
High-performance CPU Cloth Simulation Using Domain-decomposed
Projective Dynamics

ZIXUAN LU∗, University of Utah, USA

ZIHENG LIU∗†, University of Utah, USA

LEI LAN, University of Utah, USA

HUAMIN WANG, Style3D Research, China

YUKO ISHIWAKA, SoftBank, Japan
CHENFANFU JIANG, UCLA, USA
KUI WU, LIGHTSPEED, USA

YIN YANG, University of Utah, USA

Fig. 1. Efficient multi-domain cloth simulation on CPU. This paper introduces a CPU-based high-performance cloth simulation framework based

on domain decomposition. The core of our algorithm is a parallel scheme that fits the hardware architecture of the multicore CPU. Unlike existing GPU

algorithms, CPU parallelization should focus more on convergence as the total number of available cores is limited. We show how this high-level idea is

integrated with the projective dynamics pipeline at both local and global stages. Our method is able to deliver good runtime performance that is comparable

to the state-of-the-art GPU counterparts and high-quality animations. The teaser figure highlights some results of our algorithm, featuring a virtual character

dressed in various garments performing a diverse range of actions, including handstands, tossing, dancing, and walking. Those garment models are of high

resolution, and they are divided into domains as visualized in the figure. When the time step size is set ℎ = 1/120, our method only uses 300 - 400 ms to

simulate one frame, which is more than one order faster than existing CPU simulators.

Whenever the concept of high-performance cloth simulation is brought up,

GPU acceleration is almost always the first that comes to mind. Leveraging

immense parallelization, GPU algorithms have demonstrated significant

success recently, whereas CPU methods are somewhat overlooked. Indeed,

∗joint first authors
†Part of this work was done when Ziheng Liu was an intern at LIGHTSPEED.

Authors’ Contact Information: Zixuan Lu, University of Utah, USA, birdpeople1984@
gmail.com; Ziheng Liu, University of Utah, USA, ziheng.liu@utah.edu; Lei Lan, Uni-
versity of Utah, USA, lanlei.virhum@gmail.com; Huamin Wang, Style3D Research,
China, wanghmin@gmail.com; Yuko Ishiwaka, SoftBank, Japan, yuko.ishiwaka@g.
softbank.co.jp; Chenfanfu Jiang, UCLA, USA, chenfanfu.jiang@gmail.com; Kui Wu,
LIGHTSPEED, USA, walker.kui.wu@gmail.com; Yin Yang, University of Utah, USA,
yangzzzy@gmail.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).
ACM 1557-7368/2025/8-ART51
https://doi.org/10.1145/3731182

the need for an efficient CPU simulator is evident and pressing. In many sce-

narios, high-end GPUs may be unavailable or are already allocated to other

tasks, such as rendering and shading. A high-performance CPU alternative

can greatly boost the overall system capability and user experience. Inspired

by this demand, this paper proposes a CPU algorithm for high-resolution

cloth simulation. By partitioning the garment model into multiple (but not

massive) sub-meshes or domains, we assign per-domain computations to

individual CPU processors. Borrowing the idea of projective dynamics that

breaks the computation into global and local steps, our key contribution is

a new parallelization paradigm at domains for both global and local steps

so that domain-level calculations are sequential and lightweight. The CPU

has much fewer processing units than a GPU. Our algorithm mitigates this

disadvantage by wisely balancing the scale of the parallelization and con-

vergence. We validate our method in a wide range of simulation problems

involving high-resolution garment models. Performance-wise, our method is

at least one order faster than existing CPU methods, and it delivers a similar

performance compared with the state-of-the-art GPU algorithms in many

examples, but without using a GPU.

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

51:2 • Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu Jiang, Kui Wu, and Yin Yang

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Cloth simulation, Parallel computation,

GPU algorithm, CPU algorithm

ACM Reference Format:

Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu

Jiang, Kui Wu, and Yin Yang. 2025. High-performance CPU Cloth Simulation

Using Domain-decomposed Projective Dynamics. ACM Trans. Graph. 44, 4,

Article 51 (August 2025), 17 pages. https://doi.org/10.1145/3731182

1 Introduction

Cloth simulation stands as a cornerstone of realism for digital con-

tent generation [House and Breen 2000], making garments flow

with smoothness, dresses cascade with elegance, and fabrics fold

with precision. It remains a challenging problem for high-resolution

garment models. This is because two-way coupled unknown de-

grees of freedom (DOFs) lead to a large-scale nonlinear system,

and the computation complexity grows super-polynomially w.r.t.

the DOF count. GPGPU, due to its excellent throughput and paral-

lelizability, has become the mainstream solution for performance

improvement [Bolz et al. 2003; Zeller 2005]. By solving unknown

DOFs in parallel, recent GPU methods deliver remarkable results

even for complex garment models [Lan et al. 2024; Li et al. 2023;

Wu et al. 2022]. However, reliance on GPUs can introduce practi-

cal obstacles. GPUs are also the key hardware for other important

computing tasks e.g., rendering and shading, for which they were

originally designed. Moreover, many commodity computers may

not have high-end GPUs capable of enabling meaningful perfor-

mance improvements. On the other hand, efficient simulation using

the CPU is a relatively unexplored problem. In contrast to GPUs, a

CPU core excels in faster clock cycles, abundant high-speed cache,

and more well-rounded ISA (instruction set architecture). Multicore

CPUs also have a substantial potential for improving simulation

performance. Nevertheless, one should never “copy-and-paste” an

existing GPU algorithm for a CPU platform, whose parallelism ar-

chitecture is better suited for handling fewer but more sophisticated

computing tasks.

This paper proposes a cloth simulation framework that can be

greatly accelerated on a multicore CPU. We opt for projective dy-

namics (PD) [Bouaziz et al. 2014] as the backbone for our pipeline.

Being a variation of the quasi-Newton method [Liu et al. 2017],

PD offers decent convergence and good potential for paralleliza-

tion. In the meantime, we observe that the design/manufacture of

clothing normally starts with patternmaking, after which various

parts, such as the sleeves, front/back panels, hems etc., are sewn

together. Such structure-wise composition of a garment model nat-

urally matches the domain decomposition methods (DDMs) [Smith

1997]. Our method synergizes with those two ingredients algorith-

mically with an efficient CPU-based parallelization.

Concretely, during the global solve, we keep a small set of key

DOFs two-way coupled while decoupling less essential DOFs at do-

mains. This allows the domain-level parallelization of forward/back

substitution. Our domain-decomposed PD global solver exactly

solves the global matrix, and it is one order faster than the off-the-

shelf libraries likeMKL [Wang et al. 2014] or Eigen [Guennebaud

et al. 2010] using a multicore CPU. When the constraint set varies,

e.g., due to collisions and self-collisions, we devise a compact dual

formulation for relaxing colliding DOFs and exploit the domain-

parallelized global solver as a strong pre-conditioner. The local stage

of the vanilla PD is GPU-friendly as each constraint is processed

independently. Such massive parallelization slows the overall con-

vergence and becomes less effective on the CPU. Instead, we switch

to a Gauss-Seidel (GS) projection strategy, making this operation

sequential within the domain but parallelizable across domains. Our

framework also includes a new CCD processing algorithm using

Halley’s method, which converges 10 − 15% faster than Newton’s

method for solving cubic polynomials.

Previous work, such as PARFES [Fialko 2019], introduced parallel

forward/backward substitution algorithms for linear FEM that could

potentially accelerate PD global steps. However, our global step solv-

ing approach differs fundamentally from PARFES. PARFES performs

block LSL
� decomposition of sparse symmetric matrices and iden-

tifies parallelizable independent tasks through an elimination tree

converted to a supernodal structure. Our method leverages geomet-

ric and topological properties inherent to the problem. Specifically,

we permute degrees of freedom (DOFs) based on their types to cre-

ate predictable sparse patterns in the factorization. This enables

parallel forward/backward substitution for redundant DOFs with-

out requiring the construction and analysis of an elimination tree,

resulting in a more direct parallelization approach tailored to our

specific problem structure.

We have tested our method in a wide range of complex garment

simulation scenes, and our CPU-based simulation produces high-

quality results with a strong runtime performance that matches the

state-of-the-art GPU algorithms. A concrete example is shown in

the teaser (Fig. 1), where the dressed virtual avatar performs several

interesting motions with different garments. Our CPU simulator

only needs a few hundred milliseconds to simulate each frame (with

the time step size 1/120). This is more than an order faster than

vanilla PD-based cloth simulation using multi-threading.

2 Related Work

Being one of the core problems of computer graphics and animation,

there exists a vast number of excellent contributions on the topic of

cloth simulation. This section briefly reviews a few representative

studies that are most relevant to our work.

Cloth simulation. Given a piece of cloth model, a common practice

is to discretize its geometry with a mass-spring network [Choi and

Ko 2002; Liu et al. 2013; Provot et al. 1995] or a trianglemesh [Etzmuß

et al. 2003; Volino et al. 2009]. Early techniques choose to use explicit

integration with small time steps [Provot et al. 1995]. The stability is

improved by switching to the implicit integration [Baraff andWitkin

1998], at the cost of assembling and solving the resulting linearized

systems. Kim [2020] later explained the fundamental connection

between the Baraff-Witkin formulation [Baraff and Witkin 1998]

and the anisotropic finite element methods (FEM) [Bathe 2006].

Cloth dynamics concerns in-plane stretching and out-off-plane

bending. A wide range of material models have been proven ef-

fective for capturing the in-plane resistance, including Kirchhoff-

Love [Chen et al. 2018], corotational [Etzmuß et al. 2003], orthotropic

formulations [Volino et al. 2009] or even data-drivenmaterials [Wang

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

High-performance CPU Cloth Simulation Using Domain-decomposed Projective Dynamics • 51:3

et al. 2011]. Handling inextensible fabrics necessitates additional

nonlinear penalties, such as Neo-Hookean [Li et al. 2021; Lu et al.

2024] or spline-based models [Xu et al. 2015]. Strain-limiting tech-

niques [Thomaszewski et al. 2009; Wang et al. 2010] provide an

easy fix for strong length and area preservation. Bending behavior

is typically formulated on hinge elements through dihedral angles

between adjacent triangles [Bridson et al. 2005; Grinspun et al. 2003;

Wang et al. 2023]. Leveraging in-plane inextensibility, Bergou et al.

[2006] developed an efficient quadratic bending model based on

mesh’s mean curvature.

GPU-based simulation. The high computational cost of solving

nonlinear systems arising from implicit integration has long been

a major challenge in cloth simulation. A widely adopted strategy

is to re-formulate the force equilibrium into its variational coun-

terpart [Gast et al. 2015; Kharevych et al. 2006]. This formulation

brings an optimization perspective, enabled a more efficient implicit

integration through sophisticated optimization techniques, espe-

cially when handling nonlinear constraints. Apart from force-based

method and its variational energy form, constraint-based methods

formulate the equilibrium configuration with a set of predefined

constraints. Within this framework, constraints can be addressed

locally and inexactly through techniques like constraint projec-

tion [Goldenthal et al. 2007], offering computational advantages and

flexibility in handling the simulation. For instance, position-based

dynamics (PBD) [Macklin et al. 2016; Müller et al. 2007] projects

the position of a set of points directly, respected to the constraint

groups. Projective dynamics or PD [Bouaziz et al. 2014] presents

a global and local alternation scheme to approximately solve the

nonlinear quadratic system. PD quickly becomes a popular simula-

tion modality because its local projections are trivially parallelizable.

Instead of solving the global system exactly e.g., using Cholesky fac-

torization, iterative linear solvers can be used, such as Jacobi [Lan

et al. 2024, 2022; Wang 2015], GS [Fratarcangeli et al. 2016] and

preconditioned conjugate gradient (PCG) [Tang et al. 2013]. For

more general and nonlinear models, sophisticated GPU algorithms

can both accelerate the per-stencil computation and global system

solving. In these methods, per-stencil computation is lightweight

and independent and the linear solving can be accelerated through

traditional GPU operators such as SpMV. However, such a massive

parallelization is less suitble for CPU platform, given its distinct

hardware architecture where each computation unit is equipped

with sophisticated control logic and high computational capability,

instead of sheer core quantities.

Multigrid & domain decomposition method. The multigrid method

boosts simulation efficiency when a large number of DOFs are

present [Bornemann and Deuflhard 1996; Trottenberg et al. 2001]. It

has been extensively employed to solve Poisson systems in fluid sim-

ulation [McAdams et al. 2010; Molemaker et al. 2008]. While both

incorporate meshes at different resolutions (geometrical meshes as

input or algebraically logical meshes) to hierarchically eliminate os-

cillations or smooth errors, the geometric multigrid (GMG) [Georgii

and Westermann 2006] utilizes spatial discretization (e.g., meshes or

uniform grids) of different resolutionsas input to construct the re-

striction and prolongation operator. Xian et al. [2019] used a sparse

sampling scheme to sparsify the coarse level matrices that effectively

addresses the matrix density problem in Galerkin multigrid meth-

ods. The algebraic multigrid (AMG), on the other hand, approaches

the construction by generating a subspace of the low-frequency

dynamics regardless of real hierarchical geometry inputs, which

shares a similar nature of model reduction [O’Brien et al. 2003;

Pentland and Williams 1989]. For example, Li et al. [2023] used a

B-spline subspace, and Tamstorf et al. [2015] built the subspace by

QR decomposition on near-kernel components. Nonlinear multigrid

is also an effective method e.g., as in [Wang et al. 2018], which up-

dates the residue and system matrix periodically to incorporate the

nonlinearity. Zhang et al. [2022] developed a progressive simulation

method, which calculates high-resolution cloth deformation given

input coarse poses. This method was later generalized to dynamic

shell and cloth simulations [Zhang et al. 2024].

