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(a) Two domains (b) Stitched body simulated in the original subspace (c) Stitched body simulated in the new subspace

Figure 1: The plant example. Our system can quickly recalculate the subspace of a deformable body, after it gets modified by simple stitches,
i.e., zero-length springs. The new subspace allows the two domains in (a) to be connected and simulated as shown in (c). In contrast, if the
simulator uses the deformation subspace constructed for the original mesh before stitching happens, it will produce the locking issue due to
the inconsistency of the subspace, as shown in (b).

Abstract
Recalculating the subspace basis of a deformable body is a mandatory procedure for subspace simulation, after the body gets
modified by interactive applications. However, using linear modal analysis to calculate the basis from scratch is known to be
computationally expensive. In the paper, we show that the subspace of a modified body can be efficiently obtained from the
subspace of its original version, if mesh changes are small. Our basic idea is to approximate the stiffness matrix by its low-
frequency component, so we can calculate new linear deformation modes by solving an incremental eigenvalue decomposition
problem. To further handle nonlinear deformations in the subspace, we present a hybrid approach to calculate modal deriva-
tives from both new and original linear modes. Finally, we demonstrate that the cubature samples trained for the original mesh
can be reused in fast reduced force and stiffness matrix evaluation, and we explore the use of our techniques in various sim-
ulation problems. Our experiment shows that the updated subspace basis still allows a simulator to generate visual plausible
deformation effects. The whole system is efficient and it is compatible with other subspace construction approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation.

1. Introduction

Many real-time simulation applications demand interactive editing
on a deformable body. In virtual surgeries, surgeons perform cut-
ting and stitching operations to modify the connectivity of a soft tis-
sue. During computer-aided design, designers and artists adjust the

† Corresponding author: whmin@cse.ohio-state.edu

stiffness and the size of a 3D model to produce its optimal shape.
These topological and geometric editing operations should be effi-
ciently handled on the fly, without noticeable lags that compromise
user’s experience.

Subspace deformation, also known as dimensional model reduc-
tion or reduced-order deformation, has been an important graphics
research topic in recent years, thanks to its ability to significantly
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accelerate deformable body simulation. The basic strategy of this
technique is to restrict the deformation into a subspace, so that the
dynamical system is reduced from the full space to the subspace,
in which the system solution can be found in real time. Although
subspace simulation is fast, the computational cost spent on cal-
culating the subspace is often non-trivial, which may take several
seconds or even minutes for a high-resolution mesh. For applica-
tions that do not involve interactive editing on the rest shape of
a deformable body, this is not an issue since the subspace can be
calculated ahead of time as a pre-computation step. However, if
an application requires to interactively update the rest shape, the
subspace recalculation cost cannot be ignored. Without subspace
recalculation, the simulation result suffers from the locking issue
as shown in Figure 1b, because the original subspace does not offer
enough freedom for the model to deform.

For faster subspace recalculation, one natural idea is to divide
the mesh into multiple domains and build the subspace of each
domain separately. If the interface between two domains is small,
each domain can be simulated in its own subspace with the inter-
face implemented as a rigid constraint [BZ11]. If the interface is
large, its deformation cannot be ignored and it can be incorporated
into the subspace simulation of each domain as hard constraints by
Lagrangian multipliers [HLB∗06]. Since the subspaces may not be
consistent, hard constraints often suppress subspace deformations.
To address this issue, Kim and James [KJ11] replaced hard con-
straints by soft spring constraints, which allow two domains not to
be strictly aligned at the interface. Yang and colleagues [YXG∗13]
developed a boundary-aware method to make the subspaces more
consistent at the interface. To do so, their method incorporates more
deformation modes into the subspace and it considers linear modes
only. [HZ13] handles local deformation by supplementing sub-
space basis with additional basis functions. Multidomain subspace
based simulations were also used in [ZB13] to demonstrate the
tuning of stiffness in an arbitrary domain in a real-time setting. Re-
cently, Wu and collaborators [WMW15] proposed to simulate rigid
motions and subspace simulations of all of the domains under a
unified framework, to better eliminate artifacts near the interface.
In general, existing domain decomposition techniques still suffer
from a variety of limitations, and there exists no effective way to
fully address the interface issue yet.

