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Fig. 1. Given a reference embroidery image (Columns 1 and 4), our method is capable of generating novel embroidery images (Columns 3 and 5) based on
either image inputs (Column 2) or textual descriptions (Column 5). These outputs can be seamlessly integrated with ACE++ [Mao et al. 2025] to produce
decorative images for virtual display applications (Column 6). Furthermore, our approach demonstrates strong generalization across a range of visual attribute
transfer tasks, including artistic style transfer (Row 1, last column), sketch colorization (Row 2, last column), and appearance transfer (Row 3, last column).
Pink flower design (Row 3, Column 2) © Vecteezy.
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Diffusion models have significantly advanced image manipulation tech-
niques, and their ability to generate photorealistic images is beginning to
transform retail workflows, particularly in presale visualization. Beyond
artistic style transfer, the capability to perform fine-grained visual feature
transfer is becoming increasingly important. Embroidery is a textile art form
characterized by intricate interplay of diverse stitch patterns and material
properties, which poses unique challenges for existing style transfer meth-
ods. To explore the customization for such fine-grained features, we propose
a novel contrastive learning framework that disentangles fine-grained style
and content features with a single reference image, building on the clas-
sic concept of image analogy. We first construct an image pair to define
the target style, and then adopt a similarity metric based on the decoupled
representations of pretrained diffusion models for style-content separation.
Subsequently, we propose a two-stage contrastive LoRA modulation tech-
nique to capture fine-grained style features. In the first stage, we iteratively
update the whole LoRA and the selected style blocks to initially separate
style from content. In the second stage, we design a contrastive learning
strategy to further decouple style and content through self-knowledge dis-
tillation. Finally, we build an inference pipeline to handle image or text
inputs with only the style blocks. To evaluate our method on fine-grained
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style transfer, we build a benchmark for embroidery customization. Our
approach surpasses prior methods on this task and further demonstrates
strong generalization to three additional domains: artistic style transfer,
sketch colorization, and appearance transfer. Our project is available at:
https://style3d.github.io/embroidery_customization.

CCS Concepts: • Computing methodologies→ Image manipulation;
Machine learning approaches.
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1 INTRODUCTION
Visual attribute transfer [Efros and Freeman 2001; Hertzmann et al.
2001; Liao et al. 2017] represents a fundamental challenge in image
manipulation, involving the separation and recombination of style
and content [Tenenbaum and Freeman 1996], and is revitalized by
recent advances in diffusion-based generative models [Podell et al.
2023; Rombach et al. 2022], particularly in the domain of artistic
style transfer [Wang et al. 2024; Zhang et al. 2023b; Zhou et al. 2025].
Beyond virtual display, diffusion models now generate high-quality,
photorealistic images from customized instructions, often outper-
forming traditional 3D modeling and rendering. This capability is
beginning to transform and even revolutionize retail workflows
under the "sell it before you make it" paradigm [Lin et al. 2025],
offering a novel approach to inventory challenges. However, con-
trollability over fine-grained structural elements such as embroidery
or real-world textiles remains a key challenge.
Embroidery is an intricate textile art characterized by the struc-

tured arrangement of diverse yarns and materials, as shown in Fig. 1.
Customization of embroidery styles poses unique challenges for
existing methods in visual style transfer. To begin with, relying
solely on pretrained models often fails to generalize to unseen em-
broideries [Chung et al. 2024; Wang et al. 2024], while fine-tuning
on large-scale datasets [Qi et al. 2024; Xing et al. 2024] also proves
ineffective due to data scarcity and complex intra-class variation in
embroidery patterns. Furthermore, general style transfer often treats
color as a key component of style [Frenkel et al. 2025], whereas em-
broidery style focuses on high-frequency structural textures, largely
independent of color, causing existing network block selection meth-
ods to struggle with separating embroidery style from its graphic
design content. Additionally, other effective constraints for general
style disentanglement can still have difficulty in capturing complex
embroidery styles [Jones et al. 2024], as shown in Fig. 2.
To address these challenges, we propose a novel framework for

fine-grained style customization, with embroidery as a representa-
tive case. Our main idea is to employ contrastive learning with a
single reference image to achieve style–content disentanglement,
which comprises three aspects: Firstly, we revisit the classic concept
from image analogy [Efros and Freeman 2001] by constructing a
single image pair to define a style, to reduce ambiguity and avoid
inconsistency among different style images. Secondly, we adopt a
metric to measure feature similarity within an image pair and cross

Fig. 2. Challenges in embroidery customization. Given a reference embroi-
dery, SDXL [Podell et al. 2023] generates dissimilar style with merely text
input "blue butterfly embroidery patch with sequins". Attention Distilla-
tion [Zhou et al. 2025] and PairCustomization [Jones et al. 2024] both fail to
capture sequin structure and yarns while maintainig the pink flower design,
comparing to Ours. Pink flower design (Row 1, Column 2) © Vecteezy.

image pairs, leveraging the decoupled representations [Liao et al.
2017] of pretrained diffusion models. Finally, we design a contrastive
LoRA [Ryu 2022] modulation technique named EmoLoRA, to first
capture style features in selected blocks, and then further decouple
style from content with self-knowledge distillation.
Specifically, our framework comprises the following steps: pair-

wise data construction, analysis on SDXL, contrastive LoRA learning
and model inference. For a reference embroidery image, we lever-
age the prior knowledge in SD3 [Esser et al. 2024] combined with
ControlNets [Zhang et al. 2023c], to generate its graphic design
image. Then we analyze SDXL by computing the cosine similarity
between the constructed image pair in an inversion-reconstruction
pipeline [Garibi et al. 2024], using self-attention output features in
each transformer block. Blocks with low feature similarity demon-
strate closer correlation to the specified style, which is the main
distinction between the image pair. After data preparation andmodel
analysis, we design a two-stage contrastive LoRA learning strategy,
to alleviate the overfitting and "content leakage" issue of the stan-
dard LoRA. In the first stage, we iteratively update the whole LoRA
and the selected style blocks with supervision on the generated
graphic design and the reference embroidery image, respectively.
This modulation mechanism constrains the style into the selected
blocks while leaves major content features to the other blocks. In the
second stage, we use the trained LoRA to generate complementary
data and apply contrastive learning on the noised latent feature
space [Dalva and Yanardag 2024], to further decouple style and con-
tent in the style blocks. Finally, we build a model inference pipeline
to handle image or text inputs with only the style blocks.