The domain decomposition method or DDM is another closely re-

lated method [Toselli andWidlund 2006]. Similar to multigrid, DDM

aims to handle very large-scale simulation problems for HPC [Ya-

mazaki et al. 2014]. In graphics, DDM is often used with reduced-

order models to enrich local dynamics. Barbič and Zhao [2011]

designed a substructuring algorithm assuming the interfaces among

domains are small and nearly rigid. It is particularly effective for

plant simulation [Zhao and Barbič 2013]. Yang et al. [2013] com-

bined modal warping [Choi and Ko 2005] and component mode

synthesis (CMS) [MacNeal 1971] to build local subspaces from the

interface deformation. Kim and James [2011] coupled domains with

springs to avoid inter-domain locking. Wu et al. [2015] also utilized

a spring-based domain coupling with Cubature sampling [An et al.

2008]. Recently, Li et al. [2019] developed a domain decomposi-

tion method that achieves subdomain coupling through quadratic

penalty potentials at interfaces, eliminating the requirement for

dual variables in formulation. Peiret et al. [2019] introduces a novel

Schur complement-based substructuring approach for efficiently

simulating stiff multibody systems with contact. A key ingredient

in DDM is the coupling mechanism among domains. Classic DDM

is designed for large-scale FEM, where direct solvers should not be

used. When decomposing the mesh into domains, interface DOFs

are duplicated, leading to finite element tearing and interconnecting

(FETI) method [Farhat and Roux 1991]. Many variations have been

proposed, aiming to improve the convergence of the linear system

e.g., see [Farhat et al. 2000]. FETI-DP [Farhat et al. 2001] is a PCG

based DDM, which solves a coarse problem as the pre-conditioner

of multi-domain PCG iterations.

We argue that DDM naturally fits the multicore CPU. As a co-

dimensional problem, cloth domain partition tends to yield fewer

boundary DOFs, which eases the coupling issue. Garments are often

designed and fabricated via patches, meaning they have been de-

composed into domains already. On the downside, cloth dynamics

is highly nonlinear, and existing DDMs are not applicable directly.

In this paper, we show how to integrate PD with DDM to enable

highly efficient cloth simulation on the CPU.

3 Vanilla Projective Dynamics

Given a time integration scheme such as implicit Euler, PD aims to

solve a variational optimization for each time step:

argmin
𝒙

𝐸 = 𝐼 (𝒙, �𝒙) + Ψ(𝒙), 𝐼 =
1

2ℎ2
‖𝑴

1
2 (𝒙 − 𝒛)‖2 . (1)

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

51:4 • Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu Jiang, Kui Wu, and Yin Yang

Here, 𝒙 is the unknown variable we need to compute for the next

time step i.e., the position of all the cloth vertices. 𝒛 = 𝒙∗ + ℎ �𝒙∗ +

ℎ2𝑴−1𝒇𝑒𝑥𝑡 is a known vector depending on the previous position 𝒙∗,
velocity �𝒙∗, and an external force 𝒇𝑒𝑥𝑡 . 𝑴 is the mass matrix, and ℎ
is the time step size. The objective function 𝐸 consists of the inertia

potential (𝐼) penalizing accelerated movements, and the elasticity

potential (Ψ) characterizing the deformation of the cloth.

PD splits the optimization of Eq. (1) into two steps, namely the

local step and the global step. For the 𝑖-th constraint 𝐶𝑖 , the local

step is in the form of:

argmin
𝒚𝑖

𝑤𝑖

2
‖𝑨𝑖𝑺𝑖𝒙 − 𝑩𝑖𝒚𝑖 ‖

2, s.t.𝐶𝑖 (𝒚𝑖) = 0. (2)

Here, 𝑺𝑖 is a selection matrix picking DOFs pertaining to 𝐶𝑖 from 𝒙
i.e., 𝒙𝑖 = 𝑺𝑖𝒙 . 𝑨𝑖 and 𝑩𝑖 map the positional DOFs of 𝒙𝑖 and 𝒚𝑖 to the

specific coordinate that the constraint 𝐶𝑖 measures. 𝒚𝑖 refers to the

so-called target position of 𝐶𝑖 — the position closest to the current

value of 𝒙𝑖 that keeps 𝐶𝑖 satisfied. Intuitively, the local step aims to

lower Ψ in a Jacobi-like manner. The target position is essentially

the local optimum at 𝐶𝑖 for minimizing Ψ.
The global step is a standard linear solve in the form of 𝑲𝒙 = 𝒃 :(

𝑴

ℎ2
+
∑
𝑖

𝑤𝑖𝑺
�
𝑖 𝑨

�
𝑖 𝑨𝑖𝑺𝑖

)
︸��������������������������︷︷��������������������������︸

𝑲

𝒙 =
𝑴

ℎ2
𝒛 +

∑
𝑖

𝑤𝑖𝑺
�
𝑖 𝑨

�
𝑖 𝑩𝑖𝒚𝑖︸������������������������︷︷������������������������︸

𝒃

. (3)

Eq. (3) relaxes the inertia potential 𝐼 while averaging duplicated

DOFs 𝒚𝑖 to generate a global solution of 𝒙 since a DOF could have

multiple replicates if it is involved in multiple constraints. PD takes

several alternations between the local step and the global step, and

we refer to each full cycle of local and global steps a L-G iteration.

4 Domain-decomposed Global Solve

PD is often considered a fast simulation algorithm because 1) the lo-

cal step is parallelizable, and 2) if the constraint set does not change,

the global matrix becomes constant and can be pre-factorized. How-

ever, these advantages are significantly diminished on a CPU plat-

form, and we need a re-designed scheme, which deploys the paral-

lelization at the domain level.

We first set aside collision constraints and assume the global ma-

trix 𝑲 is constant. This assumption allows us to pre-factorize 𝑲 e.g.,

using Cholesky decomposition as 𝑲 = 𝑳𝑳�, and Eq. (3) can then be

solved with one forward substitution and one backward substitution

of 𝑳. Substitution is costly with the complexity of 𝑂 (𝑁 2), where 𝑁
is the size of the global matrix. More importantly, forward/backward

substitution is inherently sequential, and multiple CPU cores hardly

help. Therefore, even with 𝑲 being constant, global solve remains

the bottleneck of the pipeline. By decomposing Eq. (3) into multiple

sub-systems or domains, we show that it is possible to parallelize the

forward/backward substitution in a primal-dual manner. This par-

allel global solve lays the foundation of our CPU-based simulation

method.

4.1 DOF Classification

We start with a subdivision of an input cloth mesh. Each sub-mesh

forms a domain, which consists of a set of edge-connected triangles,

as shown in Fig. 2. For each domain, we can assemble the counterpart

of Eq. (3) such that: 𝑲 𝑗𝒙 𝑗 = 𝒃 𝑗 . The superscript 𝑗 suggests the
domain index.

Fig. 2. DOF types. We cate-

gorize vertices as internal ver-

tices () and boundary ver-

tices (+). The latter is fur-

ther grouped into corner ver-

tex () and duplicate vertices

(). The superset of internal

vertices and duplicate vertices

are collectively named as re-

mainder vertices (+).

The decomposition naturally classi-

fies domain vertices into internal ver-

tices and boundary vertices. As the name

suggests, an internal vertex is exclu-

sively owned by a single domain, while

a boundary vertex is shared among ad-

jacent domains. Subscripts 𝐼 and 𝐵 are

used to denote the corresponding ver-

tex category i.e., 𝒙 𝑗
𝐼 and 𝒙 𝑗

𝐵 are DOF

values of internal and boundary ver-

tices. Let 𝑁𝐵 be the total number of

boundary DOFs of the whole mesh and

𝑁 𝑗
𝐵 be the number of boundary DOFs

of the 𝑗-th domain. It should be noted

that 𝑁𝐵 <
∑

𝑗 𝑁
𝑗
𝐵 because boundary

vertices are overcounted at domains.

Among all the boundary DOFs, we

designate a sub-group of 𝑁𝐶 DOFs as

corner DOFs. By default, corner DOFs

are those shared by more than two domains i.e., they are at corners.

The usermay alsomanually includemore boundary DOFs as corners.

The other boundary DOFs are named as duplicate DOFs — they are

duplicated by two neighbor domains. In other words, 𝑁 𝑗
𝐵 = 𝑁 𝑗

𝐷 +𝑁 𝑗
𝐶 ,

where 𝑁 𝑗
𝐷 and 𝑁 𝑗

𝐶 stand for the numbers of duplicate and corner

DOFs of domain 𝑗 . All of the 𝑁 𝑗
𝑅 non-corner DOFs of the domain

are called remainder DOFs. It is easy to verify that 𝑁 𝑗 = 𝑁 𝑗
𝐼 + 𝑁 𝑗

𝐵 =

𝑁 𝑗
𝑅 + 𝑁 𝑗

𝐶 . We then re-write 𝑲 𝑗𝒙 𝑗 = 𝒃 𝑗 block-wisely as:[
𝑲 𝑗
𝑅𝑅 𝑲 𝑗

𝑅𝐶

𝑲 𝑗�

𝑅𝐶 𝑲 𝑗
𝐶𝐶

] [
𝒙 𝑗
𝑅

𝒙 𝑗
𝐶

]
=

[
𝒃 𝑗
𝑅

𝒃 𝑗
𝐶

]
, (4)

with subscripts 𝑅 and𝐶 denoting the corresponding vertex category.

4.2 Primal-dual Formulation

The interface compatibility constraints require that boundary DOFs

have the same values at different domains. We use different strate-

gies to enforce this constraint for corner vertices and duplicate

vertices. Specifically, we impose a set of equality constraints for the

duplicate vertices such that:∑
𝑗

±𝑺 𝑗𝐷𝒙
𝑗
𝑅 = 0, (5)

where 𝑺 𝑗𝐷 ∈ R
(𝑁𝐵−𝑁𝐶)×𝑁

𝑗
𝑅 is the selection matrix, which picks out

the domain’s duplicate DOFs 𝒙 𝑗
𝐷 , and re-indexes it globally for all

the 𝑁𝐵 − 𝑁𝐶 non-corner boundary DOFs. On the other hand, the

interface constraint is implicitly enforced at corner DOFs using the

minimal coordinate 𝒙𝐶 . That said, 𝒙𝐶 contains all the 𝑁𝐶 corner

DOFs of the mesh without duplication, and we use another selection

matrix 𝑺 𝑗𝐶 ∈ R
𝑁

𝑗
𝐶×𝑁𝐶 to map between 𝒙 𝑗

𝐶 and 𝒙𝐶 such that 𝒙 𝑗
𝐶 =

𝑺 𝑗𝐶𝒙𝐶 .
Next, we expand the first row of Eq. (4) at the domain’s remainder

DOFs and maintain the interface compatibility constraint by the

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

High-performance CPU Cloth Simulation Using Domain-decomposed Projective Dynamics • 51:5

dual variable 𝝀 at duplicate DOFs. The residual at corner DOFs is

summed over all the domains and solved collectively at 𝒙𝐶 . This
leads to:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑲 𝑗
𝑅𝑅𝒙

𝑗
𝑅 + 𝑲 𝑗

𝑅𝐶𝑺
𝑗
𝐶𝒙𝐶 = 𝒃 𝑗

𝑅 − 𝑺 𝑗
�

𝐷 𝝀,∑
𝑗

𝑺 𝑗
�

𝐶 𝑲 𝑗
𝑅𝐶𝒙

𝑗
𝑅 +

∑
𝑗

𝑺 𝑗
�

𝐶 𝑲 𝑗
𝐶𝐶𝑺

𝑗
𝐶𝒙𝐶 =

∑
𝑗

𝑩 𝑗
𝐶𝒃

𝑗
𝐶 = 𝒃𝐶 .

(6)

Here, 𝝀 ∈ R
𝑁𝐵−𝑁𝐶 is the globally-indexed constraint force, i.e., the

Lagrange multiplier corresponding to the interface constraint of

Eq. (5).