Different from recent research [vTSSH13,YLX∗15] on expedit-
ing the subspace construction process itself, our work tries to study
the problem in an incremental fashion. Specifically, after a mesh
gets modified by some small changes, can we quickly obtain its
new subspace from the original subspace? Here the mesh can be
a connected mesh, or a mesh with disjointed domains whose sub-
spaces can be combined into a single subspace. By incorporating
mesh changes into the recalculated subspace, we do not need to ap-
ply additional constraints in runtime simulation. Our work is based
on the assumption that the subspace can be efficiently and incre-
mentally calculated, after a small number of changes each time. To
achieve this goal, we made the following technical contributions.

• Recalculation of linear modes. Given the existing linear sub-
space of a deformable body, we show how its linear deformation
modes can be quickly updated through incremental eigenvalue

decomposition, when the body is modified by a single stitch, i.e.,
a zero-length spring.

• Recalculation of modal derivatives. Barbič and
James [BJ05] introduced the use of modal derivatives to
handle nonlinear and large deformations. By avoiding the
expensive recalculation of Hessian stiffness tensor and reducing
the number of tensor-vector-vector evaluations, we present a fast
approach for generating modal derivatives of the stitched body.

• Cubature-based subspace simulation. We demonstrate the
use of our new deformation modes in subspace simulation. Since
mesh changes are small, reduced forces and matrices can still be
evaluated by original cubature approximation.

Figure 1c illustrates that the new subspace, generated by our tech-
niques in two seconds, can realistically handle large and non-
linear deformations in simulation. Our techniques are especially
fast when the number of stitches is small. In case the deformable
body undergoes too many changes, we can still use other ap-
proaches [BJ05, YLX∗15] and build the subspace from scratch.

We can envision a variety of usages for our methods as we have
illustrated through examples : Changing Material Stiffness such as
the Oball Example (Figure 6) ; stitching applications in virtual
surgery simulations such as the Stomach Example (Figure 11);
Multidomain simulations such as the Plant Example (Figure 1, 10)
and complex deformation scenarios such as the Dinosaur Example
(Figure 4c, 9).

2. Other Related Work

Subspace simulation. The history of subspace simulation
in engineering and mathematics can be traced back to [Lum67].
In computer graphics, Pentland and Williams [PW89] used linear
modal analysis to build a subspace and developed the subspace sim-
ulation of a dynamical system for the first time. Compared with
linear deformation, nonlinear deformation is much more difficult
to handle in a subspace. A straightforward approach is to compute
the deformation modes around several states of the physical sys-
tem and use them to span the subspace. Specifically, this approach
requires to solve several large eigenvalue problems, which are
too expensive in practice. Researchers in engineering and graph-
ics [IC85, BJ05, HSTP11, Tis11] have advocated the use of modal
derivatives to enrich the subspace basis. The idea behind modal
derivatives is to calculate the natural second-order system response
to large deformation around the rest shape, so that they can ap-
proximate nonlinear deformation better when incorporated into the
basis. Recently, von Tycowicz and collaborators [vTSSH13] pro-
posed to widen the subspace by applying affine transformations to
each linear mode. Their method is fast and easy to implement, but it
creates a larger subspace that cannot be easily reduced afterwards.
Subspace simulation of nonlinear deformation is relatively easier
to handle, if the subspace is built from a set of deformed shape ex-
amples [KLM01]. Kim and James [KJ09] suggested to build the
subspace on the fly, using previously simulated results as exam-
ple data. In this work, we prefer not to recalculate the subspace in
an example-based style, since we cannot afford running full-space
simulation and we do not know user interaction ahead of time.

Subspace simulation can be several orders of magnitude faster
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than full-space simulation. But if the mesh resolution is high, the
evaluation of reduced forces and Jacobian matrices is still costly
and can be the bottleneck of the system. Barbič and James [BJ05]
found that the internal forces of a geometrically nonlinear material
can be expressed as cubic polynomial functions of reduced space
coordinates. So they proposed to precompute the polynomial coef-
ficients and quickly evaluate reduced forces and matrices. Instead
of performing the evaluation exactly, An and colleagues [AKJ08]
used cubature approximation to estimate reduced forces and matri-
ces. Their method effectively reduced the evaluation cost to O(r3),
when the number of deformation modes is r and the number of
cubature points is O(r).