Our main contributions are summarized as follows:
• We propose a novel contrastive learning framework for fine-
grained style customization, by constructing an image pair to
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define a style and designing a contrastive LoRA modulation
technique to decouple style and content.
• We introduce a new task, one-shot embroidery customiza-
tion, which poses unique challenges with intricate structural
features, and conduct analysis to verify its potential in trans-
forming real-world embroidery workflows.
• We outperform existing approaches in separating embroidery
style from design content and exhibit strong generalization to
three additional domains: artwork-photo, color-sketch, and
appearance-structure.

2 RELATED WORK
Diffusion-based Image Synthesis. Image synthesis has achieved

tremendous progress with the rise of diffusion-based generative
models [Dhariwal and Nichol 2021; Ho et al. 2020; Peebles and Xie
2023; Rombach et al. 2022; Sohl-Dickstein et al. 2015]. Harnessing
the generative power of pre-trained text-to-image models, various
applications in personalization / customization [Kumari et al. 2023;
Tang et al. 2024; Tewel et al. 2023; Zhang et al. 2023a] are devel-
oped. Given a small image set in a new concept, Dreambooth [Ruiz
et al. 2023] adapts the model via finetuning, while TI [Gal et al.
2022] finds the embeddings in the textual feature space. LoRA is
a PEFT method [Houlsby et al. 2019] to adapt large language [Hu
et al. 2021] or vision [Ryu 2022] models to downstream tasks. Re-
cent works [Mou et al. 2024; Ye et al. 2023; Zhang et al. 2023c]
propose plug-and-play adapters that enable controllable image gen-
eration by modulating the generative process without retraining
the base model. To handle image editing and translating [Brooks
et al. 2023; Kawar et al. 2023; Nichol et al. 2021; Valevski et al. 2023],
SDEdit [Meng et al. 2021] first adds noise to the input image and
then denoises it through the SDE prior, while [Hertz et al. 2022;
Tumanyan et al. 2023] adopt an inversion [Mokady et al. 2023; Song
et al. 2020] pipeline and attention feature manipulation [Liu et al.
2024]. Due to the limited expressiveness of text for fine-grained
spacial features, we mainly explore LoRA-based methods to lever-
age the representation capacity of pretrained diffusion models, and
propose to further decouple these features for style customization
during finetuning.

Visual Attribute Transfer. Visual attribute transfer [Efros and Free-
man 2001; Hertzmann et al. 2001] aims to transform an image to
adopt the style of another, encompassing elements such as color,
texture, local structures, and artistic style. Neural style transfer ap-
proaches have evolved from early CNN-based frameworks [Gatys
et al. 2016; Huang and Belongie 2017; Johnson et al. 2016; Li et al.
2017; Park and Lee 2019; Zhang et al. 2022], to adversarial learn-
ing with GANs [Goodfellow et al. 2014; Isola et al. 2017; Karras
2019; Karras et al. 2020; Park et al. 2020; Zhu et al. 2017], and more
recently to transformer architectures leveraging self-attention for
global context [Wu et al. 2021]. The rapid development of text-to-
image diffusion models has also sparked their adaptation to style
transfer tasks, including exploring the textual feature space [Li et al.
2025; Qi et al. 2024; Yang et al. 2023; Zhang et al. 2023b], manipu-
lating the attention features [Chung et al. 2024; Deng et al. 2023;
Hertz et al. 2024], leveraging plug-and-play adapters [Wang et al.
2024], finetuning LoRAs [Frenkel et al. 2025; Jones et al. 2024; Shah

et al. 2025], and formulating the problem using stochastic optimal
control [Rout et al. 2024] with an existing style descriptor [Somepalli
et al. 2024]. However, these methods fall short when handling in-
tricate structural styles such as embroidery, where color serves as
content rather than style, and high-frequency structural textures,
commonly neglected in artistic style transfer, play a central role in
characterizing style. A detailed discussion is provided in Sec. 4.2.
Sketch colorization [Li et al. 2022; Yan et al. 2025; Zhang et al. 2021]
and appearance transfer [Alaluf et al. 2024; Kwon and Ye 2022; Tu-
manyan et al. 2022] are slightly different problems than artistic
style transfer, as they have different definition of style and content,
and potentially involve semantic correspondence between refer-
ence and target images. Attention Distillation [Zhou et al. 2025]
transfers style or appearance using distillation loss on pretrained
attention features, yet still has difficulty in separating structural
embroidery styles from color content, as presented in Fig. 2. Fur-
thermore, diffusion-based image analogy frameworks propose a
more generic approach for visual attribute transfer. DIA [Šubrtová
et al. 2023] focuses on high-level semantics and represents 𝐴 : 𝐴′
in CLIP embedding space, while Analogist [Gu et al. 2024] uses
GPT-4V [Achiam et al. 2023] to reason the analogy 𝐴 : 𝐴′ :: 𝐵 : 𝐵′
and relies on textual descriptions to capture style, both are limited
in capturing fine-grained styles like embroidery. In this work, we
propose a novel framework to capture intricate structural styles
at a fine-grained level, thereby addressing challenges more closely
aligned with real-world applications.

Embroidery Synthesis. Embroidery is a decorative fabric art form
[Nichols 2012; Pile 2018] that can take on various styles, each ex-
hibiting distinct visual characteristics due to the use of different
yarns and stitches, as well as materials such as pearls, beads, and se-
quins (Fig. 1 and 5). For example, chenille embroidery creates a fuzzy,
textured surface with looped yarn (Row 2, Column 4 in Fig. 1), while
sequin embroidery incorporates reflective discs secured by stitches
for added sparkle (Row 3, Column 1 in Fig. 1). Contemporary embroi-
dery design heavily relies on specialized CAD software (e.g., Wilcom
EmbroideryStudio1) that translates digital artwork into machine-
readable stitch instructions, but the process still involves extensive
manual operation and often lacks fully satisfactory visualizations.
Automated embroidery synthesis has continued to attract interest
as a specialized but intriguing topic in computer graphics and dig-
ital fabrication. Early approaches model flat embroidery in 3D by
incorporating three fundamental stitch types—long-short, satin, and
stem/edge stitches—into geometric representations [Chen et al. 2012;
Cui et al. 2017]. Subsequent work focuses on simulating random-
needle embroidery using vector fields or stitch primitives, followed
by multilayer rendering techniques to enhance visual fidelity [Ma
and Sun 2022; Yang and Sun 2018; Yang et al. 2012]. To improve
rendering realism, intrinsic image decomposition is introduced to
preserve the illumination of input photographs during the synthesis
process [Shen et al. 2017]. The manual specification of stitch types
is further alleviated by segmenting input images into subregions,
assigning appropriate stitch categories to each segment, and synthe-
sizing embroidery textures via UV mapping [Guan et al. 2021]. More
recent approaches leverage deep neural networks and adversarial
1https://wilcom.com/
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Fig. 3. An overview of our framework. (1) Pair-wise data construction: We build a pipeline to process the reference embroidery into its graphic design;
(2) First-stage training: Given the embroidery-design pair, we iteratively train a LoRA 𝜃𝑎 to initially decouple style and content; (3) Complementary data
generation: We generate more embroidery-design pairs with the trained LoRA from the first stage; (4) Second-stage contrastive learning: We conduct
contrastive learning to further decouple style and content in embroidery LoRA blocks 𝜃𝑒 using the reference and a generated emb-des pair; (5) Model inference:
We use the trained embroidery LoRA 𝜃𝑒 to conduct text/image-based customization.

