effectively and uses 6.6 s to simulate one frame under h = 1/120.

Comparison with PD-BFGS (GPU) & C-IPC (CPU). PD-BFGS is a
GPU cloth simulation method [Li et al. 2023]. It uses a spline-based
subspace to pre-condition the global matrix before the GPU Jacobi
iteration. C-IPC is a CPU-based algorithm [Li et al. 2021] using full
nonlinear FEM and Newton’s method to solve the garment/thin-
shell dynamics. It employs the incremental potential contact (IPC)
as the major modality for collision processing [Li et al. 2020]. C-
IPC is very expensive because of the use of full Newton solve, and
it also needs CCD-based line search filtering after each Newton
iteration to make sure all the triangles are separate. The experiment
results are reported in Fig. 15. In this comparative example, the
virtual character with a tiered skirt performs a kicking action. The

domain decomposition of the garment is also provided in the figure.
There are 444K DOFs in this example. Our method uses 16 L-G
iterations and 588 ms on average to simulate one frame. While can be
effectively accelerated on the GPU, PD-BFGS uses a high-dimension
subspace to pre-condition the Jacobi iteration. Our method is 2.6X
faster than the GPU-based PD-BFGS. C-IPC is not parallelization
friendly, and our method is 66X faster than multicore accelerated
C-IPC.

Comparison with PD-IPC (GPU). PD-IPC [Lan et al. 2022] incor-
porates IPC barrier in the framework of PD by using the IPC barrier
as the weight of a collision constraint. Similarly to C-IPC, PD-IPC
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Fig. 20. Folding. In this scene, four tablecloths fall on the table one by
one with different orientations. When stacking on each other, complex self-
collisions are generated. Our method can robustly handle this simulation.
There are 492K DOFs in the system, and the simulation runs at 557 ms per
frame.

# DOFs: 180K
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Fig. 21. Comparison with Newton method (CPU). We compare the
convergence characteristics of our method against the Newton method
in a simple simulation when a square tablecloth deformed under gravity
with two top corners fixed. For our approach, we employ 32 domains. The
time step size is 1/60. Using gradient magnitude as the error metric, we
analyze the performance based on both iteration counts and runtime (in
milliseconds). The results demonstrate that while the Newton method ex-
hibits significantly faster convergence per iteration, our method requires
less computational time overall, even with a relatively large time step.

guarantees that the resulting simulation is free of interpenetration.
To compare the performance difference between our method and
PD-IPC, we run a simulation involving extensive self-collisions. As
shown in Fig. 16, we pull two strips in opposite directions to create
a tight knot. There are 324K DOFs in the example. Our method
uses 564 ms on average for one time step with 14 L-G iterations. In
this comparison, we choose to use the rank-two aggregated Jacobi
method for PD-IPC. On average, PD-IPC needs 92 L-G iterations.
Similarly to the previous comparison with PD-Jacobi (Fig. 13), our
method takes a longer computation time to complete one L-G itera-
tion with fewer iterations. Therefore, our method has a comparable
performance compared with PD-IPC (544 ms per frame).

Comparison with PD-EXP (GPU). PD-EXP [Lan et al. 2024] uses an
exponential barrier to process collisions so that the barrier does not
depend on the actual distance between primitives. More importantly,
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PD-EXP uses a modal subspace preconditioner for the global matrix
solve, which eliminates most low-frequency residual errors. As a
result, Jacobi or aggregated-Jacobi methods become highly effective.
PD-EXP is the fastest simulation method we tested, and it is faster
than our method. In this comparison, we simulate a fashion runway
scene with a walking character using both our method and PD-EXP
as shown in Fig. 17. There are over 1.1M DOFs in this scene. With
h =1/120, PD-EXP uses 734 ms for one time step while our method
needs 1.06 seconds.

Comparison with Newton method. We also compare our method
with Newton method. In this experiment, a 180K DOFs square table-
cloth deforms under gravity with two corners fixed. We employ 32
domains for our method. Fig. 21 demonstrates that while the New-
ton method exhibits significantly fast convergence per iteration,
our method requires less computational time overall, even with a
relatively large time step (1/60).

7.5 More Results

Figs. 1 and 18 show a set of simulation results using our method.
The virtual avatar performs four different motions, including hand
standing, tossing, dancing, and walking. We simulate the dynam-
ics of diverse types of garments: shorts, t-shirt, fit dress, robe, and
multi-tiered skirt. Our method produces high-quality results in all
examples. The simulated garment dynamics is interesting and realis-
tic. The domain decomposition of each garment model is visualized
in Fig. 1. Please refer to Tab. 1 for detailed timing information and
simulation parameters.

Fig. 19 reports a high-resolution simulation to show the scala-
bility of our method. This experiment simulates the dynamics of
pulling a pair of curtains from the middle to sides, capturing their
trajectories and the formation of wrinkles. There are 6M DOFs in
the simulation. Each curtain has 32 domains making 64 domains in
total, as visualized in the figure. It takes 6.6 seconds to simulate one
time step (h = 1/120).