Other problems. When simulating a deformable body in the
subspace, an interesting question is whether we can handle its self
collisions in the subspace as well. Assuming that an object can-
not be in self collision if it does not deform much, Barbič and
James [BJ10] developed “certificates" to quickly avoid unneces-
sary collision tests using reduced subspace coordinates. Teng and
colleagues [TOK14] proposed a pose-based cubature scheme, so
they can detect self contacts of an articulated body, without explic-
itly checking the collision of two primitives. Recently, Sheth and
colleagues [SLYF15] presented a skinning-based framework to en-
sure momentum conservation in subspace simulation, even in the
presence of collisions and contacts.

Graphics researchers have also explored the use of subspace
simulation in other fields. Hahn and colleagues [HTC∗14] used a
pose-varying subspace basis to simulate detailed clothes dressed
on a human body. Xu and collaborators [XLCB15] developed
an interactive tool to design heterogeneous material properties
of a 3D model, based on subspace simulation techniques. Re-
searchers [TLP06, WST09, KD13, ATW15] have also studied sub-
space fluid simulation.

3. Background

Given a base mesh with N vertices, we can formulate the equation
describing its motion as,

Mü+Du̇+ fint(u) = fext, (1)

in which u ∈ R3N is the stacked vertex displacement vector, M ∈
R3N×3N and D ∈ R3N×3N are the mass and damping matrices, and
fint ∈R3N and fext ∈R3N are the stacked internal and external force
vectors. Using implicit time integration, we can use Equation 1 to
update u by solving a 3N× 3N sparse linear system. For a high-
resolution mesh with a large N, the linear solve becomes the bot-
tleneck of the whole simulator.

The basic idea behind subspace simulation is to constrain the
displacement vector u into a subspace spanned by r deformation
modes: {φ1,φ2, ...,φr}. These modes can be assembled together
into a 3N × r matrix U, known as the subspace basis. Since u is
in the subspace defined by U, we can define it as: u = Uq, in which
q ∈ Rr contains the reduced coordinates of u in the subspace. As-
suming that U is mass-orthogonal: UTMU = I, we now obtain the
governing equation in the subspace:

q̈+UTDUq̇+UTfint(Uq) = UTfext. (2)

L

a
b

Deformable Body

Figure 2: One stitch case. After a zero-length spring connects two
co-located vertices a and b, our goal is to quickly calculate the sub-
space of the stitched body from the old one.

Implicit time integration of Equation 2 requires to solve a dense
r× r linear system. Fortunately, if r is significantly smaller than
3N, subspace simulation becomes orders of magnitude faster than
full-space simulation.

4. One Stitch Case

Our research is focused on the reconstruction of the subspace ba-
sis, after simple editing operations. To begin with, let us consider
stitching two co-located vertices together by a zero-length spring,
as Figure 2 shows. In Subsection 4.1, we will present our incre-
mental approach for computing the linear deformation modes of
the stitched body. In Subsection 4.2, we will show how to recom-
pute modal derivatives for nonlinear deformation. Finally in Sub-
section 4.3, we will discuss the use of the new basis in simulation.

4.1. Incremental Linear Modal Analysis

Let K = ∂fint/∂u be the 3N×3N stiffness matrix of the deformable
body evaluated at u = 0, where fint is the internal force and u is the
vertex displacement vector. Linear modal analysis solves a sparse,
generalized eigenvalue decomposition problem:

Kφi = ω
2
i Mφi, (3)

where M is the invertible mass matrix and φi is the i-th vibration
mode with frequency ωi. Since high-frequency deformations are
hardly noticeable in simulation, we ignore the modes with high
frequencies and the six rigid modes with zero frequencies. The re-
maining modes can then be organized into a 3N× r linear modal
matrix for subspace simulation: U = {φ1,φ2, ...,φr}.

Now let us consider stitching two co-located vertices a and b
together, as Figure 2 shows. We model this stitch as a zero-length
spring with stiffness k, which applies a spring force on vertex a as:
fab = k(ua−ub). The stiffness matrix resulted from this spring is a
sparse block matrix:

Kab =


∂fab
∂ua

∂fab
∂ub

∂fba
∂ua

∂fba
∂ub

=


kI −kI

−kI kI

 , (4)

where the blocks are corresponding to vertex a and b respectively.
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Figure 3: Subspace coverage. This plot illustrates how well each
exact linear mode can be represented by the recalculated linear ba-
sis shown as each curve. The recalculated basis can represent the
exact modes more closely, if it contains more modes.

It is straightforward to see that Kab is a rank-3 matrix and it can be
decomposed into: Kab = AAT, in which A is a 3N×3 matrix:

A =
[ √

kI −
√

kI
]T

. (5)

Here the two blocks are the a-th and the b-th blocks.