learning to directly generate embroidery-like imagery [Yang et al.
2022; Ye et al. 2021]. Empowered by supervised deep learning, stitch
types in segmented subregions can be explicitly classified using
annotated datasets [Hu et al. 2024]. Beyond visual realism, recent
efforts have also explored the generation of machine-fabricable em-
broidery patterns. For example, Liu et al. [2023] propose a method
that uses user-defined directional cues and vector field analysis to
derive continuous streamlines suitable for machine stitching. In
contrast to prior methods, our approach takes as input a reference
embroidery image and a natural language prompt, and generates a
customized embroidery image. It supports a wide variety of stitches
and materials without relying on explicit stitch-type labeling or
manual annotations.

3 METHOD
In this section, we introduce our contrastive learning framework for
fine-grained style customization, using embroidery as a representa-
tive case. Given a reference embroidery image 𝐼 , our objective is to

generate embroidery images that replicate the same style, encom-
passing stitches, yarns, accessories, and other prominent structural
features. To enable contrastive learning with a single reference im-
age, we first introduce a pair-wise data constructionmodule for style
definition in Sec. 3.1 and a similarity metric for identifying style
features in Sec. 3.2. Building on this foundation, we then present
our two-stage contrastive LoRA learning strategy for style-content
disentanglement in Sec. 3.3. Finally, we describe our model inference
in Sec. 3.4. An overview of our framework is in Fig. 3.

3.1 Pair-wise Data Construction
Given a single reference embroidery image, our goal is to disen-
tangle style from content to provide supervision for contrastive
learning. While embroidery style is abstract and difficult to cap-
ture explicitly, design content is comparatively easier to represent.
To this end, we construct a data pipeline that generates a corre-
sponding graphic design image, thereby defining style through a
data pair in the spirit of image analogy [Efros and Freeman 2001].
In this embroidery-to-design module, we adopt the text-to-image
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Fig. 4. Base model analysis and ablation study. (a) Average cosine similarity of self-attention outputs between all paired embroidery and design images in our
reference set. A cosine similarity of 1 indicates that the block produces nearly identical features for an embroidery-design pair, implying that it primarily
represents non-embroidery content. (b) Ablation study on three reference embroidery examples.

pipeline of SD3 [Esser et al. 2024] with ControlNet [Zhang et al.
2023c]. Specifically, we utilize the HEDdetector [Xie and Tu 2015] to
detect rough edges of the embroidery image, and then send the edge
image to ControlNet-Canny. In this way, the design structure is well
preserved, while the embroidery stitches are effectively removed. To
preserve color fidelity and enhance generation quality, we send the
blurred embroidery image into a ControlNet-Tile branch. Moreover,
we useWD14 [SmilingWolf 2023] to generate captions as the prompt
with "flat design, vector graphic design, digital design, cartoon design,
clean lines, uniform color blocks, smooth surface, high quality" and
thus achieve better preservation of the design content. Empirically,
we find that using the pipeline with SD3 yields better results than
SDXL, which is probably due to differences in their pretraining
datasets. While our embroidery-to-design module may not general-
ize directly to other styles, the underlying concept of pair-wise data
construction can be adapted through alternative means.

3.2 Analysis on SDXL
Inspired by B-LoRA [Frenkel et al. 2025], we leverage the decoupled
representations of pretrained diffusion models and employ different
LoRA blocks to separate style and content. Unlike B-LoRA, however,
embroidery style cannot be captured by a single block entangled
with color information, as it is largely independent of color, nor can
a single content block fully reconstruct the detailed design. Building
on prior findings [Liu et al. 2024; Tumanyan et al. 2023] that self-
attention features in the UNet of diffusion models encode spatial
structure, including high-frequency details, we introduce a similarity
metric to guide the selection of network blocks most suitable for
capturing a specified style. We adopt SDXL as our base model for
its higher resolution, improved visual fidelity, and more naturally
decoupled attention features compared to SD3. In this work, we
employ ReNoise [Garibi et al. 2024], an inversion technique that
achieves higher reconstruction quality than DDIM [Song et al. 2020],

and leverage the output features of each self-attention layer in the
image reconstruction process to compare differences between each
embroidery-design pair. Let F𝑖 denote the input feature to a self-
attention layer, and 𝑓

𝑞

𝑖
(·), 𝑓 𝑘

𝑖
(·), 𝑓 𝑣

𝑖
(·) and 𝑓 𝑜

𝑖
(·) be the projection

layers for query, key, value and output, respectively. We have Q𝑖 =

𝑓
𝑞

𝑖
(F𝑖 ), K𝑖 = 𝑓 𝑘

𝑖
(F𝑖 ), V𝑖 = 𝑓 𝑣

𝑖
(F𝑖 ), and 𝑑𝑘 as the dimensionality of

query and key. The output self-attention feature is:

F𝑜𝑖 = 𝑓 𝑜𝑖 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
Q𝑖K𝑇𝑖√︁
𝑑𝑘

)V𝑖 ) . (1)

For each block, we compute the average cosine similarity of all
F𝑜
𝑖
between an embroidery-design pair. Since the whole generation

process consists of 50 steps, we divide them into 10 sections and
compute the average. Empirically, we find the similarity matrix for
the collected reference embroidery set share the same relative scale
and thus adopt their average as shown in Fig. 4 (a), where a cosine
similarity of 1 indicates that the block produces nearly identical
features for an embroidery-design pair, implying that it primarily
represents non-embroidery content. We notice that down_blocks
1.1, 2.0 and up_blocks 0.1, 0.2 show more correlation to embroidery
features as they differ more between embroidery and design. The
difference is more significant in later stages of the denoising process,
mainly because embroidery style is more related to delicate low-
level image features than rough high-level semantic features.