From the first line of Eq. (6) we have:

𝒙 𝑗
𝑅 = 𝑲 𝑗−1

𝑅𝑅

(
𝒃 𝑗
𝑅 − 𝑺 𝑗

�

𝐷 𝝀 − 𝑲 𝑗
𝑅𝐶𝑺

𝑗
𝐶𝒙𝐶

)
, (7)

which implies 𝒙 𝑗
𝑅 can now be calculated in parallel at domains

as long as we can compute the dual variable 𝝀. To this end, we

substitute Eq. (7) back to Eq. (5) to build the primal-dual version of

the global system:[
𝑮𝑅𝑅 𝑮𝑅𝐶

𝑮�
𝑅𝐶 −𝑮𝐶𝐶

] [
𝝀
𝒙𝐶

]
=

[
𝒃∗𝑅
−𝒃∗𝐶

]
, (8)

where

𝑮𝑅𝑅 =
∑
𝑗

𝑺 𝑗𝐷𝑲
𝑗−1

𝑅𝑅 𝑺 𝑗
�

𝐷 ∈ R
(𝑁𝐵−𝑁𝐶)×(𝑁𝐵−𝑁𝐶) ,

𝑮𝑅𝐶 =
∑
𝑗

𝑺 𝑗𝐷𝑲
𝑗−1

𝑅𝑅 𝑲 𝑗
𝑅𝐶𝑺

𝑗
𝐶 ∈ R

(𝑁𝐵−𝑁𝐶)×𝑁𝐶 ,

𝑮𝐶𝐶 =
∑
𝑗

𝑺 𝑗
�

𝐶 𝑲 𝑗
𝐶𝐶𝑺

𝑗
𝐶 −

∑
𝑗

𝑺 𝑗
�

𝐶 𝑲 𝑗�

𝑅𝐶𝑲
𝑗−1

𝑅𝑅 𝑲 𝑗
𝑅𝐶𝑺

𝑗
𝐶 ∈ R

𝑁𝐶×𝑁𝐶 ,

𝒃∗𝑅 =
∑
𝑗

𝑺 𝑗𝐷𝑲
𝑗−1

𝑅𝑅 𝒃 𝑗
𝑅 ∈ R

𝑁𝐵−𝑁𝐶 ,

𝒃∗𝐶 = 𝒃𝐶 −
∑
𝑗

𝑺 𝑗
�

𝐶 𝑲 𝑗�

𝑅𝐶𝑲
𝑗−1

𝑅𝑅 𝒃 𝑗
𝑅 ∈ R

𝑁𝐶 .

Expanding the first row of Eq. (8) allows us to solve 𝝀 via:

𝝀 = 𝑮−1
𝑅𝑅

(
𝒃∗𝑅 − 𝑮𝑅𝐶𝒙𝐶

)
. (9)

The r.h.s. of Eq. (9) needs the information of 𝒙𝐶 , which can be solved

by substituting Eq. (9) back into the second line of Eq. (8):

𝑮∗
𝐶𝐶𝒙𝐶 = 𝒃∗𝐶 − 𝑮�

𝑅𝐶𝑮
−1
𝑅𝑅𝒃

∗
𝑅, for𝑮

∗
𝐶𝐶 = 𝑮𝐶𝐶 − 𝑮�

𝑅𝐶𝑮𝑅𝑅𝑮𝑅𝐶 . (10)

After obtaining the corner DOFs 𝒙𝐶 , and the dual variable 𝝀, the
remainder DOFs at each domain can then be solved in parallel.

The computational procedure of our domain decomposed global

solve is outlined in Fig. 3, which includes three major steps of com-

puting corner DOFs 𝒙𝐶 , dual variables 𝝀, and the remainder DOFs at

each domain 𝒙 𝑗
𝑅 respectively. As 𝑲 is assumed constant at this point,

all the matrices can be pre-assembled and pre-factorized (as colored

in red in the figure). Instead of performing global forward/backward

substitution of 𝑲−1, our formulation only needs forward/backward

substitutions at domains’ remainder DOFs i.e., 𝑲 𝑗−1

𝑅𝑅 , which are pro-

cessed in parallel. In addition, we need to solve 𝑮∗
𝐶𝐶 and 𝑮𝑅𝑅 for

corner DOFs and the multiplier. They correspond to two linear sys-

tems of 𝑁𝐶 × 𝑁𝐶 and (𝑁𝐵 − 𝑁𝐶) × (𝑁𝐵 − 𝑁𝐶). Fortunately, it is

reasonable to assume that 𝑁𝐶 is a small quantity, and solving 𝒙𝐶
using pre-factorized 𝑮∗

𝐶𝐶 is efficient. Suppose there are 𝐷 domains

y𝑗
𝑅 ← K 𝑗−1

𝑅𝑅 b
𝑗
𝑅 b∗𝑅 ← ∑

𝑗
S𝑗
𝐷y

𝑗
𝑅

b∗𝐶 ← b𝐶 −∑
𝑗
S𝑗⊤
𝐶 K 𝑗⊤

𝑅𝐶y
𝑗
𝑅

λ ← G−1𝑅𝑅 (b∗𝑅 −G𝑅𝐶x𝐶)

x𝑗
𝑅 ← K 𝑗−1

𝑅𝑅 (b𝑗𝑅 − S𝑗⊤
𝐷 λ −K 𝑗

𝑅𝐶S
𝑗
𝐶x𝐶)

Solve for x𝐶

Solve for λ

Solve for
x𝐶 ← G∗−1𝐶𝐶 (b∗𝐶 −G⊤𝑅𝐶G−1𝑅𝑅b∗𝑅)

x𝑗
𝑅

1

2

3

Fig. 3. Domain-decomposed global solve.Our primal-dual global system

consists of three steps, namely solving for 𝒙𝐶 , 𝝀, and 𝒙 𝑗
𝑅 . This algorithm

allows most forward/backward substitution to be carried out in parallel at

domains’ remainder DOFs, highlighted with light orange boxes. As a result,

the performance of global solve can be accelerated linearly w.r.t. the number

of CPU cores.

of roughly the same size. We have the DOFs of domain 𝑗 as 𝑁 𝑗
𝐷 ≈ 𝑁

𝐷 ,

which suggests the time complexity of the domain-decomposed

global solve is 𝑂
(
𝐷 · 𝑁 2

𝐷2 +max (𝑁 2
𝐵, 𝑁

2
𝐶)

)
.

Discussion. Strictly speaking, Eq. (8) is not a conventional primal-

dual version of the original PD global problem. Firstly, the multiplier

is only activated at duplicate DOFs. Corner DOFs, because they are

globally indexed as 𝒙𝐶 , do not generate interface constraints. This

strategy allows a straightforward formulation of𝝀 because duplicate

DOFs are shared by exactly two domains, and we do not need extra

safeguards for the vertex shared by more than two domains to make

sure dual DOFs are linearly independent. The primal variable 𝒙𝐼 ,
on the other hand, is condensed to corner DOFs. The condensation

reduces the size of the primal part of the global system from 𝑁 to

𝑁𝐶 and makes 𝑮 a dense matrix.

4.3 Domain Decomposition

The performance of our method is closely relevant to how domains

are decomposed. Intuitively, we would like to make each 𝑲 𝑗
𝑅𝑅 ∈

R
𝑁

𝑗
𝑅×𝑁

𝑗
𝑅 as small as possible so that the complexity of solving 𝒙 𝑗

𝑅
can be effectively suppressed. Load balance is another important

aspect. Since solving 𝒙 𝑗
𝑅 is parallelized at domains, it is preferred

that domains are of similar sizes so that the computation at each

thread completes roughly at the same time.

We also need to solve 𝒙𝐶 and 𝝀, which must be processed one

after the other. With pre-factorized 𝑮∗
𝐶𝐶 and 𝑮𝑅𝑅 , the performance

depends on 𝑁𝐶 and 𝑁𝐵 − 𝑁𝐶 . Unfortunately, reducing 𝑁 𝑗
𝑅 and re-

ducing 𝑁𝐵 are a pair of conflicting objectives — smaller domains

have more boundary DOFs and fewer internal DOFs. Therefore, it

is helpful to manually pick more corner vertices to lower 𝑁𝐵 − 𝑁𝐶 .

In our implementation, we utilize the graph partitioning tool

METIS library [Karypis and Kumar 1997] to decompose the input

garment mesh. METIS includes a multilevel graph cut algorithm

minimizing boundary vertice count while balancing domain sizes.

It allows explicit control over the number of domains and the maxi-

mum allowable ratio between the largest and smallest domain sizes.

4.4 Non-conforming Decomposition

As shown in Fig. 4, many digital garment models are not formed

as a single monolithic triangle mesh. Instead, they are constructed

by piecing together from multiple patches. The boundaries of those

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

51:6 • Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu Jiang, Kui Wu, and Yin Yang

patches are often not conforming. Practically, they are seamed via

barycentric interpolations on interfacing edges or triangles.

Fig. 4. Non-conforming domain decom-

position. Our method can be generalized to

handle non-conforming domains.

Our method can be

conveniently generalized

to tackle non-conforming

domains. An example is

shown in Fig. 5 (a), where

two domains are coupled

via a non-conforming in-

terface. The interface com-

patibility constraints ap-

ply to three orange and

four green vertices — non-

conforming domains lead

to mismatching 𝒙 𝑗
𝐷 . We

solve this ambiguity by

always applying the con-

straint to the domain with fewer duplicate DOFs i.e., the orange

domain in this exmaple. This strategy avoids potential overconstrain-

ing so that 𝑮𝑅𝑅 is well-conditioned. 𝑺 𝑗𝐷 becomes an interpolation

matrix for the green domain — at the corresponding rows, 𝑺 𝑗𝐷 con-

tains barycentric coordinates of local vertices for the neighboring

duplicated vertices, which are being constrained. In this example,

we have a nine-dimension dual variable 𝝀.

(a)

(b)

Fig. 5. Non-conforming do-

mains. Our domain-decomposed

global solver accommodates non-

conforming domains. Duplicate

DOFs (a) and corner DOFs (b)

are processed by condensing

the global step solve to a subset

of independent DOFs to avoid

overconstraining.

A more generic setup is illus-

trated in Fig. 5 (b), where multi-

ple patches intersect. Unlike in con-

forming domain decomposition, the

intersection point generally does

not coincide with a mesh vertex,

and the involving corner vertices

are not full-rank. Therefore, 𝑮𝐶𝐶 in

Eq. (8) becomes singular. The rem-

edy is to further condense 𝒙𝐶 to a set

of linearly independent freedoms

𝒙̃𝐶 i.e., the actual intersecting loca-

tions among multiple domains (plus

other user-selected corner vertices

and/or conforming corner vertices)

such that 𝒙̃𝐶 = 𝑩𝐶𝒙𝐶 , where 𝑩𝐶 the

barycentric interpolation matrix. By projecting the second line of

Eq. (8) into the column space of 𝑩𝐶 , the condensed primal variable

𝒙̃𝐶 is computed via:

𝒙̃𝐶 = 𝑮̃−1
𝐶𝐶

(
𝒃̃∗𝐶 − 𝑮̃�

𝑅𝐶𝑮
−1
𝑅𝑅𝒃

∗
𝑅

)
, (11)

where

𝑮̃𝐶𝐶 =
∑
𝑗

𝑩 𝑗�

𝐶 𝑺 𝑗
�

𝐶 𝑲 𝑗
𝐶𝐶𝑺

𝑗
𝐶𝑩

𝑗
𝐶 −

∑
𝑗

𝑩 𝑗�

𝐶 𝑺 𝑗
�

𝐶 𝑲 𝑗�

𝑅𝐶𝑲
𝑗−1

𝑅𝑅 𝑲 𝑗
𝑅𝐶𝑺

𝑗
𝐶𝑩

𝑗
𝐶 ,

𝑮̃𝑅𝐶 =
∑
𝑗

𝑺 𝑗𝐷𝑲
𝑗−1

𝑅𝑅 𝑲 𝑗
𝑅𝐶𝑺

𝑗
𝐶𝑩

𝑗
𝐶 ,

𝒃̃∗𝐶 = 𝑩�
𝐶𝒃𝐶 −

∑
𝑗

𝑩 𝑗�

𝐶 𝑺 𝑗
�

𝐶 𝑲 𝑗�

𝑅𝐶𝑲
𝑗−1

𝑅𝑅 𝒃 𝑗
𝑅 .

1
2

3
4 5

6

7
8

1

2

34

5

7

6

8

Mesh Constraint
 graph

1

2

34

5

7

6

8

Spanning
trees

...
1

2

34

5

7

6

8
DFS DFS

1

1 2 4 3
6 5 8 7

8 6 5 1
7 3 4 2

Fig. 6. Sequential local projection. We construct a constraint graph for

each domain and extract several spanning trees. Our Gauss-Seidel local

projection follows a DFS traversal of a spanning tree. DFS traversal always

starts with a constraint with vertices whose positions are prescribed (e.g.,

fixed vertices), as highlighted in orange.

Here, 𝑩 𝑗
𝐶 is the local interpolating matrix of the 𝑗-th domain. The

dual variable 𝝀 and per-domain remainder variable 𝒙 𝑗
𝑅 are solved

afterwards.