Performing linear modal analysis on the newly stitched body
is equivalent to solving a new generalized eigenvalue problem:
K̂Φ̂i = ω̂

2
i MΦ̂i, in which K̂ = K+Kab is the stiffness matrix of the

new body. This generalized eigenvalue problem is computationally
expensive to solve. Fortunately, we can approximate K by its low-
frequency component and solve a low-rank eigenvalue problem
afterwards. Let U and UH be low-frequency and high-frequency
modes of K, and Λ and ΛH be their diagonal eigenvalue matrices.
By definition, the joint modal matrix must be mass-diagonal:[

U UH
]T M

[
U UH

]
= I. (6)

So we can split K into two parts:

K = M
[

U UH
][ Λ

ΛH

][
U UH

]−1

= M
[

U UH
][ Λ

ΛH

][
U UH

]T M

= MUΛUTM+MUHΛHUT
HM,

(7)

in which MUΛUTM contains the low-frequency component and
MUHΛHUT

HM contains the high-frequency component. We then
solve the generalized eigenvalue problem on MUΛUTM+Kab.

Our idea is based on the assumption that the newly added spring
is stiff and it cannot cause high-frequency deformations to become
low-frequency. Therefore, the low-frequency subspace of the ex-
act matrix can be well covered by the low-frequency subspace of
the approximation matrix. To evaluate the plausibility of this idea,
we apply generalized eigenvalue decomposition on K+Kab, and
then measure the distance from each exact low-frequency mode to
its projection in the subspace spanned by our recalculated modes.
Using this distance, we can calculate the percentage of the exact
mode being covered by the recalculated basis. Figure 3 shows the
first few exact modes can be well represented by the first few recal-

culated modes. After that, more exact modes can be represented by
more recalculated modes, as expected.

4.1.1. Numerical Implementation

Since MUΛUTM is a rank-r matrix and Kab is a rank-3 matrix,
the rank of their sum K̄ cannot be higher than r + 3. Inspired by
the fast low-rank modification framework [Bra06], we propose to
formulate the approximation of K̄ as:

L
[

LTU L−1A
][

Λ

I

][
LTU L−1A

]T
LT, (8)

where M = LLT is the Cholesky decomposition of M. Here LTU
is an orthogonal basis, since U is mass-diagonal and UTLLTU = I.
The component of L−1A that is orthogonal to LTU can be defined
as: (I−LTUUTL)L−1A. Let P be its orthogonal basis calculated
using the Gram-Schmidt algorithm. We must have LTU and P or-
thogonal to each other and they span the space of L−1A. Therefore,
we have:[

LTU L−1A
]
=
[

LTU P
][ I UTA

0 R

]
, (9)

where R = PT(I−LTUUTL)L−1A. We can then reformulate the
approximation into:

K̄ = L
[

LTU P
]

C
[

LTU P
]T

LT, (10)

in which C is a (r+3)× (r+3) matrix:

C =

[
Λ

]
+

[
UTA

R

][
UTA

R

]T
. (11)

Let C = uΛ̄uT be the eigenvalue decomposition of C, we have:

K̄ = L
[

LTU P
]

uΛ̄uT
[

LTU P
]T

LT. (12)

The novel linear modal matrix can then be calculated as: Ū =
L−T

[
LTU P

]
u and Λ̄ contains its generalized eigenvalues.

This is because (L−1K̄L−T)(LTŪ) = (LTŪ)Λ̄.

If M is a diagonal matrix, both L and L−1 are easy to calcu-
late. However, if M is not a diagonal matrix, L−1 can become
dense and we cannot calculate it directly. Fortunately, since L is a
lower triangular matrix and A has three columns only, we can solve
L−1A by three forward substitutions. Similarly, since the rank of
(I−LTUUTL)L−1A cannot be greater than 3, its orthogonal basis
P cannot have more than three columns. We can solve L−TP by
at most three backward substitutions. To reduce the computational
cost, we precompute L as a sparse matrix, and we maintain both U
and LTU during runtime.