3.3 Contrastive LoRA Learning
With the constructed embroidery-design pairs and network feature
analysis, we now present a two-stage contrastive LoRA learning
strategy named EmoLoRA, as in Alg. 1, that captures embroidery
style from a single reference while alleviating overfitting of standard
LoRA [Ryu 2022]. In this work, LoRA is applied to the attention lay-
ers of the UNet backbone. During the first stage, we train EmoLoRA
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ALGORITHM 1: Two-stage Contrastive EmoLoRA Learning
Input: Constructed embroidery-design image pair (𝐼𝑒𝑚𝑏 , 𝐼𝑑𝑒𝑠 ) , text

pair ("a <des> in [emb] style", "a <des>"), SDXL base model
𝜃 0, EmoLoRA 𝜃𝑎 , selected embroidery blocks 𝜃𝑒 of
EmoLoRA, learning rates 𝜂1 and 𝜂2

Output: Trained EmoLoRA 𝜃𝑎 with embroidery blocks 𝜃𝑒

Stage 1: LoRA Block Modulation
for each iteration do

Step 1, Update 𝜃𝑎 with 𝐼𝑑𝑒𝑠 : 𝜃𝑎 ← 𝜃𝑎 − 𝜂1∇𝜃𝑎 L𝑑𝑒𝑠 ;

Step 2, Update 𝜃𝑒 with 𝐼𝑒𝑚𝑏 : 𝜃𝑒 ← 𝜃𝑒 − 𝜂1∇𝜃𝑒 L𝑒𝑚𝑏 ;
end

Complementary Data Generation:
Prompt: "a (color) (object) in [emb] style" ×𝑁 ;
Generate embroidery images and select ⌈𝑁 /2⌉;
Obtain design images and select ⌈𝑁 /4⌉;

Stage 2: Contrastive Learning
for each iteration do

Sample a generated pair (𝐼𝑔𝑒𝑛
𝑒𝑚𝑏

, 𝐼
𝑔𝑒𝑛

𝑑𝑒𝑠
) ;

Step 1, Update 𝜃𝑎 with 𝐼𝑑𝑒𝑠 and 𝐼𝑔𝑒𝑛
𝑑𝑒𝑠

: 𝜃𝑎 ← 𝜃𝑎 − 𝜂1∇𝜃𝑎 L𝑑𝑒𝑠 ;

Step 2, Update 𝜃𝑒 with 𝐼𝑒𝑚𝑏 and 𝐼𝑔𝑒𝑛
𝑒𝑚𝑏

: 𝜃𝑒 ← 𝜃𝑒 −𝜂1∇𝜃𝑒 L𝑒𝑚𝑏 ;

Step 3, Update 𝜃𝑒 with (𝐼𝑒𝑚𝑏 , 𝐼𝑑𝑒𝑠 ) and (𝐼
𝑔𝑒𝑛

𝑒𝑚𝑏
, 𝐼

𝑔𝑒𝑛

𝑑𝑒𝑠
) :

𝜃𝑒 ← 𝜃𝑒 − 𝜂2∇𝜃𝑒 L𝑐𝑜𝑛 ;
end

to roughly decouple embroidery and design through a block modu-
lation mechanism. In the second stage, we use the trained EmoLoRA
to generate embroidery images with preset prompts for more su-
pervision signals, and then adopt contrastive learning to further
enhance the decoupling of embroidery and design.

LoRA Block Modulation. For our EmoLoRA, we separate the four
blocks discussed in Sec. 3.2 to capture embroidery style while using
the whole LoRA to recover the design content. Given an embroidery-
design pair, we set the prompt for the embroidery image as "a <des>
in [emb] style", and the prompt for the design as "a <des>". Dur-
ing training, we update EmoLoRA weights in a two-step iterative
manner. In Step 1, we input "a <des>" into all blocks of the SDXL
base model 𝜃0 and EmoLoRA 𝜃𝑎 , and train 𝜃𝑎 with L𝑑𝑒𝑠 (𝜃𝑎). In
Step 2, we input "a <des> in [emb] style" into the four embroidery
blocks of SDXL and EmoLoRA, and "a <des>" into all other blocks,
and only update the four embroidery blocks 𝜃𝑒 of EmoLoRA with
L𝑒𝑚𝑏 (𝜃𝑒 ). z𝑑𝑒𝑠𝑡 and z𝑒𝑚𝑏

𝑡 denote the noised image features in latent
space [Esser et al. 2021; Kingma 2013], c𝑑𝑒𝑠 and c𝑒𝑚𝑏 are the en-
coded text features [Radford et al. 2021]. Note that 𝜃𝑒 is a subset of
𝜃𝑎 . We define L𝑑𝑒𝑠 (𝜃𝑎) and L𝑒𝑚𝑏 (𝜃𝑒 ) as:

L𝑑𝑒𝑠 (𝜃𝑎) = | |𝜖𝑡 − 𝜖𝜃 0,𝜃𝑎 (z𝑑𝑒𝑠𝑡 , 𝑡, c𝑑𝑒𝑠 ) | |22, (2)

L𝑒𝑚𝑏 (𝜃𝑒 ) = | |𝜖𝑡 − 𝜖𝜃 0,𝜃𝑎 (z𝑒𝑚𝑏
𝑡 , 𝑡, c𝑒𝑚𝑏 ) | |22 . (3)

After the iterative training process, the embroidery style is en-
capsulated solely in 𝜃𝑒 and decoupled from the main content, as
only 𝜃𝑒 is updated during Step 2. However, 𝜃𝑒 also contains some
content information learned from Step 1, which is unable to avoid
as the other blocks alone cannot recover the whole content image.

Consequently, the generated images may retain color from the refer-
ence embroidery and have suboptimal fusion with the new content
due to entanglement between the style and its original content, as
shown in Fig. 4 (b) w/o Contrastive Learning. To further alleviate
this problem, we adopt a second stage with contrastive learning.

Complementary Data Generation. Before applying contrastive
learning, we generate more data using the trained EmoLoRA from
the first stage. We generate new embroidery images with a prede-
fined set of prompts in "a (color) (object) in [emb] style", covering
various color-object combinations and blending the prior knowl-
edge in SDXL with the learned embroidery style. One example is "a
yellow dog in [emb] style", while the list of all 𝑁 prompts is in our
supplementary and we set 𝑁 to 10 in this paper. We then compute
the average cosine similarity of each generated image to the refer-
ence image using their self-attention output features, as in Sec. 3.2,
to measure the style similarity. Since embroidery features are more
salient in later generation stages, we only use features from stages
5-9. Then we rank the generated images w.r.t. their average simi-
larity and select the top half ⌈𝑁 /2⌉ for better embroidery quality,
and use the embroidery-to-design pipeline in Sec. 3.1 to obtain their
corresponding design images. Finally, we want to remove images
with content that is too similar to the reference. So we compute and
rank the average cosine similarity among the design images similar
to embroidery images as before, and choose the most dissimilar half
⌈𝑁 /4⌉ to be our final complementary data.