5 Domain-decomposed Local Projection

The vanilla PD employs a Jacobi-like scheme at the local step to

maximize the capacity of parallelization. This strategy is particularly

well-suited for the GPUs as it handles a large number of constraints

concurrently. Given the disparity in the number of processing cores,

the CPU is clearly at a disadvantage. Being a CPU procedure, our

method trades off some parallelizability to achieve better conver-

gence.

Concretely, we downscale the local step parallelization from the

constraint level to the domain level. Intuitively, this approach treats

Ψ 𝑗 i.e., the elasticity potential of a domain, a type of generalized

constraint and computes its target position sequentially in a Gauss-

Seidel manner. The procedure of computing a constraint’s target

position remains unchanged per Eq. (2). Departing from the vanilla

PD, after 𝒚𝑖 is computed we further solve a small-size linear system:(
𝑴𝑖

ℎ2
+
∑
𝑖

𝑤𝑖𝑨
�
𝑖 𝑨𝑖

)
𝒙̃𝑖 =

𝑴𝑖

ℎ2
𝒛𝑖 +

∑
𝑖

𝑤𝑖𝑨
�
𝑖 𝑩𝑖𝒚𝑖 . (12)

It is easy to see that Eq. (12) is simply a constraint-level global

system that extracts columns and rows from Eq. (3) pertaining to

constraint 𝑖 . The l.h.s. is pre-factorized, and the solving is highly

efficient given its low-rank nature. 𝒙̃𝑖 offers a good estimation of

the newly updated position without solving the full global system

exactly. As we move forward to the next constraint 𝑖 + 1, vertices

shared with constraint 𝑖 will fetch the values from 𝒙̃𝑖 , which reflects

the most updated local information, for calculating its own target

position 𝒚𝑖+1.
It is known that such a Gauss-Seidel-like relaxation scheme is

biased toward a specific traversal order. We avoid this issue by

pre-computing several paths of constraint iteration. As shown in

Fig. 6, we construct a constraint graph of the domain to encode the

topological connectivity of all the constraints. Each node on the

graph represents a constraint involving several mesh vertices, i.e., a

triangle in this example. Two constraints are connected by an edge

if they share mesh vertices. Since we do not consider collision/self-

collision at this point, the constraint graph can be pre-built. We

then build several spanning trees of the graph. Ideally, any graph

edge should be present in at least one of the spanning trees. A DFS

(depth-first search) is performed for each spanning tree, and the

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

High-performance CPU Cloth Simulation Using Domain-decomposed Projective Dynamics • 51:7

sequence of the node visits during the DFS traversal gives the order

of our local projection. It is worth noting that the position of a vertex

may be prescribed as an imposed boundary condition.

Fig. 7. Biased residual with fixed

GS relaxation. GS iteration sequen-

tially relaxes each constraint within

a domain. If the order of the con-

straint transversal is fixed, GS tends

produce patterned residual i.e., bias.

We pre-compute multiple paths given

the domain constraint graph and al-

ternate GS iterations with different

paths. This fully avoids the bias issue.

Taking Fig. 6 as an example,

two red vertices of the top left

and right are fixed. Our DFS al-

ways starts from a constraint

(in orange) with such prescribed

vertices (as they do not have

dynamic freedoms) to track the

strain propagation across the

mesh. The per-domain local pro-

jection alternates among those

pre-computed iteration paths.

As shown in Fig. 7, this strat-

egy effectively removes the bias

of GS-based projection. After all

the domain-level local projec-

tions are completed, the global

step solve follows, and we move

to the next L-G iteration.

6 Collision-aware Global Solve

The discussion so far assumes the constraint set of the system does

not change. This assumption does not hold in cloth simulation,

where collisions and self-collisions are pervasive. Since PD handles

collisions as a type of constraint, the global step matrix varies under

different collision configurations. In this section, we show how

to exploit our domain-decomposed pre-factorization to efficiently

handle collision-in-the-loop global systems.

The presence of collisions and self-collisions alters Eq. (3) to:

(𝑲 + Δ𝑲) (𝒙 + Δ𝒙) = 𝒃 + Δ𝒃 . (13)

That said, we explicitly label the change of global step matrix Δ𝑲 ,

vertex position adjustment Δ𝒙 , and the increment of r.h.s. vector Δ𝒃
that are brought by the detected collision constraints. In practice,

we often solve the collision-free global system 𝑲𝒙 = 𝒃 first and use

the corresponding 𝒙 for collision detection. Therefore, the unknown

we are looking to solve for is Δ𝒙 . Expanding Eq. (13) yields:

(𝑲 + Δ𝑲)Δ𝒙 = Δ𝒃 − Δ𝑲𝒙 . (14)

We stack all the collision DOFs into a compact vector 𝒙̂ ∈ R
𝐾 , where

𝐾 is the total number of collision DOFs. The notation ˆ(·) suggests

the variable is for collision DOFs. We also use the subscript 𝑘 to

specify the index of a collision constraint to differentiate it from

other constraints, which are indexed with 𝑖 .
Recall that the selection matrix 𝑺𝑘 picks DOFs out of 𝒙 for the 𝑘-th

collision. We now split this operation into two steps — a collision

selection matrix 𝑺 ∈ R
𝐾×𝑁 first retrieves all the colliding DOFs

i.e., 𝒙̂ = 𝑺𝒙; after that 𝑺𝑘 extracts DOFs associated with the 𝑘-th
collision from 𝒙̂ . As 𝑺 is constant for all the collision constraints,

this splitting reveals the structure of Δ𝑲 :

Δ𝑲 =
∑
𝑘

𝑤𝑘𝑺
�
𝑘 𝑨

�
𝑘𝑨𝑘𝑺𝑘 =

∑
𝑘

𝑤𝑘𝑺
�𝑺�𝑘 𝑨

�
𝑘𝑨𝑘𝑺𝑘𝑺 = 𝑺�Δ𝑲̂𝑺, (15)

where we have:

Δ𝑲̂ =
∑
𝑘

𝑤𝑘𝑺
�
𝑘 𝑨

�
𝑘𝑨𝑘𝑺𝑘 ∈ R

𝐾×𝐾 . (16)

We follow the strategy as in [Lan et al. 2024] and set 𝑨𝑘 as an

identity matrix for collision constraints making Δ𝑲̂ diagonal.

Substituting Eq. (15) into Eq. (14) and applying the Woodbury

identity [Hager 1989] yield:

Δ𝒙 =
(
𝑲 + 𝑺�Δ𝑲̂𝑺

)−1
(Δ𝒃 − Δ𝑲𝒙) = 𝑲−1 (Δ𝒃 − Δ𝑲𝒙)

− 𝑲−1𝑺�
(
Δ𝑲̂−1 + 𝑺𝑲−1𝑺�

)−1
𝑺𝑲−1 (Δ𝒃 − Δ𝑲𝒙). (17)

We then project Eq. (17) into the row space of 𝑺 . Intuitively, doing so
condenses the problem size and prioritizes the solving for colliding

DOFs. Left-multiplying 𝑺 at its both sides of Eq. (17) with some

manipulations results in a linear system of:

𝑯̂ 𝝀̂ = 𝒅, (18)

where:

𝑯̂ = Δ𝑯̂ + 𝑰 , Δ𝑯̂ = Δ𝑲̂−1
(
𝑺𝑲−1𝑺�

)−1
,

𝒅 = 𝑺𝑲−1 (Δ𝒃 − Δ𝑲𝒙), 𝝀̂ = 𝑺𝑲−1 (Δ𝒃 − Δ𝑲𝒙) − 𝑺Δ𝒙,

and 𝑰 is a 𝐾 by 𝐾 identity matrix.

Unlike other constraints, collisions embody a type of hard con-

straint. Hence, we always have𝑤𝑘 	 𝑤𝑖 . It can be shown that

��Δ𝑯̂�� ≤ ��Δ𝑲̂−1
�� ����(𝑺𝑲−1𝑺�

)−1���� ≤ 𝑤𝑖

𝑤𝑘
� 1, (19)

then we have:

0 < 𝜖 =
��Δ𝑯̂�� � 1, (20)

where 𝜖 := ‖Δ𝑯̂ ‖ is the spectral norm i.e., the maximum eigenvalue

of Δ𝑯̂ . Because��𝑯̂�� = ��Δ𝑯̂ + 𝑰
�� ≤ ��Δ𝑯̂�� + ‖𝑰 ‖ = 𝜖 + 1,

we can then posit that the spectral radius of 𝑯̂ is bounded as:

1 < 𝜌 (𝑯̂) < 𝜖 + 1 ≈
𝑤𝑖

𝑤𝑘
+ 1. (21)

In other words, 𝜌 (𝑯) is greater than but very close to one. This

property inspires us to use the steepest descent (SD) method to solve

Eq. (18) given the fact that the linear system can be solved with one

SD iteration if its spectral radius equals one.

A reasonable initial guess of 𝝀̂ for starting SD iteration is 𝝀̂0 ← 𝒅,
which assumes Δ𝒙̂ = 0. The corresponding residual 𝒓 of Eq. (18)

then becomes:

𝒓 = 𝒅 − 𝑯̂ 𝝀̂0 = −Δ𝑲̂−1
(
𝑺𝑲−1𝑺�

)−1
𝑺𝑲−1 (Δ𝒃 − Δ𝑲𝒙). (22)

Even with our domain-wise pre-factorization, evaluating 𝒓 remains

prohibitive. To avoid this difficulty, we ignore r.h.s DOFs for non-

colliding vertices by replacing Δ𝒃−Δ𝑲𝒙 with 𝑺�𝑺 (Δ𝒃−Δ𝑲𝒙). This
strategy cancels out (𝑺𝑲−1𝑺�)−1, and the residual can be efficiently

approximated as:

𝒓 ≈ −Δ𝑲̂−1𝑺 (Δ𝒃 − Δ𝑲𝒙). (23)

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

51:8 • Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu Jiang, Kui Wu, and Yin Yang

The SD iteration is then updated via:

𝝀̂ ← 𝝀̂ +
𝒓�𝒓

𝒓�Δ𝑯̂ 𝒓 + 𝒓�𝒓
· 𝒓 ≈ 𝝀̂ +

𝒓

1 + 𝑤𝑖
𝑤𝑘

, (24)

by leveraging the spectral property of Δ𝑯̂ i.e., Eq. (21).

Multiplying 𝑺�𝑺 to Δ𝒃 − Δ𝑲𝒙 discards the influence from non-

colliding DOFs to Δ𝒙̂ . To recover this information, we finalize our

collision-aware global solve with a couple of full PCG iterations over

Eq. (14). At this point, it is expected that residual errors at collision

DOFs Δ𝒙̂ are well relaxed with SD iterations for Eq. (18). Therefore,

𝑲−1 stands as a (very) strong pre-conditioner for CG iterations.

While 𝑲 is never factorized as a whole, our domain-decomposed

global solver efficiently calculates 𝒚 = 𝑲−1𝒑 for any right vector 𝒑
by solving 𝒚 = 𝑲𝒑.

0 20 40 60 80 100
10-4

10-3

10-2

10-1

100

 Time (ms)

R
el

at
iv

e
er

ro
r

PCG
PCG
SD +

0-3

0-2

0-1

00

PCGPCGPPPCCCCGGGGCCSDSDSSSDDDDDD

Fig. 8. SD & PCG.We drape a square

tablecloth over the teapot, and plot

the convergence curve w.r.t. computa-

tion time. There are 270k DOFs on the

cloth, and 70K collision constraints.

The time step size is set as 1/120.

SD iterations for the dual problem of

Eq. (24) effectively reduce the need for

full PCG iterations at a very low cost.

It saves about 70% computation time

if one chooses to use PCG to solve the

collision-aware global system directly.

Discussion. In a nutshell, our

collision-aware global step iso-

lates the solve for Δ𝒙 using

the Woodbury formula. The key

strategy is to build a dual ver-

sion of this problem in a re-

duced space i.e., to solve 𝝀̂ so

that we can fully utilize the

fact that collision constraints are

much stiffer than other compli-

ance constraints such as bending

or edge length preserving. The

unique structure of PD matri-

ces helps extract important spec-

tral information of 𝑯̂ so that the

dual problem can be solved ef-

fectively with the SD method.

The remaining residual error is

smoothed with PCG using the

domain-decomposed (collision-

free) global matrix. We find that

solving the reduced dual prob-

lem of Eq. (18) is critical to our

performance gain. A representative user case is shown in Fig. 8.

In this example, a piece of square tablecloth of 270K DOFs drapes

over a teapot. The time step is ℎ = 1/120. We examine the system

convergence under conditions with the highest number of collisions

(∼ 70K). After five SD iterations, the relative error is lowered to 5%,

which takes about 25 ms. Two extra PCG iterations are followed to

converge the system. If we directly use PCG to solve Eq. (14) (with

the pre-conditioner), we end up with over 20 iterations. In other

words, several inexpensive SD iterations of Eq. (18) bring the total

number of PCG iterations down from 20 to 5. The computation time

is shortened by about 70%.

7 Experiments

We have tested our method in a wide range of simulation cases.