Our method is able to handle simulations with intensive self-
collision. As shown in Fig. 20, we vertically drop four tablecloths on
a desk. This simple setup is quite challenging for a numerical solver
as the falling cloths involve a large number of self-collisions under
high-velocity movement. We follow the strategy as in C-IPC [Li
et al. 2021] to apply a CCD-based line search filtering by the end of
each time step. There are 492K DOFs. Our method uses 478 ms to
simulate one frame.

7.6 Deformable Objects

While our primary focus is high-resolution cloth simulation on the
CPU, our method can also be used to simulate volumetric deformable
models. Because of the reliance on PD framework, we choose the
ARAP material that can be approximated with quadratic constraints.
To this end, we report two more experiments. In Fig. 22, we dress
the Armadillo in a skirt and drop two of such dressed Armadillos
into a container. During the falling, the Armadillos interact with
several cylinders as well as body-body, body-garment, and garment-
garment collisions. Our method is able to seamlessly handle both
volumetric models and garment meshes. There are 32 domains on
the Armadillo and 16 on the skirt. Each time step takes 204 ms.
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Fig. 23 shows the other deformable simulation result of a falling
barbarian ship. The ship has a complex geometry, which facilitates
our domain decomposition because it allows small-size domain
interfaces. There are 487K elements on the ship, and our method
simulates one frame using 379 ms.

8 Conclusion & Limitation

In this paper, we propose a cloth simulation framework that is spe-
cially tailored for the CPU platform. We algorithmically integrate
two computational techniques, namely domain decomposition and
projective dynamics to achieve this goal. The core of our method is
to combine a primal-dual formulation of the global PD solve so that
the forward/backward substitution can be parallelized at domains.
This fast global solver, when coupled with a condensed steepest
descent, can effectively handle varying global systems caused by
garment collisions. The local step computation is also changed from
a Jacobi-like relaxation to a hybrid scheme, where pre-computed
GS relaxation is sequentially carried out at each domain, and per-
domain computations are processed concurrently. Together with
a better CCD solver, our method delivers a similar runtime perfor-
mance as the state-of-the-art GPU-based algorithms.

However, modern processors
often feature heterogeneous cores,
such as performance cores and
efficient cores [Jarus et al. 2013].
To fully leverage these heteroge-
neous architectures, the domain
decomposition strategy must be
adapted accordingly. Addition-
ally, it is of great interest to de-
ploy the proposed multi-domain
solver on the GPU. A GPU
thread can only efficiently pro-

Grr

Fig. 24. Recursive primal-dual
solve. When domains are densely
decomposed, solving the dual vari-
able A at duplicate DOFs may be a
: large-scale problem as well. However,
cess small-size K}JQR, necessitat- they are decoupled by the corner
ing a densely decomposed do- DOFs (small solid dots), and Ggrr
main structure. This results in a is a sparse block-wise matrix. Two
high-dimensional dual problem sets of boundary DOFs (i.e., black
for solving A and a large-scale circles) are coupled if and only if
Grr as described in Eq. (9). For- they are shared by a .d.omal.n‘ The
tunatelv. our primal-dual elobal denser the decomposition is, the
Y p g
. sparser boundary DOFs are coupled.

solve algorithm can be recur- Therefore. we can apbl th

. . , pply another
sively applied to address Ggr, of- omain decomposition to the graph
fering a potential solution to this representing the connectivity of
challenge (Fig. 24). In the future, poundary DOFs (as shown on the
we will also explore the possibil- right) and solve Ggg in parallel.
ity of applying our algorithm on
mobile devices like smartphones and tablets, where the hardware
resource is constrained.

Our method is not without limitations. First, it does not explic-
itly address collision handling. The CPU faces inherent challenges
in managing a large number of collision pairs, making it less effi-
cient than the GPU for collision processing. As reported in Tab. 1,
collision detection represents a significant portion of the total com-
putation time. Our method incorporates with PD framework, this

local-global alternation scheme is only applicable to certain ideal-
ized material models, and its extension to more complex, real-world
materials is less straightforward. We recommend [Liu et al. 2017] for
more details. Furthermore, generalizing our method to other non-
linear solvers such as ADMM presents challenges. Unlike Projective
Dynamics, which utilizes a quadratic energy formulation with a con-
stant system matrix, ADMM accommodates nonlinear constitutive
models and dynamic constraints. This nonlinearity fundamentally
complicates the prefactorization strategy, as system matrices change
between iterative steps. The problem of efficiently updating inter-
mediate matrices in interative-time or even in real-time remains
an open research question, with no straightforward extension of
our current approach being immediately apparent. We will keep
explore adapting the proposed multi-domain PD solver to handle a
broader range of material behaviors in a more general optimization
framework. Currently, our approach assumes that all CPU cores
have similar computational capabilities and subdivides the mesh
into domains of roughly equal sizes.
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