If the body is unconstrained, we found that it is not a good prac-
tice to ignore the six rigid modes, even though their generalized
eigenvalues are zeros and they are not useful in subspace simula-
tion. Instead, we keep them through the whole incremental linear
modal analysis process, and remove them only when we use the
basis for simulation or additional processes.
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4.2. Basis Extension for Nonlinear Deformation

Large and nonlinear deformation cannot be handled by linear
vibration modes. One solution to this problem is modal warp-
ing [CK05, HTZ∗11], which tries to remove the artifacts caused
by linear modes directly. Unfortunately, it cannot correctly han-
dle nonlinear material behaviors and it can cause drifting arti-
facts in free falling cases. Alternatively, von Tycowicz and col-
leagues [vTSSH13] proposed to expand the basis, by decoupling
each linear mode into nine new modes. Although their method can
more accurately represent nonlinear deformation, it significantly
increases the basis size to 9r+12, which cannot be easily reduced
for more efficient subspace simulation.

4.2.1. Modal Derivatives

To address the nonlinear deformation issue, we propose to use the
modal derivative approach proposed by Barbič and James [BJ05].
Given two new linear modes φ̄i and φ̄ j in the basis matrix Ū, we
calculate their derivative φ̄i j by solving the linear system:

(K+Kab)φ̄i j =−(H̄ : φ̄i)φ̄ j, (13)

in which H̄ = ∂K̄/∂u at u = 0, an order-3 tensor representing the
first-order derivative of K̄, also known as the Hessian stiffness ten-
sor. According to Equation 4, Kab is constant and its Hessian stiff-
ness tensor is trivial. So we have H̄=H, which can be precomputed
using the base mesh.

Let r be the total number of non-rigid linear modes. Their com-
binations can provide us r(r + 1)/2 modal derivatives, each of
which requires to solve the linear system in Equation 13 once.
Although this seems to be computationally expensive, Barbič and
James [BJ05] pointed out that K+Kab stays the same for all of the
systems, so it can be pre-factorized for fast direct solve. Accord-
ing to our experiment, the real bottleneck is the evaluation of the
tensor-vector-vector product on the right-hand side of Equation 13.

So instead of using all of the r modes to calculate modal deriva-
tives, we choose to use the first six non-rigid linear modes only.
Since the resulting 21 modal derivatives are typically insufficient
to cover enough nonlinear deformations, we reuse 40 percent of
the right-hand sides evaluated from the base mesh to generate addi-
tional modal derivatives, assuming that the nonlinear relationships
among the modes after stitching is similar to those before stitch-
ing. The plant example in Figure 1 shows that this hybrid strat-
egy still allows the resulting basis to capture large and nonlinear
deformation. Meanwhile, it reduces the computational time spent
on modal derivatives from 6.82s to 0.89s, thanks to fewer Tensor-
vector-vector products. Note that our strategy can also introduce
some high-frequency vibrations back into the basis, which were
lost due to low-rank approximation discussed in Subsection 4.1.

4.2.2. Basis reduction

So far we have collected many linear modes and their modal deriva-
tives. For faster subspace simulation, Barbič and James [BJ05]
recommended the use of principal component analysis (PCA) to
reduce the subspace basis again. We adopt this idea and we use
the randomized PCA method proposed by Halko and colleagues
[HMT11]. Previous research showed that randomized PCA can run

orders-of-magnitude faster than standard PCA, yet it has similar
accuracy and robustness. Before performing randomized PCA, we
scale each linear mode φ̄i by ω̄i/ω̄1 and each modal derivative φ̄i j

by ω̄iω̄ j/ω̄
2
1. Here ω̄i is the frequency of φ̄i given by Λ̄ in Equa-

tion 12, and ω̄1 is the frequency of the first mode, i.e., the low-
est frequency. These scalings are used to prevent low-frequency
modes from being dominated by high-frequency modes, as sug-
gested in [BJ05].

4.3. Cubature Approximation

Given the new basis Ū, we are now ready to formulate the dynam-
ical system for subspace simulation described in Equation 2. Sup-
pose that the evaluation of the reduced internal force was accel-
erated by using cubature samples. An important question is: how
can we still quickly evaluate the reduced internal force, when the
subspace basis gets changed?

Let fint be the internal force of the original mesh and fab be
the new stitching force. The total reduced force is: ŪTfint(Ūq̄)+
ŪTfab(Ūq̄), where q̄ contains the reduced coordinates of the cur-
rent shape in the new subspace. We assume that the cubature sam-
ples trained for the original mesh can still be used to evaluate the
reduced internal force in the new subspace. So we have:

ŪTfint(Ūq̄)≈∑
k

wkŪTfint
k (Ūq̄), (14)

where k and wk are the cubature sample and weight trained for
the original mesh. To evaluate ŪTfab, we simply calculate fab as
a sparse vector and perform the matrix-vector product. In total, the
cost of reduced force evaluation is O(r2), where r is the number of
the deformation modes. We calculate the reduced stiffness matrix
in the subspace using a similar approach.