The experiments are performed with both AMD and Intel platforms

with an AMD Ryzen Threadripper PRO 5975WX 32-core CPU, and

an Intel i9-13900K 24-core CPU. We use CHOLMOD [Chen et al.

2008] on the AMD platform and MKL on the Intel platform. The

CPU parallelization is handled with TBB library [Pheatt 2008]. Sim-

ulation parameters and timing information are reported in Tab. 1,

and the visualization of the time breakdown is shown in Fig. 10.

We also analyze the per frame time with respect to the number of

active contact pairs for the given example (Fig. 11). Our method

shows relatively stable performance (235−341 ms) across a range of

contact pair quantities (65−118K pairs) in this case. Unless specified,

our default time step size is 1/120 running with 32 threads on the

5975WX CPU. We normalize the garment into a unit box, and we

use ‖Δ𝒙 ‖ = 1e−3 as the default convergence condition. Please refer

to the accompanying video for more animation results.

7.1 Multi-domain Global Solve

We first report a detailed study on the performance of the pro-

posed multi-domain global solver when collision is not taken into

account. While the global step matrix can be pre-factorized, the

forward/backward substitution is a sequential operation, and multi-

threading does not help improve the performance. Our method is

able to fully exploit CPU cores and parallelize domain-level compu-

tations. Fig. 9 visualizes the timing statistics for solving the global

matrix for a square tablecloth of different resolutions using different

numbers of domains and threads. We run the test on both AMD (32

cores) and Intel (24 cores) platforms. Our baseline is single domain

global solve using the pre-factorized global matrix. In general, the

solving time is quickly lowered as more CPU cores are used. We

use different color bars to visualize total times used for solving 𝑮∗
𝐶𝐶

and 𝑮𝑅𝑅 for Eqs (9) and (10), which is not parallelizable (in orange)

and for solving 𝑲 𝑗
𝑅𝑅 at domains (in blue). The time statistics is con-

sistent with our previous analysis. With the increase in the number

of participating cores, the total time used for solving 𝑲 𝑗
𝑅𝑅 decreases.

On the other hand, the time used for solving 𝑮∗
𝐶𝐶 and 𝑮𝑅𝑅 remains

stable as those two computations are sequential. The increase in

domain count also lowers the solving time for 𝑲 𝑗
𝑅𝑅 . When domains

become smaller with fewer remainder DOFs, solving time of 𝑲 𝑗
𝑅𝑅 at

each domain declines quadratically. However, when the domain de-

composition gets denser, 𝑮𝑅𝑅 becomes a bigger matrix, and we can

clearly observe a steady increase of orange bars w.r.t. the increase

of the number of domains. In some cases, solving the dual variable

𝝀 takes more time than solving the primal variable 𝒙𝑅 . As a result,
more domains negatively impact the runtime performance.

Another interesting notice is the efficiency improvement does not

always perfectly align with the number of threads. We first need to

have a sufficient number of domains to match the available number

of computing cores. For instance, if the mesh is only decomposed

into four domains, pushing the simulation to 16 or 32 threads is

not helping. The performance gets worse as each thread is assigned

with fewer hardware resources. If the mesh resolution is not fine

enough, parallel solve also becomes less effective. A “sweet spot”

is making the domain count similar to the number of processing

cores. For instance, our AMD CPU has 32 cores, and we often find

generating 32 domains gives good speedup. The Intel CPU used in

this test has 24 cores. However, they are not equally powerful, with

8 performance cores and 16 efficiency cores. This hardware-level

variation may explain the differences in large-scale multi-domain

solves.

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

High-performance CPU Cloth Simulation Using Domain-decomposed Projective Dynamics • 51:9

0.0

0.5

1.0

1.5 Baseline

Solve
Solve

1 4 8 16 32 64128

0

2

4

6

1 4 8 16 32 64128

0

10

20

30

1 4 8 16 32 64128

0

50

100

150

1 4 8 16 32 64128

0.0

0.5

1.0

1.5

1 4 8 16 32 64128

0

2

4

6

1 4 8 16 32 64128

0

10

20

30

1 4 8 16 32 64128

0

50

100

150

1 4 8 16 32 64128

0.0

0.5

1.0

1.5

1 4 8 16 32 64128

0

2

4

6

1 4 8 16 32 64128

0

10

20

30

1 4 8 16 32 64128

0

50

100

150

1 4 8 16 32 64128

0.0

0.5

1.0

1.5

1 4 8 16 32 64128

0

2

4

6

1 4 8 16 32 64128

0

10

20

30

1 4 8 16 32 64128

0

50

100

150

1 4 8 16 32 64128

,G∗𝐶𝐶 G𝑅𝑅
K 𝑗

𝑅𝑅

#D
O

Fs
: 6

0K
#D

O
Fs

: 1
80

K
#D

O
Fs

: 3
M

#D
O

Fs
: 6

00
K

(ms)

4 Threads 8 Threads 16 Threads 32 Threads
#D

om
ai

ns

0.0

0.5

1.0

1.5
Baseline

Solve
Solve

1 4 8 16 32 64128

0

2

4

1 4 8 16 32 64128

0

10

20

1 4 8 16 32 64128

0

50

100

1 4 8 16 32 64128

0.0

0.5

1.0

1.5

1 4 8 16 32 64128

0

2

4

1 4 8 16 32 64128

0

10

20

1 4 8 16 32 64128

0

50

100

1 4 8 16 32 64128

0.0

0.5

1.0

1.5

1 4 8 16 32 64128

0

2

4

1 4 8 16 32 64128

0

10

20

1 4 8 16 32 64128

0

50

100

1 4 8 16 32 64128

0.0

0.5

1.0

1.5

1 4 8 16 32 64128

0

2

4

1 4 8 16 32 64128

0

10

20

1 4 8 16 32 64128

0

50

100

1 4 8 16 32 64128

,G∗𝐶𝐶 G𝑅𝑅
K 𝑗

𝑅𝑅

#D
O

Fs
: 6

0K
#D

O
Fs

: 1
80

K
#D

O
Fs

: 3
M

#D
O

Fs
: 6

00
K

(ms)

4 Threads 8 Threads 16 Threads 32 Threads

#D
om

ai
ns

AMD platform Intel platform

4 Domains 8 Domains 16 Domains 32 Domains 64 Domains 128 Domains

Fig. 9. Multi-domain global solve with different numbers of domains & CPU threads.We report the global solve time using domain-decomposed

parallel solver on square cloth meshes of different resolutions with 60K, 180K, 600K, and 3M DOFs. The mesh is decomposed into 4, 8, 16, 32, 64 and 128

domains respectively. The domain partition is shown at the bottom. Compared with the baseline using the off-the-shelf numerical library i.e., the left bar in all

the plots, which performs the global solve on the entire mesh, our method brings multifold speedups. The test runs on both the AMD CPU (left) and the Intel

CPU (right) using different numbers (4 - 32) of threads.

Collision-aware global solve
Misc

L-G warm start
Collision detection

29.5%

9.9%

37.8%

22.8%

One time step

Local projection
Global solve

19.3%

80.7%

L-G warm start

Broad phase
Narrow phase
SD solve
PCG solve

Collision handling

10.5%

40.7%

15.4%

33.4%

.

Fig. 10. Time breakdown.We visualize the breakdown of the computation

time used for one time step of a typical animation frame, where the character

in a t-shirt and shorts is performing a single-hand handstand. There are

376K DOFs in this example (91K collision constraints). The time step size is

set as ℎ = 1/120, and the total time used at this frame is 240 ms.

Nevertheless, our method offers substantial performance gain. In

high-resolution simulations, the global solve becomes an order faster.

This timing performance is nowhere close to GPU-based global

Fig. 11. Relationship between active contact pairs and time. We ana-

lyze the per frame time with respect to the number of active contact pairs.

While a significant increase in active contact pairs typically slows down

simulations, our method shows relatively stable performance across a range

of contact pair quantities in the given example.

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

51:10 • Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu Jiang, Kui Wu, and Yin Yang

Table 1. Experiment statistics. The table below presents detailed timing statistics for all experiments discussed in the paper. # D gives the total number

of domains in the example. # DOF is the total number of simulation DOFs. # Ele. indicates the total number of elements (triangles for cloth meshes and

tetrahedrons for deformable objects). C|B|R reports the number of corner DOFs, boundary DOFs, and remainder DOFs. 𝒉 is the time step size, which is set as

1/120 in most cases. The Cull|Nrw. column reports the timing information for collision handling: Cull is for broad-phase collision culling; and Nrw. is for

the narrow phase identifying all the collision constraints. 𝝆 is the mass density, measured in
kg

m2 for cloth and
kg

m3 for deformable objects. For simulations

containing both (e.g., Fig. 22), the first value corresponds to cloth and the second to the deformable object. Mats. lists material parameters: stretching (in Pa)

and bending stiffness for cloth, or Young’s modulus (in Pa) for deformable objects. 𝜿𝒔 , 𝜿𝒄 denotes the weights (𝑤𝑘) for self-collision and collider collision

constraints. ‖Δ𝒙 ‖ specifies the convergence criterion. # Iter. gives the average per-time-step total number of L-G iterations. L|G|SD|PCG gives the time

consumed by the solver. L and G report timing for the collision-free warm start. SD and PCG give the computation time used for SD solve (i.e., Eq. (24))

and full PCG solve pre-conditioned with the collision-free global solver.Misc. is additional computational costs. All timing measurements presented above

represent the average time for the complete sequence. The rightmost column displays the overall simulation time, encompassing collision detection, collision

handling, local and global steps, and other processes. Min. and Max. indicate the minimum and maximum per-frame times, while Med. and Avg. represent

the median and average per-frame times respectively. All timing measurements are in milliseconds.

Scene # D # DOF # Ele. # C|B|R 𝒉 Cull|Nrw. 𝝆 Mats. 𝜿𝒔 , 𝜿𝒄 ‖Δ𝒙 ‖ # Iter.
L|G

SD|PCG Misc.
Min.|Max.
Med.|Avg.

Cloth on Armadillo
(Fig. 14)

32 282K 187K 3K |6K |117K 1
120 15 |32 0.5 2e4 |2e−2 1e6, 2e6 1e−3 11

9 |19
6 |57

7
132 |194
148 |145

Kick
(Fig. 15)

96 444K 291K 12K |24K |393K 1
120 40 |129 1 2e4 |2e−2 1e6, 2e6 1e−3 16

37 |93
68 |204

17
460 |1292
546 |588

Make a knot
(Fig. 16)

64 324K 212K 4.5K |9K |319.5K 1
120 45 |167 0.5 1e4 |1e−2 1e6, 2e6 1e−3 14

28 |78
66 |163

17
233 |851
544 |564

Fashion show
(Fig. 17)

73 1.1M 656K 18K |36K |966K 1
120 49 |96 0.3 2e4 |2e−2 1e6, 2e6 1e−3 15

39 |268
157 |433

21
863 |1, 961
966 |1, 063

Single handstand
(Fig. 18a)

72 376K 234K 6K |12K |222K 1
120 31 |76 0.5 1e4 |2e−2 1e6, 2e6 1e−3 9

15 |43
34 |80

17
235 |341
302 |296

Hip-hop
(Fig. 18b)

76 390K 256K 6K |12K |354K 1
120 44 |71 1 1e4 |2e−2 1e6, 2e6 1e−3 11

27 |78
59 |104

12
286 |458
382 |395

Multi-layered dress
(Fig. 18c)

89 315K 206K 12K |24K |273K 1
120 39 |69 0.5 1e4 |5e−3 1e6, 2e6 1e−3 14

26 |64
51 |83

19
264 |626
343 |351

Robe dance
(Fig. 18d)

84 519K 343K 12K |24K |381K 1
120 27 |70 0.3 1e4 |5e−3 1e6, 2e6 1e−3 8

19 |66
48 |125

19
301 |647
381 |374

Open the window
(Fig. 19)

64 6M 4M 60K |120K |6M 1
120 711 |1, 482 0.5 2e4 |2e−2 1e6, 2e6 1e−3 28

466 |1, 204
966 |1, 772

56
3, 022 |9, 867
6, 991 |6, 657

Folding
(Fig. 20)

64 492K 324K 12K |24K |480K 1
120 48 |102 0.5 1e4 |1e−2 1e6, 2e6 1e−3 11

45 |98
46 |202

16
231 |991
566 |557

Dressed Armadillo
(Fig. 22)

48 150K 164K 6K |12K |144K 1
120 39 |79

1
1e3

1e4 |1e−2
1e5

1e6, 1e7 2e−3 9
34 |11
11 |21

9
185 |236
201 |204

Barbarian ship
(Fig. 23)

64 402K 487K 15K |30K |386K 1
120 31 |93 1e2 5e6 1e6, 1e6 1e−3 10

93 |59
28 |61

14
349 |450
377 |379

solvers. For instance, Wang [2015] used diagonally pre-conditioned

Jacobi to solve the global matrix inexactly. Each Jacobi iteration uses

less than 0.1 ms, even for high-resolution models. A key difference

lies in the fact that our method fully (exactly) solves the global

matrix, while GPU solvers only give an approximated global solution.