Contrastive Learning. With the embroidery-design pairs from
the initial reference and complementary generation, we now apply
contrastive training. The main objective is to pull the embroidery
features shared by different image pairs together, and to push away
the embroidery features from the content features. Inspired byNoise-
CLR [Dalva and Yanardag 2024], we conduct contrastive learning
in the noised latent feature space. We obtain the design content
features 𝜖𝑑𝑒𝑠 by subtracting base model prediction from base model
with EmoLoRA prediction, given noised design image features z𝑑𝑒𝑠𝑡

and encoded text features c𝑑𝑒𝑠 at timestep 𝑡 . Similarly, we can ob-
tain the embroidery image features 𝜖𝑒𝑚𝑏 , while with noised design
image features z𝑑𝑒𝑠𝑡 but embroidery prompt features c𝑒𝑚𝑏 . In this
way, we are able to separate the learned knowledge in EmoLoRA
𝜃𝑎 that is triggered by "a <des>" or "a <des> in [emb] style". The
formulation is as follows:

𝜖𝑑𝑒𝑠 = 𝜖𝜃 0,𝜃𝑎 (z𝑑𝑒𝑠𝑡 , 𝑡, c𝑑𝑒𝑠 ) − 𝜖𝜃 0 (z𝑑𝑒𝑠𝑡 , 𝑡, c𝑑𝑒𝑠 ), (4)

𝜖𝑒𝑚𝑏 = 𝜖𝜃 0,𝜃𝑎 (z𝑑𝑒𝑠𝑡 , 𝑡, c𝑒𝑚𝑏 ) − 𝜖𝜃 0 (z𝑑𝑒𝑠𝑡 , 𝑡, c𝑒𝑚𝑏 ), (5)
𝜖𝑒𝑚𝑏∗ = 𝜖𝑒𝑚𝑏 − 𝜖𝑑𝑒𝑠 . (6)

Note that 𝜖𝑒𝑚𝑏 also contains design content information, and
should not be pushed away from 𝜖𝑑𝑒𝑠 . Therefore, we use 𝜖𝑒𝑚𝑏∗ to
represent the subtracted embroidery features alone and push it away
from the content features. We construct training batches, where
each batch consists of the reference embroidery-design pair and a
generated pair. For each batch, the final contrastive loss, denoted as
L𝑐𝑜𝑛 (𝜃𝑒 ), is defined as follows:

L𝑐𝑜𝑛 (𝜃𝑒 ) = − log
exp(𝑠 (𝜖𝑟𝑒 𝑓

𝑒𝑚𝑏∗
, 𝜖

𝑔𝑒𝑛

𝑒𝑚𝑏∗
))

exp(𝑠 (𝜖𝑟𝑒 𝑓
𝑒𝑚𝑏∗

, 𝜖
𝑔𝑒𝑛

𝑑𝑒𝑠
)) + exp(𝑠 (𝜖𝑟𝑒 𝑓

𝑑𝑒𝑠
, 𝜖

𝑔𝑒𝑛

𝑒𝑚𝑏∗
))
. (7)
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Here, we set the temperature 𝜏 to 1 and omit it for simplicity, and
𝑠 (·, ·) denotes cosine similarity. The complementary embroidery
images are from EmoLoRA generation and can have a good initial
𝜖
𝑔𝑒𝑛

𝑒𝑚𝑏
, while the design images are from the embroidery-to-design

pipeline and make 𝜖𝑔𝑒𝑛
𝑑𝑒𝑠

unreasonable. To deal with this, we adopt
a three-step iterative optimization. In Steps 1 and 2, we update 𝜃𝑎
and 𝜃𝑒 in Eqs. 2-3 as in the first stage, but on both the reference pair
and the generated pair. In Step 3, we update 𝜃𝑒 with the contrastive
loss L𝑐𝑜𝑛 (𝜃𝑒 ).

3.4 Model Inference
After the two-stage training of EmoLoRA, we apply model inference
with image or text inputs, as in Alg. 2. For both settings, we only
use the four embroidery blocks 𝜃𝑒 to update SDXL base model 𝜃0.
For text inputs, which should include "in [emb] style", the model
performs standard text-to-image synthesis. For image inputs, we
adopt SDEdit [Meng et al. 2021] to first add noise to the input image,
and then utilize the updated model to perform denoising under the
guidance of text prompt "in [emb] style".

Similar to pair-wise data construction, we employ ControlNets to
maintain the content from the input image, according to the style
type. For styles such as flat embroidery, the boundaries between an
image pair should be accurately aligned, we employ ControlNet-
Tile and ControlNet-Canny, followed by a color correction module
to enhance consistency with the input design. In this module, we
first transfer the generated embroidery image to LAB space, then
replace its A and B channels with the corresponding channels from
the input design, and finally transfer the embroidery image back to
RGB space. However, for embroideries with beads or sequins, we
disable ControlNet-Canny and the color correction module to allow
necessary modifications along the boundaries. Similar principles
can be extended to other styles.

4 EXPERIMENT
We build a benchmark on embroidery customization to evaluate
our method against prior art for fine-grained style customization,
with ablation study to verify the efficacy of each component. In
applications with customized embroideries, we explore the potential
for transforming traditional embroidery workflows. Additionally,
we extend our method to three additional style transfer tasks to
illustrate its capability in decoupling style and content. For more
implementation details, results, and discussions, please refer to the
supplementary material.

4.1 Embroidery Dataset and Metrics
Dataset. We follow style transfer benchmarks [Chung et al. 2024;

Deng et al. 2023, 2022] and build a dataset comprising 30 reference
embroidery images and 50 test graphic design images. The reference
set contains embroidery styles featuring various stitches and mate-
rials, including flat stich, towel stitch, beans, sequins, and more. For
the test set, we use our embroidery-to-design module to generate
the graphic design images with 50 additional embroidery images in
any style, ensuring the test images are compatible with embroidery
production. Additionally, we preset 20 text prompts for text-based

ALGORITHM 2: EmoLoRA Inference
Input: Input text prompt 𝑝 or design image 𝐼𝑑𝑒𝑠 , SDXL base model

𝜃 0, trained embroidery blocks 𝜃𝑒 , ControlNet-Tile&Canny
Output: Embroidery image 𝐼𝑒𝑚𝑏

Update SDXL: 𝜃 ← 𝜃 0 + 𝜃𝑒 ;
Update prompt: 𝑝 ← 𝑝 + "in [emb] style";

if 𝐼𝑑𝑒𝑠 is not empty then

Employ ControlNet-Tile;

if Strict boundary alignment then

Employ ControlNet-Canny and color-correction;
end

end

Generate image: 𝐼𝑒𝑚𝑏 .

generation. For each reference image, we evaluate the method across
all test images and prompts.