Figure 4a illustrates the approximation error produced by our
cubature scheme in each frame, using the dinosaur example. These
errors are typically small, except when user interaction happens.
To further understand how the errors can be accumulated to affect
the simulation, we run the same simulation twice: once without cu-
bature approximation and once with cubature approximation. Al-
though the two simulation results are not identical, they are visu-
ally similar as shown in Figure 4b and 4c. So we think our cubature
scheme is still effective.

5. Complex Editing Cases

In this section, we will discuss how our techniques can be adopted
to handle more complex editing operations.

5.1. Multiple Stitches and Domains

It is straightforward to extend the method described in Section 4
for multiple stitches, i.e., zero-length springs. Every spring adds
three new rows and columns to the matrix C in Equation 11, so its
size becomes (r+ 3s)× (r+ 3s). Here s is the number of stitches.
Our method can efficiently handle a small number of stitches, as
Figure 5 shows. When s increases, our method needs more com-
putational cost and it becomes less attractive. In that case, we may
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Figure 4: Quantitative and qualitative results without and with cu-
bature optimization. In (b) and (c), the results without cubature ap-
proximation are shown on the left side, and the results with cuba-
ture approximation are shown on the right side.
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Figure 5: The relationship between the number of stitches and
the speedup gained by using our methods. In general, using more
stitches makes our methods less effective.

need to recalculate the subspace basis from scratch again, using the
expedited approach [YLX∗15] for example.

If we consider the union of separate meshes as a single original
mesh, we can use the method to reconstruct the subspace of a mesh
with multiple domains as well. In that case, we can simply build the
subspace of each domain separately. Let φi be a linear mode of do-
main k, we expand it into the linear mode of the joint original mesh
as: [0T, ...,0T,φTi ,0

T, ...,0T]T, where zeros represent no deforma-
tions in other domains. By expanding all of these linear modes, we
obtain a set of linear modes for the joint original mesh. We then
add stitches to connect the separate parts and apply our method to
build the subspace of the newly stitched mesh as a whole.

Incorporating domain decomposition into our subspace recon-
struction process has an obvious advantage: we can modify each
domain separately, without affect the subspaces of other domains.

(a) Compliant base (b) Stiff base

Figure 6: The Oball example. Our system allows users to modify
the stiffness of different domains, with a low subspace recalculation
cost. In (a), the pink domain and the purple domain share the same
stiffness, while in (b), the pink domain becomes 100 times stiffer.

For instance, we can increase or decrease the material stiffness of
one domain. If the stiffness of the whole domain is scaled by a con-
stant factor K, its linear modes remain unchanged and the frequen-
cies are scaled by

√
K, according to Equation 3. Figure 6 shows the

simulation results of an Oball example. When the pink domain of
the ball becomes stiffer, our method can efficiently recalculate the
subspace within 4.5s for simulation afterwards.

5.2. Unconstrained Bodies and Domains

When a deformable body is unconstrained, it has six rigid linear
vibration modes with zero frequencies. Similar to [BZ11], we do
not incorporate rigid modes into subspace simulation, to prevent
other modes from becoming time-dependent. Instead, we separate
rigid motion from subspace simulation and animate it by rigid body
dynamics. Since subspace deformation is now in a non-inertial lo-
cal frame, we must add inertial forces to account for Coriolis, in-
ertial, Euler and centrifugal effects. We use fast sandwich trans-
form [KJ11] to calculate these forces in the subspace.

When we stitch an unconstrained domain to constrained ones,
such as the fork example in Figure 7a, we must consider its six rigid
modes to avoid rotational artifacts. Specifically, we add the rigid
modes into the subspace basis and then calculate the subspace for
the whole stitched body, as discussed previously in Subsection 5.1.
Doing this allows the fork head to be properly rotated, as shown
in Figure 7b. Unfortunately, there is still one remaining problem:
the linear modes of the unconstrained domain, i.e. the fork head,
does not get rotated to reflect the deformation of the constrained
domain. One possible solution is to couple the linear modes of dif-
ferent domains together through interface alignment, rather than
padding them with zeros. However, we may need more computa-
tional cost to reduce the increased subspace size accordingly.