As a result, our method needs much fewer L-G iterations for each

time step. The exactness of the global solve is another hidden factor

for our efficiency.

7.2 Multi-domain Local Solve

Our local solve is also specifically designed for the multicore CPU.

As discussed in Sec. 5, we use a hybrid constraint relaxation scheme,

with GS-based sequential update within the domain and a Jacobi-

like update across domains. We note that local GS relaxation con-

verges the systemmore effectively compared with the Jacobi method

employed in the vanilla PD framework. To better illustrate this ad-

vantage, we show a side-by-side comparison between these two

different constraint projection schemes in Fig. 12. The simulation is

a standard draping test of a tablecloth with two corners fixed.

Fig. 12. Multi-domain local solve. Our local projection is different from

the vanilla PD, which is sequential within a domain and parallelized across

domains. At each domain, we relax constraint in a GS manner alternating

among several pre-computed traversal orders. In this simple but representa-

tive example, our method uses much fewer L-G iterations compared with

the Jacobi-based parallel projection scheme. In this example, the global

matrix is always exactly solved.

We decompose the mesh into 64 domains, as shown in the fig-

ure. As the global step matrix is exactly solved, the total number

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

High-performance CPU Cloth Simulation Using Domain-decomposed Projective Dynamics • 51:11

0 500 1000 1500
10-5

10-4

10-3

10-2

10-1

100

0 100 200 300 400
10-5

10-4

10-3

10-2

10-1

100

Ours: 1/240
Ours: 1/120
Ours: 1/60
PD-Jacobi: 1/240 (GPU)
PD-Jacobi: 1/120 (GPU)
PD-Jacobi: 1/60 (GPU)

DOFs: 0K # DOFs: 0K

Iter Time (ms)

Re
la

tiv
e

er
ro

r

0 50 100 150 200 250 300

10-4

10-3

10-2

10-1

100

0 50 100 150 200

10-4

10-3

10-2

10-1

100

Ours: 1/240
Ours: 1/120
Ours: 1/60
PD-Jacobi: 1/240 (GPU)
PD-Jacobi: 1/120 (GPU)
PD-Jacobi: 1/60 (GPU)

DOFs: 120K # DOFs: 120K

Iter Time (ms)

Re
la

tiv
e

er
ro

r

Fig. 13. Comparison with PD-Jacobi (GPU). We plot the convergence

curves of our method and PD-Jacobi [Wang 2015] in a simple simulation,

where the square tablecloth deforms under gravity with two top corners

fixed. We use 32 domains for our method. Our method uses much fewer L-G

iterations in all setups. Due to the GPU parallelization, PD-Jacobi becomes

more efficient when ℎ = 1/240. If the time step size is set more aggressively

to 1/120 or 1/60, our method re-takes the performance advantage.

of L-G iterations is a good indicator reflecting the quality of the

local projection. To this end, we plot the convergence curves using

Jacobi local projection and our method. Our local projection shows

a noticeable advantage compared with vanilla PD, which prioritizes

parallelization.

7.3 Halley-based CCD processing

Ourmethod is compatiblewith existing collision handling approaches

such as the nonlinear penalty method [Wu et al. 2020], constraint-

based barrier method [Lan et al. 2022], or exponential penalty [Lan

et al. 2024]. For the broad-phase collision detection, we employ

parallel linear BVH [Karras 2012] with AABB as leaf nodes to con-

struct the scene acceleration structure and perform intersection

queries. This structure is updated at each time step. The refitting

and querying typically take less than 15% of the total runtime.

We use different strategies for garment-garment collisions and

garment-collider collisions. Specifically, for garments and external

colliders (e.g., floor, obstacle, or the body of an avatar), we simplify

collision detection to pairs between garment vertices and collider

primitives. For self-collisions, we consider all types of collision

pairs between vertices and primitives after the broad-phase culling.

We generate the collision constraints through projecting the tar-

get positions in the local step as in [Lan et al. 2022]. We set the

weight of collision constraints𝑤𝑘 as a big constant, typically two

orders bigger than other constraint weight𝑤𝑖 (as reported in Tab. 1).

This makes the steepest descent highly effective for collision-aware

global solving.

Being a co-dimensional model, CCD is always needed for narrow-

phase collision detection for cloth animation. Each CCD for a pair

Fig. 14. Comparison with PD-Coulomb (CPU). Our method is faster

than PD-Coulomb [Ly et al. 2020] by an order. In this experiment, a piece

of cloth drops on an Armadillo and falls on the floor. While PD-Coulomb is

also accelerated by CPU multithreading, the parallelization only applies at

the local projection with OpenMP. Our method can be better accelerated by

more CPU cores at both local and global steps, and it also converges faster

than PD-Coulomb due to our novel projection scheme. In this experiment,

there are 282K DOFs, and our method uses 145 ms to simulate one time

step.

of colliding primitives needs to solve a cubic polynomial 𝑓 (𝑡) = 0.

While analytic root finding for cubic equations is possible, it is not

preferred because of the numerical stability issue. Instead, numerical

root finding is commonly chosen, such as Newton’s method. We

follow the idea in [Yuksel 2022] that performs the root finding

at intervals. However, we use Halley’s method [Scavo and Thoo

1995] for its better convergence. Halley’s method is slightly more

expensive than Newton’s method for cubic problems. Nonetheless,

this complexity disparity is invisible on the CPU cores (given their

fast clock cycles).

Since 𝑓 (𝑡) is a cubic function. Its second derivative is constant.

Halley iteration for finding the root i.e., the TOI (time of impact) of

𝑓 (𝑡) is given as:

𝑡 ← 𝑡 −
2𝑓 (𝑡) 𝑓 ′ (𝑡)

2 [𝑓 ′ (𝑡)]2 − 𝑓 (𝑡) 𝑓 ′′ (𝑡)
. (25)

Our experiment shows that it converges 10% to 15% faster than

Newton-based root finding on average on the CPU.

7.4 Comparison with Existing GPU/CPU Algorithms

Next, we compare our method with several classic cloth simu-

lation algorithms, including PD-Jacobi [Wang 2015] (GPU), PD-

Coulomb [Ly et al. 2020] (CPU), C-IPC [Li et al. 2021] (CPU), PD-

BFGS [Li et al. 2023] (GPU), PD-IPC [Lan et al. 2022] (GPU), and

PD-EXP [Lan et al. 2024] (GPU). All the methods produce high-

quality results when converged, and the visual differences between

different methods are hardly discernable. Performance-wise, our

method significantly outperforms CPU-based methods (e.g., 10× to

100× faster compared with the multithreaded PD/FEM methods)

and achieves a runtime FPS comparable to many GPU solvers. It

is unlikely for a CPU simulator to outperform all GPU-based algo-

rithms in terms of speed. Nevertheless, we confidently regard our

method as one of the best-performing CPU solvers to date.

Comparison with PD-Jacobi (GPU). PD-Jacobi [Wang 2015] uses

Chebyshev acceleration to improve the convergence of the Jacobi

method for the global solve. It has been a popular choice for high-

performance cloth simulation due to its simplicity and convenient

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

51:12 • Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu Jiang, Kui Wu, and Yin Yang

Fig. 15. Comparison with PD-BFGS (GPU) & C-IPC (CPU). The character in a tired skirt performs a kicking action. Fast body movements generate

interesting garment dynamics and rich self-collisions. There are 444K DOFs in the scene. All the methods produce high-quality animations. Our method uses

588 ms for solving one time step (ℎ = 1/120), which is 2.6× faster than GPU-based PD-BFGS and 66× faster than CPU-based C-IPC.

Fig. 16. Comparison with PD-IPC (GPU). Two fabric strips are tangled

and pulled in opposite directions to form a tight knot. The left figure illus-

trates the domain partition in the rest configuration. Similar to PD-IPC,

we apply the CCD filtering after each iteration of the contact-aware global

solve. There are 324K DOFs in the scene, and 57K collision constraints. Our

method is comparable with PD-IPC, and runs at 564 ms per frame. The

runtime performance of PD-IPC for this simulation is 544ms per frame. The

time step size is ℎ = 1/120.

implementation, e.g., one does not even need to assemble the PD

global matrix. PD-Jacobi uses a single Jacobi iteration to approxi-

mate the solution of the global solve. This parallelism-concentrate

scheme works well for conservative time steps. When the time step

is set more aggressively e.g., 1/120 or even 1/60, or the number

of simulation DOFs is further increased, the number of L-G itera-

tions needed to converge one time step goes up substantially. This

comparison is based on a simple experiment of hanging a piece

of tablecloth. We plot the convergence curves of our method and

PD-Jacobi under three different time step sizes, and different mesh

resolutions in Fig. 13. The domain decomposition of the mesh is also

visualized in the figure. It can be clearly seen from this comparison

that our method uses much fewer L-G iterations compared with

PD-Jacobi in all situations. This is due to the combination of the

exact global matrix solve and better-converging local projection.

However, superior parallelization of the GPU makes Jacobi iteration

and per-constraint projection highly efficient. This efficiency can

Fig. 17. Comparison with PD-EXP (GPU). In this example, we compare

our method with PD-EXP [Lan et al. 2024] to simulate a virtual fashion

show, where the character in a light midi skirt walks to the front and then

turns around. We apply an external wind field to the left to generate more

dynamic garment movements. There are 1.1M DOFs in the simulation. Due

to the subspace pre-conditioning, PD-EXP is faster than our method. It uses

734 ms to simulate one time step (ℎ = 1/120), while our method needs 1.06
seconds on average.

compensate for the increased iteration count when ℎ = 1/240 — we

can see PD-Jacobi converges faster in terms of computation time.

However, if the time step size increases to 1/120 or 1/60, our method

becomes more efficient. When the resolution of the mesh is further

increased, our method is faster than PD-Jacobi even for ℎ = 1/240.

Comparison with PD-Coulomb (CPU). PD-Coulomb [Ly et al. 2020]

is a CPU-based simulation algorithm. Its main contribution is nov-

elly converting the classic Coulomb friction model to the form of

constraint projection within the PD framework. PD-Coulomb uses

OpenMP for parallelization. To make sure the comparison is objec-

tive, we implemented the same frictional constraint as in [Ly et al.

2020]. The snapshots of this experiment are shown in Fig. 14, where

we drape a piece of cloth on an Armadillo. There are 282K DOFs

and 56K collision constraints on average in this experiment. Our

method is 11× faster under the same convergence condition and

time step size.

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

High-performance CPU Cloth Simulation Using Domain-decomposed Projective Dynamics • 51:13

(a) (b)

(c) (d)

Fig. 18. Garments on moving avatars. Our method produces interesting and realistic garment dynamics on moving avatars. We show snapshots of different

combinations of motions and garments. In sub-figure (a), the character in a fitted t-shirt and shorts performs a single handstand. In sub-figure (b), the character

dresses with a tight white nightdress and performs a hip-hop dance on the spot. In sub-figure (c), the character wearing a loose, multi-layered long dress

performs a throwing motion. In sub-figure (d), the character dressed in a robe is swaying and warling in place. There are 376K, 390K, 315K, 519K DOFs in

sub-figures (a), (b), (c), and (d), and the simulation runs at 296 ms, 395 ms, 351 ms, 374 ms per frame, respectively.

Fig. 19. Open the window.We show a high-resolution simulation involving 6M DOFs. Each curtain has 32 domains as shown. They are pulled away from the

middle to reveal the view of a city night. At this resolution, inexact global solve will significantly increase the total number of L-G iterations (e.g., as in [Wang

2015]). Our method converges more effectively and uses 6.6 s to simulate one frame under ℎ = 1/120.

Comparison with PD-BFGS (GPU) & C-IPC (CPU). PD-BFGS is a

GPU cloth simulation method [Li et al. 2023]. It uses a spline-based

subspace to pre-condition the global matrix before the GPU Jacobi

iteration. C-IPC is a CPU-based algorithm [Li et al. 2021] using full

nonlinear FEM and Newton’s method to solve the garment/thin-

shell dynamics. It employs the incremental potential contact (IPC)

as the major modality for collision processing [Li et al. 2020]. C-

IPC is very expensive because of the use of full Newton solve, and

it also needs CCD-based line search filtering after each Newton

iteration to make sure all the triangles are separate. The experiment

results are reported in Fig. 15. In this comparative example, the

virtual character with a tiered skirt performs a kicking action. The

domain decomposition of the garment is also provided in the figure.

There are 444K DOFs in this example. Our method uses 16 L-G

iterations and 588ms on average to simulate one frame.While can be

effectively accelerated on the GPU, PD-BFGS uses a high-dimension

subspace to pre-condition the Jacobi iteration. Our method is 2.6×
faster than the GPU-based PD-BFGS. C-IPC is not parallelization

friendly, and our method is 66× faster than multicore accelerated

C-IPC.