Metrics. For image-based customization, we adopt LPIPS [Zhang
et al. 2018] and Histogram Loss [Afifi et al. 2021; Chung et al. 2024]
to assess the preservation of design content and color. To evalu-
ate embroidery style, we propose a metric named High-Frequency
Ratio Difference (HFRD). Existing feature extractors such as VGG
or CLIP mainly captures color, layout, or semantic features, while
embroidery styles emphasize high-frequency structural textures,
which makes existing metrics unsuitable for embroidery style eval-
uation. We propose HFRD to compute the absolute difference of
the high-frequency energy ratio between the generated embroidery
image and the reference. For text-based generation, we compute
the CLIP-Score [Radford et al. 2021] between the generated image
and the text prompt, to evaluate the level of semantic compliance.
Additionally, we adopt Histogram Loss to assess the color differ-
ence between the generated embroidery and the reference, where
a higher score means less similar in color and therefore better de-
coupling from reference content. The details and limitations of the
metrics are discussed in the supplementary material, and we provide
user studies in Sec. 4.4 to strengthen quantitative comparisons with
different style transfer methods and our ablation variants.

4.2 Comparison on Embroidery Customization
Embroidery customization is a unique problem in contrast to gen-
eral style transfer, as it redefines style and content. Elements like
color must now be preserved as content rather than transferred as
style, while high-frequency structural textures, often overlooked in
artistic style transfer, become central to defining style. For embroi-
dery customization, we focus on embroidery style similarity, design
content preservation (for image inputs), decoupling of style from
color and semantics (for text inputs). Qualitative results are in Fig. 5
and quantitative results are in Tab. 1.
We first compare with six prior methods in style transfer. On

nine different embroidery styles in Fig. 5, our method exhibits high
quality in fusion of the reference style and input image/text content.
For DB-LoRA [Ryu 2022] and B-LoRA [Frenkel et al. 2025], we use
their training approach but with our inference pipeline, to fully
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Fig. 5. Comparison on one-shot embroidery customization using image/text inputs. The last row shows comparisons with two embroidery synthesis methods.
Ours (a) and Ours (b) denote results using different reference embroideries. Please zoom in to examine detailed textures.
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Table 1. Quantitative comparisons with style transfer methods. For image-based generation, we evaluate embroidery style quality (HFRD), design content
preservation (LPIPS), and design color consistency (Histogram Loss). For text-based generation, we assess textual compliance (CLIP-Score) and reference color
resemblance (Histogram Loss). The best results are highlighted in bold, and the second-best are underlined.

Metric Ours DB-LoRA B-LoRA InstantStyle PairCustomization StyleID RB-Modulation

HFRD ↓ (embroidery style) 6.50 ± 3.14 8.15 ± 4.22 6.63 ± 2.25 12.41 ± 5.76 12.48 ± 5.17 21.66 ± 7.16 8.10 ± 3.97
LPIPS ↓ (design content) 14.37 ± 9.66 14.54 ± 10.52 14.92 ± 8.03 7.72 ± 7.47 22.14 ± 2.63 21.96 ± 2.59 65.18 ± 1.65
Histogram Loss ↓ (design color) 26.59 ± 9.55 28.62 ± 8.52 30.57 ± 7.97 32.23 ± 7.38 43.99 ± 1.99 45.75 ± 4.12 48.87 ± 1.61

CLIP-Score ↑ (text semantics) 32.23 ± 0.61 30.94 ± 0.66 31.84 ± 0.33 25.14 ± 2.09 32.47 ± 0.23 30.31 ± 0.92 30.04 ± 0.37
Histogram Loss ↑ (reference color) 51.32 ± 6.82 43.89 ± 7.21 42.70 ± 6.09 33.64 ± 11.19 50.49 ± 5.82 34.13 ± 9.89 35.48 ± 7.66

evaluate the style-content decoupling capability of our EmoLoRA.
DB-LoRA can capture complete pearls or beads, while fails to fuse
these structures with input content (Row 1, 3, 8) due to entangle-
ment of style and reference content, and maintains the reference
color or layout (Row 2, 6, 7, 9). B-LoRA uses a single up_blocks.0.1
to capture style, possessing limited power in capturing embroidery
structures and still presenting entanglement with the reference
color. InstantStyle [Wang et al. 2024] injects reference features via
pretrained IP-Adapter into the cross-attention of up_blocks.0.1, and
thus captures even less embroidery features than B-LoRA. PairCus-
tomization [Jones et al. 2024] adopts two LoRAs with orthogonal
constraints to disentangle style and content, while freezing orthog-
onal matrices and training only one low-rank matrix also fails to
capture complex embroidery textures. StyleID [Chung et al. 2024]
blends style and content latent from DDIM inversion and leverages
self-attention in later blocks, but produces blurry results due to
entangled style and content features in pretrained self-attention.
RB-Modulation [Rout et al. 2024] also fails to depict embroidery
structures with an existing style descriptor, or preserve design con-
tent with the CLIP image encoder and attention feature aggregation.
Moreover, we provide qualitative comparisons with Attention Dis-
tillation [Zhou et al. 2025] and Analogist [Gu et al. 2024] in the
supplementary material, showing that approaches relying on pre-
trained attention features or textural descriptions fail to capture
fine-grained styles such as embroidery.

In Tab. 1, Ours, DB-LoRA and B-LoRA have very similar results in
HFRD and LPIPS, which is probably due to the limitations of current
metrics in evaluating embroidery style and design content at a fine-
grained level. InstantStyle achieves the best LPIPS as they mainly
recover the input design. We attain the best score in Histogram Loss,
demonstrating improved disentanglement from reference color. An
ablation study on the color correction module and a discussion of
metric limitations are included in the supplementary material. For
text-based generation, our method achieves the highest CLIP-Score,
indicating strong compliance with text prompts, and the highest
Histogram Loss, reflecting minimal resemblance to the reference
color.