6. Results and Discussions

(Please watch the supplementary video for animation examples.)
We implement our methods and tested our examples on an Intel
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(a) Without six rigid modes (b) With six rigid modes

Figure 7: The fork example. Without considering the six rigid
modes of the fork head, the simulator cannot properly handle large
rotational motions as shown in (a).

Core i7-3770S 3.10GHz processor. We use the Intel MKL library
and the OpenMP API for parallelization. In addition, we apply
Eigen and Armadillo linear algebra libraries for linear solves. We
perform generalized eigenvalue decomposition on large sparse ma-
trices by ARPACK.

Most of our examples have a Youngs’s Modulus of 5.0× 105

and the connection spring stiffness of 1.0×105. The value is same
for all the springs in the same example. Our experiments show that
as long as the connecting spring stiffness is within a reasonable
order of magnitude of the connection springs, no additional param-
eter tuning is needed. However if springs of extremely large mag-
nitude (say 1012 or above) is used for relatively less stiff materials,
locking issues may occur. All of our examples set the time step to
0.01s. We render one frame every three time steps. We typically
use 60 to 225 cubature samples for evaluating reduced forces and
matrices. We cap the number of total modes in the subpace basis
to 90, to ensure the simulation performance. The frame rates of
our examples vary from 8 to 30 FPS, depending on the number of
modes and the number of cubature samples. Table 1 summarizes
the cost of each subspace recalculation step. It also provides the
speedup compared with the standard approach that recalculates the
subspace from scratch. Note that the speedup we gain in the PCA
reduction step is mostly due to the use of randomized PCA, not our
new methods.

We evaluate the "goodness" of our basis as compared to a regu-
lar subspace simulation using two methods. The first one quantita-
tively compares how well our linear modes approximates the actual
linear modes as shows in Figure 3 . The second one is a qualita-
tive comparison of the simulation generated by our method and a
similar mesh undergoing subspace simulation as per [BJ05]. (See
Video) We note that in this example our method has a visual perfor-
mance similair to original subspace at a fraction of the computation
cost. We shows two rounds of incremental stitching in this example
- one which partially stitches the mesh and the other which com-
pletely stitches the mesh. Even though there is some loss of the high
frequency modes which result in our method not able to replicate
some of the more extreme deformations, the results are visually
plausible.

Boundary-aware without Modal Warping

Boundary-aware with Modal Warping

Boundary-aware with nonlinear materials

Our method

Figure 8: Comparison with boundary-aware subspace method.

(a) (b)

Figure 9: An extension of the Dinosaur example which shows how
our system can handle deformations scenarios such as those involv-
ing collisions.

Comparison with [YXG∗13] : We also directly compared our
method with the boundary-aware multi-domain subspace method
proposed by Yang and colleagues. The fork example shown
in Fig. 8 is used for the comparison. Without modal warping,
boundary-aware subspace method suffers from excessive elonga-
tion artifacts as demonstrated by the fork in the extreme left. The
artifact is corrected using modal warping as shown in the sec-
ond (from left) fork. Our method of basis generation (both linear
and non-linear) is approximately twice as fast compared to that
of boundary-aware subspace method, which only computes linear
basis. From the figure, we can see that the fork with boundary-
aware subspace can bend slightly more than ours because it is mod-
eled with linear elasticity. However the advantage of our method is
its ability to support nonlinear materials. Compared to boundary-
aware multi-domain methods where non-linear material completely
fail to move the fork (as shown in the third fork) , our method can
gracefully handle any arbitrary materials.

Each of our examples demonstrate one possible use of our
method. The ball example demonstrates how our method can be
used for controlling stiffness of different materials. The stomach
example shows us the potential of this method in virtual surgery
applications. The plant example (both using two domains as well
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Model
Model Statistics Time

Speedup
#Vert, #Tet, #Spr Original Ours

Stomach 37K, 118K, 30 16.89s 1.10s 15.3×
Plant 13K, 43K, 30 4.35s 0.42s 10.3×
Fork 13K, 55K, 40 6.03s 0.67s 9.0×

Dinosaur 57K, 192K, 38 14.12s 2.65s 5.3×
Oball 16K, 60K, 160 7.72s 2.30s 3.4×

(a) The cost of recalculating linear Modes.