Comparison with PD-IPC (GPU). PD-IPC [Lan et al. 2022] incor-

porates IPC barrier in the framework of PD by using the IPC barrier

as the weight of a collision constraint. Similarly to C-IPC, PD-IPC

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

51:14 • Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu Jiang, Kui Wu, and Yin Yang

Fig. 20. Folding. In this scene, four tablecloths fall on the table one by

one with different orientations. When stacking on each other, complex self-

collisions are generated. Our method can robustly handle this simulation.

There are 492K DOFs in the system, and the simulation runs at 557 ms per

frame.

0 20 40 60 80 100

10-10

10-5

100

Iter

Ours
Newton

0 20 40 60 80 100

10-4

10-2

100

Time (ms)

Ours
Newton

DOFs: 180K

Er
ro

r

Fig. 21. Comparison with Newton method (CPU). We compare the

convergence characteristics of our method against the Newton method

in a simple simulation when a square tablecloth deformed under gravity

with two top corners fixed. For our approach, we employ 32 domains. The

time step size is 1/60. Using gradient magnitude as the error metric, we

analyze the performance based on both iteration counts and runtime (in

milliseconds). The results demonstrate that while the Newton method ex-

hibits significantly faster convergence per iteration, our method requires

less computational time overall, even with a relatively large time step.

guarantees that the resulting simulation is free of interpenetration.

To compare the performance difference between our method and

PD-IPC, we run a simulation involving extensive self-collisions. As

shown in Fig. 16, we pull two strips in opposite directions to create

a tight knot. There are 324K DOFs in the example. Our method

uses 564 ms on average for one time step with 14 L-G iterations. In

this comparison, we choose to use the rank-two aggregated Jacobi

method for PD-IPC. On average, PD-IPC needs 92 L-G iterations.

Similarly to the previous comparison with PD-Jacobi (Fig. 13), our

method takes a longer computation time to complete one L-G itera-

tion with fewer iterations. Therefore, our method has a comparable

performance compared with PD-IPC (544 ms per frame).

Comparison with PD-EXP (GPU). PD-EXP [Lan et al. 2024] uses an

exponential barrier to process collisions so that the barrier does not

depend on the actual distance between primitives. More importantly,

PD-EXP uses a modal subspace preconditioner for the global matrix

solve, which eliminates most low-frequency residual errors. As a

result, Jacobi or aggregated-Jacobi methods become highly effective.

PD-EXP is the fastest simulation method we tested, and it is faster

than our method. In this comparison, we simulate a fashion runway

scene with a walking character using both our method and PD-EXP

as shown in Fig. 17. There are over 1.1M DOFs in this scene. With

ℎ = 1/120, PD-EXP uses 734 ms for one time step while our method

needs 1.06 seconds.

Comparison with Newton method. We also compare our method

with Newton method. In this experiment, a 180K DOFs square table-

cloth deforms under gravity with two corners fixed. We employ 32

domains for our method. Fig. 21 demonstrates that while the New-

ton method exhibits significantly fast convergence per iteration,

our method requires less computational time overall, even with a

relatively large time step (1/60).

7.5 More Results

Figs. 1 and 18 show a set of simulation results using our method.

The virtual avatar performs four different motions, including hand

standing, tossing, dancing, and walking. We simulate the dynam-

ics of diverse types of garments: shorts, t-shirt, fit dress, robe, and

multi-tiered skirt. Our method produces high-quality results in all

examples. The simulated garment dynamics is interesting and realis-

tic. The domain decomposition of each garment model is visualized

in Fig. 1. Please refer to Tab. 1 for detailed timing information and

simulation parameters.

Fig. 19 reports a high-resolution simulation to show the scala-

bility of our method. This experiment simulates the dynamics of

pulling a pair of curtains from the middle to sides, capturing their

trajectories and the formation of wrinkles. There are 6M DOFs in

the simulation. Each curtain has 32 domains making 64 domains in

total, as visualized in the figure. It takes 6.6 seconds to simulate one

time step (ℎ = 1/120).

Our method is able to handle simulations with intensive self-

collision. As shown in Fig. 20, we vertically drop four tablecloths on

a desk. This simple setup is quite challenging for a numerical solver

as the falling cloths involve a large number of self-collisions under

high-velocity movement. We follow the strategy as in C-IPC [Li

et al. 2021] to apply a CCD-based line search filtering by the end of

each time step. There are 492K DOFs. Our method uses 478 ms to

simulate one frame.

7.6 Deformable Objects

While our primary focus is high-resolution cloth simulation on the

CPU, ourmethod can also be used to simulate volumetric deformable

models. Because of the reliance on PD framework, we choose the

ARAP material that can be approximated with quadratic constraints.

To this end, we report two more experiments. In Fig. 22, we dress

the Armadillo in a skirt and drop two of such dressed Armadillos

into a container. During the falling, the Armadillos interact with

several cylinders as well as body-body, body-garment, and garment-

garment collisions. Our method is able to seamlessly handle both

volumetric models and garment meshes. There are 32 domains on

the Armadillo and 16 on the skirt. Each time step takes 204 ms.

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

High-performance CPU Cloth Simulation Using Domain-decomposed Projective Dynamics • 51:15

Fig. 23 shows the other deformable simulation result of a falling

barbarian ship. The ship has a complex geometry, which facilitates

our domain decomposition because it allows small-size domain

interfaces. There are 487K elements on the ship, and our method

simulates one frame using 379 ms.

8 Conclusion & Limitation

In this paper, we propose a cloth simulation framework that is spe-

cially tailored for the CPU platform. We algorithmically integrate

two computational techniques, namely domain decomposition and

projective dynamics to achieve this goal. The core of our method is

to combine a primal-dual formulation of the global PD solve so that

the forward/backward substitution can be parallelized at domains.

This fast global solver, when coupled with a condensed steepest

descent, can effectively handle varying global systems caused by

garment collisions. The local step computation is also changed from

a Jacobi-like relaxation to a hybrid scheme, where pre-computed

GS relaxation is sequentially carried out at each domain, and per-

domain computations are processed concurrently. Together with

a better CCD solver, our method delivers a similar runtime perfor-

mance as the state-of-the-art GPU-based algorithms.

1 2 3

4 5 6

7 8 9

1 2

3 4 5

8 9 10

6 7

11 12

1 2

3 4 5

8 9 10

6 7

11 12

GRR

Fig. 24. Recursive primal-dual

solve. When domains are densely

decomposed, solving the dual vari-

able 𝝀 at duplicate DOFs may be a

large-scale problem as well. However,

they are decoupled by the corner

DOFs (small solid dots), and 𝑮𝑅𝑅

is a sparse block-wise matrix. Two

sets of boundary DOFs (i.e., black

circles) are coupled if and only if

they are shared by a domain. The

denser the decomposition is, the

sparser boundary DOFs are coupled.

Therefore, we can apply another

domain decomposition to the graph

representing the connectivity of

boundary DOFs (as shown on the

right) and solve 𝑮𝑅𝑅 in parallel.

However, modern processors

often feature heterogeneous cores,

such as performance cores and

efficient cores [Jarus et al. 2013].

To fully leverage these heteroge-

neous architectures, the domain

decomposition strategy must be

adapted accordingly. Addition-

ally, it is of great interest to de-

ploy the proposed multi-domain

solver on the GPU. A GPU

thread can only efficiently pro-

cess small-size 𝑲 𝑗
𝑅𝑅 , necessitat-

ing a densely decomposed do-

main structure. This results in a

high-dimensional dual problem

for solving 𝝀 and a large-scale

𝑮𝑅𝑅 as described in Eq. (9). For-

tunately, our primal-dual global

solve algorithm can be recur-

sively applied to address 𝑮𝑅𝑅 , of-

fering a potential solution to this

challenge (Fig. 24). In the future,

we will also explore the possibil-

ity of applying our algorithm on

mobile devices like smartphones and tablets, where the hardware

resource is constrained.

Our method is not without limitations. First, it does not explic-

itly address collision handling. The CPU faces inherent challenges

in managing a large number of collision pairs, making it less effi-

cient than the GPU for collision processing. As reported in Tab. 1,

collision detection represents a significant portion of the total com-

putation time. Our method incorporates with PD framework, this

local-global alternation scheme is only applicable to certain ideal-

ized material models, and its extension to more complex, real-world

materials is less straightforward. We recommend [Liu et al. 2017] for

more details. Furthermore, generalizing our method to other non-

linear solvers such as ADMM presents challenges. Unlike Projective

Dynamics, which utilizes a quadratic energy formulation with a con-

stant system matrix, ADMM accommodates nonlinear constitutive

models and dynamic constraints. This nonlinearity fundamentally

complicates the prefactorization strategy, as systemmatrices change

between iterative steps. The problem of efficiently updating inter-

mediate matrices in interative-time or even in real-time remains

an open research question, with no straightforward extension of

our current approach being immediately apparent. We will keep

explore adapting the proposed multi-domain PD solver to handle a

broader range of material behaviors in a more general optimization

framework. Currently, our approach assumes that all CPU cores

have similar computational capabilities and subdivides the mesh

into domains of roughly equal sizes.

Acknowledgments

We thank reviewers for their detailed and constructive comments.

Chenfanfu Jiang is partially supported by NSF 2153851 and TRI. Yin

Yang is partially supported by NSF under grant number 2301040.

References
Steven S An, Theodore Kim, and Doug L James. 2008. Optimizing cubature for efficient

integration of subspace deformations. ACM transactions on graphics (TOG) 27, 5
(2008), 1–10.

David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceed-
ings of the 25th annual conference on Computer graphics and interactive techniques
(SIGGRAPH ’98). Association for Computing Machinery, New York, NY, USA, 43–54.

Jernej Barbič and Yili Zhao. 2011. Real-time large-deformation substructuring. ACM
transactions on graphics (TOG) 30, 4 (2011), 1–8.

Klaus-Jürgen Bathe. 2006. Finite element procedures. Klaus-Jurgen Bathe.
Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun. 2006.

A quadratic bending model for inextensible surfaces. In Proceedings of the Fourth
Eurographics Symposium on Geometry Processing (Cagliari, Sardinia, Italy) (SGP ’06).
Eurographics Association, Goslar, DEU, 227–230.

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. 2003. The GPU as numerical
simulation engine. In SIGGRAPH 2003. Citeseer.

Folkmar A Bornemann and Peter Deuflhard. 1996. The cascadic multigrid method for
elliptic problems. Numer. Math. 75 (1996), 135–152.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. Acm
Transactions On Graphics 33, 4 (2014), 154.

R. Bridson, S. Marino, and R. Fedkiw. 2005. Simulation of clothing with folds and
wrinkles. In ACM SIGGRAPH 2005 Courses on - SIGGRAPH ’05. ACM Press, Los
Angeles, California, 3.

Hsiao-Yu Chen, Arnav Sastry, Wim M van Rees, and Etienne Vouga. 2018. Physical
simulation of environmentally induced thin shell deformation. ACM Transactions
on Graphics (TOG) 37, 4 (2018), 1–13.

Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam.
2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and
Update/Downdate. ACM Trans. Math. Softw. 35, 3 (Oct. 2008), 22:1–22:14.

Kwang-Jin Choi and Hyeong-Seok Ko. 2002. Stable but responsive cloth. ACM Trans.
Graph. 21, 3 (July 2002), 604–611.

Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal warping: Real-time simulation of
large rotational deformation and manipulation. IEEE Transactions on Visualization
and Computer Graphics 11, 1 (2005), 91–101.

Olaf Etzmuß, Michael Keckeisen, and Wolfgang Straßer. 2003. A fast finite element
solution for cloth modelling. In 11th Pacific Conference onComputer Graphics and
Applications, 2003. Proceedings. IEEE, 244–251.

Charbel Farhat, Michel Lesoinne, Patrick LeTallec, Kendall Pierson, and Daniel Rixen.
2001. FETI-DP: a dual–primal unified FETI method—part I: A faster alternative to the
two-level FETI method. Numerical Meth Engineering 50, 7 (March 2001), 1523–1544.

Charbel Farhat, Antonini Macedo, Michel Lesoinne, Francois-Xavier Roux, Frédéric
Magoulés, and Armel de La Bourdonnaie. 2000. Two-level domain decomposition

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

51:16 • Zixuan Lu, Ziheng Liu, Lei Lan, Huamin Wang, Yuko Ishiwaka, Chenfanfu Jiang, Kui Wu, and Yin Yang

Fig. 22. Dressed Armadillo. Two dressed Armadillos fall into a container. This example includes a rich set of interactions, including the self-collisions between

deformable bodies, self-collisions between garments, body-garment collisions, body-collider collisions, and garment-collider collisions. Those interactions are

unfirmly processed in our framework. There are 32 domains on the Armadillo and 16 domains on the garment. On average, each time step takes 204 ms, and

there are 150K DOFs in the scene.

Fig. 23. Barbarian ship on the stair. In this example, the barbarian ship slides down on a spiral stair. There are 487K tetrahedron elements on the ship,

which is decomposed into 64 domains. Our method uses 379 ms to simulate one time step, which on average needs 10 L-G iterations.

methods with Lagrange multipliers for the fast iterative solution of acoustic scat-
tering problems. Computer methods in applied mechanics and engineering 184, 2-4
(2000), 213–239.