Additionally, we compare to two methods for embroidery synthe-
sis, both with three types of flat stitches. As in the last row of Fig. 5,
we can generate highly realistic embroideries tailored to different
references. MSEmbGAN [Hu et al. 2024] proposes a GAN-based ap-
proach and is bounded by the rendered training data. As their code
and models are unavailable, we present a visual result generated
with Wilcom EmbroideryStudio to approximate its upper bound,

Table 2. User studies on overall embroidery quality, style consistency, and
design preservation. The numbers represent the percentage of votes that
these methods are preferred over our final model. For DB-LoRA, 19.44% in
Quality means 19.44% of votes favor DB-LoRA’s embroidery quality over
ours, while 80.56% disagree.

Method Quality (%) Style (%) Design (%)

DB-LoRA 19.44 24.05 27.63
B-LoRA 11.59 16.00 14.29
InstantStyle 10.68 2.50 31.58
PairCustomization 2.67 1.25 13.89
StyleID 1.30 0.00 5.13
RB-Modulation 13.16 3.75 0.00

2-Block Modulation 10.81 7.59 8.97
w/o Modulation 9.46 7.79 7.79
w/o Contrastive Learning 25.00 34.92 23.44

which exhibits a clear deficiency in photorealism. For the method
of [Guan et al. 2021], we show their results in automatic mode (a)
and long-stitch mode (b), which shows unnatural region division
and rendering artifacts.

4.3 Ablation Study
We conduct ablation studies to analyze the efficacy of the compo-
nents of our method. Specifically, we compare three variations: (1)
2-Block Modulation, where we use the two LoRA blocks with the
lowest average cosine similarity to capture embroidery style instead
of four; (2) w/o Modulation, where we use all LoRA blocks instead
of four to capture the embroidery style; and (3) w/o Contrastive
Learning, where we adopt results from our first-stage training.
The comparisons are shown in Fig. 4 (b). Using two blocks alone
struggles to capture fine-grained embroidery structures, while using
all blocks or omitting the second-stage contrastive learning fails to
effectively decouple style from color and semantics, which causes
unnatural fusion with the input design. We conduct user studies for
quantitative evaluation due to the limitations of existing metrics,
and provide additional ablation studies on using different blocks in
the supplementary material.

4.4 User Study
To compensate for the misalignment of existing metrics and real
objectives for embroidery customization, we conduct user studies
to compare our methods to previous works and ablation variations.
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Fig. 6. Applications of embroidery customization. (a) The result from our generation is as realistic as real embroidery. (b) Our method can generate diverse
results using different random seeds, offering more options for production. (c) Given a reference embroidery, our method can help identify compatible
designs. (d) Given a design image, our method can suggest compatible embroidery styles. (e) Digitization by tracing a generated embroidery with Wilcom
EmbroideryStudio. (f) Our method can enhance the realism of Wilcom EmbroideryStudio renderings.

Specifically, we follow similar setting as [Jones et al. 2024; Wang
et al. 2023] and compare our method to others in pairs. For each
user, we randomly sample 90 pairs, with each pair comprising a
generated image from our method and one of another method. We
provide the user study interface in the supplementary material. For
each pair, users are asked to select their preferred option in terms
of overall embroidery quality, style consistency with the reference,
and design content preservation. Each question offers three choices:
Method A, Method B, or Abstain.
We conducted an online questionnaire with 20 users, including

two professionals in embroidery and 18 ordinary customers. Before
answering, they viewed 10 reference embroidery images, followed
by 10 generations with poor quality, inconsistent styles, or mis-
aligned designs. All users completed the task within 30 minutes,
though no time limit was set. The statistical results are presented in
Tab. 2. Our method receives a clear preference over previous works,
as well as over the ablation variations. Comparisons with other
methods are based on valid votes. For Quality, Style, and Design,
the valid ratios are 91.1%, 96.2%, and 94.2%, respectively, with each
category comprising 1,800 votes in total.

4.5 Transformation to Embroidery Workflows
In this section, we illustrate the potential of our embroidery cus-
tomization technique for transforming real-world embroidery work-
flows. Specifically, we first demonstrate its utility in enabling pre-
view and presale, thereby bridging visual communication between

producers and customers. We then showcase its role in fabrication
support through embroidery digitization and visualization enhance-
ment. Finally, we present more usage scenarios that highlight its
capability to generate high-quality embroidery and design images.

Preview and Presale. With our generated embroidery previews,
producer and consumer preferences can be better aligned, facilitat-
ing more effective presale decisions. As shown in Fig. 6 (a), we first
verify that our generated results achieve realism comparable to real
embroidery. Based on this, our method can then suggest compati-
ble design patterns or suitable embroidery styles given a reference
embroidery or a design image, as illustrated in Figs. 6 (c) and (d).
In the supplementary material, we conduct user studies to evaluate
whether participants can distinguish between real and generated
embroidery images, and quantitatively assess how previews using
our generated results influence their preferences.

Fabrication Support. Our embroidery customization technique
supports the fabrication process in both digitization and visualiza-
tion. Given a designated reference embroidery style and design im-
age, our method can generate diverse outcomes (Fig. 6 (b)), thereby
reducing iterative cycles of digitization and confirmation. Once a
design is finalized, it can be digitized using Wilcom EmbroideryStu-
dio to obtain a manufacturable file (Fig. 6 (e)). The tracing process
involves color extraction, physical size alignment, layer-by-layer
analysis, stitch filling, and decorative embellishment placement.
Further details are provided in the supplementary document and
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Fig. 7. Comparison on four examples of artistic style transfer. The training data (Row 2) © PairCustomization [Jones et al. 2024].

video. This example was completed within 10 minutes, although
additional manual refinement is required for the final production
file. In addition, our customization can serve as a realistic rendering
module (Fig. 6 (f)), enhancing the realism of digitized embroidery
and facilitating communication between producers and customers.

More Applications. Our generated embroidery can be overlaid
onto garments, bags, or hats to provide more intuitive visual pre-
views, through integration with ACE++ [Mao et al. 2025], as shown
in Fig. 1. Moreover, the capability of our method in generating
high-quality embroidery data helps address the challenge of data
scarcity in this domain. Additionally, our embroidery-to-designmod-
ule effectively recovers well-aligned design images from reference
embroideries, enabling novel style synthesis with consistent designs.
Additional visual results and implementation details are provided
in the supplementary material.

4.6 Generalization to Other Styles
We evaluate our method across diverse styles to demonstrate its
effectiveness in disentangling style and content. To this end, we
compare against prior work on three tasks: artistic style transfer,
sketch colorization, and appearance transfer. For each task, we
construct a domain-specific data pair, followed by our standard
block selection and contrastive LoRA learning. More results and
implementation details are included in the supplementary material.