Model
Original Ours

Speedup
#Deri Time #Deri Time

Stomach 201 26.08s 201 5.14s 5.0×
Plant 91 6.82s 91 0.89s 7.6×
Fork 143 6.50s 143 1.20s 5.4×

Dinosaur 91 34.09s 91 4.21s 8.1×
Oball 143 6.54s 143 1.25s 5.2×

(b) The cost of recalculating modal derivatives.

Model
Standard SVD Randomized SVD

Speedup
#in Time #in Time

Stomach 231 15.76s 231 2.29s 6.9×
Plant 121 3.00s 121 0.80s 3.8×
Fork 173 3.75s 173 0.91s 4.1×

Dinosaur 121 13.74s 121 3.04s 4.5×
Oball 173 4.22s 173 0.98s 4.3×

(c) The cost of final PCA reduction.

Table 1: Model and timing statistics.

(a) Two Domains (b) Three domains

Figure 10: Multiple branches. Our system incrementally recalcu-
lates the deformation subspace of the whole plant model, when the
branches are stitched to the model in multiple steps.

as three domains) shows its usefulness for domain decomposition
methods. Finally the Fork and the Dinosaur example shows the ap-
plication of our method in terms of real time basis recalculation
speed and the ability of the method to handle complex collision
scenarios.

Incremental editing. Since our system incrementally recal-
culates the deformation subspace, it is naturally suitable for han-
dling multiple stitching steps. For example, when we stitch the sec-

ond branch to the plant model as shown in Figure 10b, we can re-
calculate the subspace using the new basis calculated after stitch-
ing the first branch. Similarly, when sewing the cut on a stomach
model as shown in Figure 11, we can incrementally recalculate the
subspace twice: once to form a partially stitched model and once to
form a fully stitched model. Incremental subspace reconstruction
can effectively reduce the computational cost, when user needs to
add multiple stitches over time. That being said, recalculating the
subspace too many times can cause large error accumulation. In the
future, we would like to know how to quickly evaluate the subspace
quality and when to completely recalculate the subspace instead.

6.1. Limitations.

Our method provides a fast way to construct nonlinear deforma-
tion modes for subspace simulation. Although the method is based
on [BJ05], the result is not meant to be the same as the modes
constructed directly from the new mesh using their technique. If
the deformation modes are incrementally updated when the mesh
changes constantly, the error can be accumulated and the result
can become unpredictable. The performance of our method relies
on the assumption that the mesh is slightly changed each time.
If the mesh is too significantly changed, our method needs more
computational time (see Figure 5 for the relationship between the
number of stitches and the corresponding speedup) and it may be
even slower than just calculating the subspace from scratch. When
adding new stitches, we assume that vertices are co-located and the
springs have zero lengths. In other words, we cannot stitch two ar-
bitrary vertices without aligning them ahead of time. Finally, when
stitching unconstrained domains to constrained ones, we cannot al-
low constrained domains to have large deformations, or we cannot
deform unconstrained domains correctly.

Our subspace simulation reuses the cubature samples calculated
for the original subspace. If the mesh is changed significantly, cuba-
ture approximation will be poor and we must recalculate the sam-
ples as well, which is computationally expensive. Another point
to note is that the success of the cubature reuse is greatly depen-
dent on the accuracy of the original cubature training. In general
we should ensure that the cubature error during training is as low
as possible. This can be ensured by adjusting the parameters during
cubature optimization. While such a setting may increase the over-
all training time, we must note that it is a one-time cost and such a
well-trained cubature (with low error) will allow our algorithm to
reuse the cubatures effectively even after many small incremental
changes.

7. Conclusion and Future Work

In this paper, we demonstrate how to perform linear modal analysis
in an incremental fashion, based on the assumption that the stiffness
matrix can be approximated by its low-rank low-frequency part.
Compared with linear motions, nonlinear and locally rigid motions
are more complex to handle. So it is difficult or computationally
expensive to cover them well in the recalculated subspace.

We are actively looking for better ways to handle nonlinear and
locally rigid motions by our recalculated subspace. We are also in-
terested in studying fast ways to evaluate the quality of our sub-
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(a) Before stitching (b) Partially stitched (c) Fully stitched

Figure 11: The stomach example. A cut on the original mesh can be partially or fully stitched in simulation, depending on the constraints.

space, so we can know when it should be replaced by the subspace
calculated from scratch. How to stitch two arbitrary vertices with-
out an expensive initial alignment step is another problem we plan
to study. Finally, we would like to investigate the development of
our techniques on the GPU for even faster performance.
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