Charbel Farhat and Francois-Xavier Roux. 1991. A method of finite element tearing
and interconnecting and its parallel solution algorithm. Numerical Meth Engineering
32, 6 (Oct. 1991), 1205–1227.

Sergiy Fialko. 2019. Parallel algorithms for forward and back substitution in linear
algebraic equations of finite element method. Journal of telecommunications and
information technology (2019).

Marco Fratarcangeli, Valentina Tibaldo, Fabio Pellacini, et al. 2016. Vivace: a practical
gauss-seidel method for stable soft body dynamics. ACM Trans. Graph. 35, 6 (2016),
214–1.

Theodore F. Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M.
Teran. 2015. Optimization Integrator for Large Time Steps. IEEE Transactions on
Visualization and Computer Graphics 21, 10 (2015), 1103–1115.

Joachim Georgii and Rüdiger Westermann. 2006. A Multigrid Framework for Real-Time
Simulation of Deformable Bodies. Comput. Graph. 30, 3 (jun 2006), 408–415.

Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun.
2007. Efficient simulation of inextensible cloth. In ACM SIGGRAPH 2007 Papers (San
Diego, California) (SIGGRAPH ’07). Association for Computing Machinery, New
York, NY, USA, 49–es.

Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete
shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (San Diego, California) (SCA ’03). Eurographics Association, Goslar,
DEU, 62–67.

Gaël Guennebaud, Benoit Jacob, et al. 2010. Eigen. URl: http://eigen. tuxfamily. org 3, 1
(2010), 8.

William W Hager. 1989. Updating the inverse of a matrix. SIAM review 31, 2 (1989),
221–239.

Donald House and David Breen. 2000. Cloth modeling and animation. CRC Press.
Mateusz Jarus, Sébastien Varrette, Ariel Oleksiak, and Pascal Bouvry. 2013. Performance

evaluation and energy efficiency of high-density HPC platforms based on Intel, AMD
and ARM processors. In Energy Efficiency in Large Scale Distributed Systems: COST
IC0804 European Conference, EE-LSDS 2013, Vienna, Austria, April 22-24, 2013, Revised
Selected Papers. Springer, 182–200.

Tero Karras. 2012. Maximizing parallelism in the construction of BVHs, octrees, and
k-d trees. In Proceedings of the Fourth ACM SIGGRAPH/Eurographics Conference on
High-Performance Graphics. 33–37.

George Karypis and Vipin Kumar. 1997. METIS: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing orderings of
sparse matrices. (1997). https://conservancy.umn.edu/handle/11299/215346

L. Kharevych, Weiwei Yang, Y. Tong, E. Kanso, J. E. Marsden, P. Schröder, and M.
Desbrun. 2006. Geometric, Variational Integrators for Computer Animation. In
Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (Vienna, Austria) (SCA ’06). Eurographics Association, Goslar, DEU,
43–51.

Theodore Kim. 2020. A Finite Element Formulation of Baraff-Witkin Cloth. In Computer
Graphics Forum, Vol. 39. Wiley Online Library, 171–179.

Theodore Kim and Doug L James. 2011. Physics-based character skinning us-
ing multi-domain subspace deformations. In Proceedings of the 2011 ACM SIG-
GRAPH/eurographics symposium on computer animation. 63–72.

Lei Lan, Zixuan Lu, Jingyi Long, Chun Yuan, Xuan Li, Xiaowei He, Huamin Wang,
Chenfanfu Jiang, and Yin Yang. 2024. Efficient GPU Cloth Simulation with Non-
distance Barriers and Subspace Reuse. ACM Transactions on Graphics (TOG) 43, 6
(2024), 1–16.

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

High-performance CPU Cloth Simulation Using Domain-decomposed Projective Dynamics • 51:17

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang.
2022. Penetration-free projective dynamics on the GPU. ACM Transactions on
Graphics (TOG) 41, 4 (2022), 1–16.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental potential
contact: intersection-and inversion-free, large-deformation dynamics. ACM Trans.
Graph. 39, 4 (Aug. 2020), 49:49:1–49:49:20.

Minchen Li, Ming Gao, Timothy Langlois, Chenfanfu Jiang, and Danny M Kaufman.
2019. Decomposed optimization time integrator for large-step elastodynamics. ACM
Transactions on Graphics (TOG) 38, 4 (2019), 1–10.

Minchen Li, DannyM Kaufman, and Chenfanfu Jiang. 2021. Codimensional incremental
potential contact. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–24.

Xuan Li, Yu Fang, Lei Lan, Huamin Wang, Yin Yang, Minchen Li, and Chenfanfu Jiang.
2023. Subspace-Preconditioned GPU Projective Dynamics with Contact for Cloth
Simulation. In SIGGRAPH Asia 2023 Conference Papers (Sydney, NSW, Australia) (SA
’23). Association for Computing Machinery, New York, NY, USA, Article 1, 12 pages.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast
simulation of mass-spring systems. ACM Trans. Graph. 32, 6 (Nov. 2013), 1–7.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-newton methods for
real-time simulation of hyperelastic materials. Acm Transactions on Graphics (TOG)
36, 3 (2017), 1–16.

Zixuan Lu, Xiaowei He, Yuzhong Guo, Xuehui Liu, and Huamin Wang. 2024. Projective
Peridynamic Modeling of Hyperelastic Membranes With Contact. IEEE Transactions
on Visualization and Computer Graphics 30, 8 (2024), 4601–4614.

Mickaël Ly, Jean Jouve, Laurence Boissieux, and Florence Bertails-Descoubes. 2020.
Projective dynamics with dry frictional contact. ACM Transactions on Graphics
(TOG) 39, 4 (2020), 57–1.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based
simulation of compliant constrained dynamics. In Proceedings of the 9th International
Conference on Motion in Games. 49–54.

Richard H MacNeal. 1971. A hybrid method of component mode synthesis. Computers
& Structures 1, 4 (1971), 581–601.

A. McAdams, E. Sifakis, and J. Teran. 2010. A Parallel Multigrid Poisson Solver for Fluids
Simulation on Large Grids. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Madrid, Spain) (SCA ’10). Eurographics Associ-
ation, Goslar, DEU, 65–74.

Jeroen Molemaker, Jonathan M. Cohen, Sanjit Patel, and Jonyong Noh. 2008. Low
Viscosity Flow Simulations for Animation. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Dublin, Ireland) (SCA
’08). Eurographics Association, Goslar, DEU, 9–18.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109–118.

James O’Brien, Kris Hauser, and Chen Shen. 2003. Interactive Deformation Using Modal
Analysis with Constraints. Graphics Interface 3 (05 2003).

Albert Peiret, Sheldon Andrews, József Kövecses, Paul G. Kry, and Marek Teichmann.
2019. Schur Complement-based Substructuring of Stiff Multibody Systems with
Contact. ACM Trans. Graph. 38, 5, Article 150 (Oct. 2019), 17 pages. doi:10.1145/
3355621

A. Pentland and J. Williams. 1989. Good Vibrations: Modal Dynamics for Graphics and
Animation. SIGGRAPH Comput. Graph. 23, 3 (jul 1989), 207–214.

Chuck Pheatt. 2008. Intel® threading building blocks. Journal of Computing Sciences in
Colleges 23, 4 (2008), 298–298.

Xavier Provot et al. 1995. Deformation constraints in a mass-spring model to describe
rigid cloth behaviour. InGraphics interface. Canadian Information Processing Society,
147–147.

TR Scavo and JB Thoo. 1995. On the geometry of Halley’s method. The American
mathematical monthly 102, 5 (1995), 417–426.

Barry F Smith. 1997. Domain decomposition methods for partial differential equations.
In Parallel numerical algorithms. Springer, 225–243.

Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed Aggregation
Multigrid for Cloth Simulation. ACM Trans. Graph. 34, 6, Article 245 (nov 2015),
13 pages.

Min Tang, Ruofeng Tong, Rahul Narain, Chang Meng, and Dinesh Manocha. 2013. A
GPU-based streaming algorithm for high-resolution cloth simulation. In Computer
Graphics Forum, Vol. 32. Wiley Online Library, 21–30.

Bernhard Thomaszewski, Simon Pabst, and Wolfgang Strasser. 2009. Continuum-based
strain limiting. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 569–576.

Andrea Toselli and Olof Widlund. 2006. Domain decomposition methods-algorithms and
theory. Vol. 34. Springer Science & Business Media.

Ulrich Trottenberg, Cornelius W. Oosterlee, Anton Schuller, and Achi Brandt. 2001.
Multigrid. Academic Press.

Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure. 2009. A simple approach
to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28, 4,
Article 105 (Sept. 2009), 16 pages.

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, Yajuan
Wang, Endong Wang, Qing Zhang, Bo Shen, et al. 2014. Intel math kernel library.
High-Performance Computing on the Intel® Xeon Phi™: How to Fully Exploit MIC
Architectures (2014), 167–188.

Huamin Wang. 2015. A chebyshev semi-iterative approach for accelerating projective
and position-based dynamics. ACM Trans. Graph. 34, 6 (Nov. 2015), 246:1–246:9.

Huamin Wang, James O’Brien, and Ravi Ramamoorthi. 2010. Multi-resolution isotropic
strain limiting. ACM Transactions on Graphics (TOG) 29, 6 (2010), 1–10.

Huamin Wang, James F O’Brien, and Ravi Ramamoorthi. 2011. Data-driven elastic
models for cloth: modeling and measurement. ACM transactions on graphics (TOG)
30, 4 (2011), 1–12.

Zhendong Wang, Longhua Wu, Marco Fratarcangeli, Min Tang, and Huamin Wang.
2018. Parallel multigrid for nonlinear cloth simulation. Computer Graphics Forum
37, 7 (10 2018), 131–141.

Zhendong Wang, Yin Yang, and Huamin Wang. 2023. Stable Discrete Bending by
Analytic Eigensystem and Adaptive Orthotropic Geometric Stiffness. ACM Trans.
Graph. 42, 6 (Dec. 2023), 1–16. doi:10.1145/3618372

Botao Wu, ZhendongWang, and Huamin Wang. 2022. A GPU-based multilevel additive
schwarz preconditioner for cloth and deformable body simulation. ACMTransactions
on Graphics (TOG) 41, 4 (2022), 1–14.

Longhua Wu, Botao Wu, Yin Yang, and Huamin Wang. 2020. A safe and fast repulsion
method for GPU-based cloth self collisions. ACM Transactions on Graphics (TOG)
40, 1 (2020), 1–18.

Xiaofeng Wu, Rajaditya Mukherjee, and Huamin Wang. 2015. A unified approach for
subspace simulation of deformable bodies in multiple domains. ACM Transactions
on Graphics (TOG) 34, 6 (2015), 1–9.

Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A Scalable Galerkin Multigrid
Method for Real-Time Simulation of Deformable Objects. ACM Trans. Graph. 38, 6,
Article 162 (nov 2019), 13 pages.

Hongyi Xu, Funshing Sin, Yufeng Zhu, and Jernej Barbič. 2015. Nonlinear material
design using principal stretches. ACM Transactions on Graphics (TOG) 34, 4 (2015),
1–11.

Ichitaro Yamazaki, Sivasankaran Rajamanickam, Erik G Boman, Mark Hoemmen,
Michael A Heroux, and Stanimire Tomov. 2014. Domain decomposition precondi-
tioners for communication-avoiding Krylov methods on a hybrid CPU/GPU cluster.
In SC’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 933–944.

Yin Yang, Weiwei Xu, Xiaohu Guo, Kun Zhou, and Baining Guo. 2013. Boundary-aware
multidomain subspace deformation. IEEE transactions on visualization and computer
graphics 19, 10 (2013), 1633–1645.

Cem Yuksel. 2022. High-Performance Polynomial Root Finding for Graphics. Proc.
ACM Comput. Graph. Interact. Tech. 5, 3, Article 27 (July 2022), 15 pages.

Cyril Zeller. 2005. Cloth simulation on the GPU. In ACM SIGGRAPH 2005 Sketches (Los
Angeles, California) (SIGGRAPH ’05). Association for Computing Machinery, New
York, NY, USA, 39–es.

Jiayi Eris Zhang, Jérémie Dumas, Yun Fei, Alec Jacobson, Doug L James, and Danny M
Kaufman. 2022. Progressive simulation for cloth quasistatics. ACM Transactions on
Graphics (TOG) 41, 6 (2022), 1–16.

Jiayi Eris Zhang, Doug James, and Danny M Kaufman. 2024. Progressive Dynamics for
Cloth and Shell Animation. ACM Transactions on Graphics (TOG) 43, 4 (2024), 1–18.

Yili Zhao and Jernej Barbič. 2013. Interactive authoring of simulation-ready plants.
ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–12.

ACM Trans. Graph., Vol. 44, No. 4, Article 51. Publication date: August 2025.