Photo to Artwork. We compare to PairCustomization, which also
learns artistic style from a single image pair. Following their setup,
we construct photo–artwork pairs using external stylization meth-
ods (Fig. 7). The objective is to generate stylized images while pre-
serving SDXL-generated content from text inputs, thereby verifying

style–content disentanglement during learning. We compare with
LoRA-based methods using a timestep-controlled LoRA activation
strategy during denoising, following PairCustomization. As in Fig. 7,
DB-LoRA suffers from artifacts due to overfitting to training content,
while B-LoRA yields weak stylization. Our method is comparable
to PairCustomization on in-domain cases (Rows 1–2) and performs
slightly better on cross-domain cases (Rows 3–4). Additional quali-
tative and quantitative analysis are provided in the supplementary
material. These results confirm that our method achieves effective
style–content disentanglement and offers a viable alternative for
this task. We also evaluate Analogist with SDXL generation as its
input for image analogy, and the results highlight its limitations in
transferring such fine-grained styles using textual descriptions.

Sketch to Color. Our method can be applied to sketch coloriza-
tion, through training on a color-Canny image pair to separate
style (color and shading) from content (semantics and layout). In
Fig. 8 (a), Ours achieves color consistency with the reference and
effective content compliance. In contrast, DB-LoRA shows content
entanglement (e.g., generating "standing in water" instead of "sit-
ting on the floor" in the first row), while B-LoRA, InstantStyle, and
PairCustomization exhibits noticeable color drift from the refer-
ence. ColorizeDiffusion [Yan et al. 2025] is trained on millions of
colorization samples.

Appearance Transfer. We extend our method to appearance trans-
fer by training on appearance–Canny pairs, where the style involves
richer textures beyond color. At inference, we use HED [Xie and Tu
2015] maps of structure images and apply either style blocks as Ours
(a), or all blocks as Ours (b), as shown in Fig. 8 (b). Ours (a) achieves
better structural consistency through stronger appearance-structure
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Fig. 8. Sketch colorization and appearance transfer. (a) Comparison on four examples of sketch-to-color style transfer. (b) Comparison on four examples of
appearance transfer. For zebra, the content Canny map contains stripe patterns, leading to a decoupling between appearance and structure. Ours (a) uses only
style blocks and captures distorted strips, while Ours (b) leverages all blocks and restores complete stripe structure.
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Fig. 9. Failure cases. The input image (Row 1, Column 4) © Milada Vigerova.

disentanglement, while Ours (b) preserves partial reference struc-
ture and fuses it compatibly with the input.

5 LIMITATION AND DISCUSSION
In this section, we present two representative failure cases, discuss
the limitations of our method, and outline several future directions
for supporting fabrication.

Failure Cases. Our method faces challenges with highly complex
styles that combine multiple materials or overly abstract styles, as
illustrated in Fig. 9. For embroidery customization, intricate ref-
erence styles—such as intersecting combinations of multiple bead
types—often yield impractical customization results, while the re-
flective characteristics of rhinestones introduce additional imaging
difficulties. Furthermore, localized style specification or editing is
not yet supported. For general style, we employ the rectangle ren-
derer from Stylized Neural Painting [Zou et al. 2021] to generate
8-bit artworks with two stroke configurations: (a) 50 strokes and (b)
550 strokes, as in Fig. 9 Style (a) and Style (b). Our method performs
well when paired data are reasonably aligned, as in Style (b), but
struggles with overly abstract styles such as Style (a), where block
selection may fail to identify appropriate layers for modulation,
leading to weak stylization and poor content blending.

Method Limitations. Our method comprises multiple stages: pair-
wise data construction, network block selection, and two-stage train-
ing. We leverage SDXL for style–content disentanglement and SD3
as a plug-and-play module for design emulation, while the frame-
work can be extended or unified with more powerful models ex-
hibiting similar properties. We empirically select four blocks (e.g., 2,
3, 7, 8) to balance style completeness and style–content separation,
though omitting blocks 1 and 11 can reduce color and appearance in-
tegrity in sketch colorization and appearance transfer. Our method
could be enhanced with automatic block selection based on low

cosine similarity and statistical constraints, and further refined to
operate at a finer granularity through soft weighting rather than
hard selection. In future work, we aim to reformulate fine-grained
style customization within a meta-learning framework—e.g., treat-
ing the first training stage as meta-training to learn generalizable
style disentanglement. Finally, when no reference embroidery is
available, EmoLoRAs pretrained on tagged embroidery styles can
serve as selectable modules, with text-only inputs mapped to style
tags via LLMs, while combining style primitives from multiple ref-
erences (e.g., chenille and sequin) remains an open direction.

Future Fabrication Support. To support future fabrication, we
outline several directions for automatically generating production-
ready files with rich structured information. A central step is defin-
ing a representation for primitive embroidery instructions (Em-
bIns)—including stitch coordinates, needle commands, and color
sequences—analogous to SVG but with greater complexity. One
promising avenue is the development of a differentiable rasterizer
for EmbIns, akin to DiffVG [Li et al. 2020], enabling optimization-
based generation of EmbIns from customized images. This approach
could be extended to a unified framework for joint image and Em-
bIns generation, similar to VectorFusion [Jain et al. 2023]. Another
direction is a multi-modal approach that tokenizes EmbIns for joint
learning with text and images, as in OmniSVG [Yang et al. 2025],
though this would require large-scale datasets for effective training.

6 CONCLUSION
In this paper, we address fine-grained style customization by intro-
ducing a contrastive learning framework that disentangles style and
content from a single reference image, based on the classic concept
of image analogy and leveraging decoupled representations from
pretrained diffusion models. To capture fine-grained style features,
we propose a two-stage contrastive LoRA modulation technique,
EmoLoRA, which mitigates data scarcity through self-knowledge
distillation. Our approach significantly outperforms existing meth-
ods in embroidery customization, with extensive analysis of its
potential to transform real-world embroidery workflows. Moreover,
it generalizes to three additional visual attribute transfer tasks, pro-
viding a new alternative to existing works.

For future work, we envision unifying pair-wise data genera-
tion with style customization into a single framework, enhancing
block selection through automatic or soft-weighted strategies, and
reformulating the two-stage learning as a meta-learning framework.
Additionally, we outline directions for automatically generating
production-ready embroidery files, drawing inspiration from SVG
representations, including defining primitive embroidery instruc-
tions, developing differentiable rasterizers, and exploring joint learn-
ing of images, text, and embroidery instructions.
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