Interactive Two-Way Shape Design of Elastic Bodies

RAJADITYA MUKHERJEE, The Ohio State University
LONGHUA WU, The Ohio State University
HUAMIN WANG, The Ohio State University

(a) The target shape (b) The rest shape (c) The model made in the tar-(d) The model made in the
get shape rest shape

Fig. 1. Based on fast simulation and inverse simulation techniques, our system allows the designer to
interactively edit and examine the quasistatic shape and the rest shape of a piranha model at the same time,
as shown in (a) and (b). We show physical validation of our system by fabricating the model in both shapes
using a rubber-like tango black material. Under the influence of gravity, the model fabricated in the rest
shape in (b) sags to the desired quasistatic shape in (a), as predicted by our system.

We present a novel system for interactive elastic shape design in both forward and inverse fashions. Using
this system, the user can choose to edit the rest shape or the quasistatic shape of an elastic solid, and obtain
the other shape that matches under the quasistatic equilibrium condition at the same time. The development
of this system is based on the discovery that inverse quasistatic simulation can be immediately solved by
Newton’s method with a direct solver. To implement our simulator, we propose a Jacobian matrix evaluation
scheme for the inverse elastic problem and we present step length and matrix evaluation techniques that
improve the simulation performance. While our simulator is efficient, it is still not fast enough for the system
to generate the result in real time. Our solution is a shape initialization method using the recent projective
dynamics technique. Shape initialization not only works as a fast preview function during the user editing
process, but also speeds up the convergence of quasistatic or inverse quasistatic simulation afterwards. The
use of a heterogeneous algorithm structure allows the system to further reduce its preview cost, by utilizing
the power of both the CPU and the GPU. Our experiment demonstrates that the whole system is fast, robust,
and convenient for the designer to use in both forward and inverse elastic shape design. It can handle a variety
of nonlinear elastic material models, and its runtime performance has space for more improvement.

Authors’ addresses: Rajaditya Mukherjee, The Ohio State University, rajaditya.mukherjee@gmail.com; Longhua Wu, The
Ohio State University, wu.2724@osu.edu; Huamin Wang, The Ohio State University, wang.3602@osu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2577-6193/2018/5-ART11 $15.00

https://doi.org/10.1145/3203196

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

https://doi.org/10.1145/3203196

11:2 R. Mukherjee et al.

CCS Concepts: » Computing methodologies — Physical simulation;

Additional Key Words and Phrases: Quasistatic simulation, Newton’s method, Inverse elastic problem, Hetero-
geneous structure, Hyperelasticity

ACM Reference Format:

Rajaditya Mukherjee, Longhua Wu, and Huamin Wang. 2018. Interactive Two-Way Shape Design of Elastic
Bodies. Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article 11 (May 2018), 16 pages. https://doi.org/10.1145/
3203196

1 INTRODUCTION

An elastic body deforms under external loads. This property makes elastic shape design uniquely
challenging, due to the discrepancy between the shapes before and after applying loads. Traditi-
onally, elastic shape design is handled in a forward fashion: the designer first models the body
without considering external loads, and then runs quasistatic simulation to check how the body gets
deformed under loads. The designer must repeat this process multiple times, until he/she becomes
satisfied with the outcome. A forward elastic shape design system is straightforward to implement,
given the fact that quasistatic simulation has been extensively studied for many years. However,
the repeating process requires heavy user intervention and consumes considerable computational
resources. Forward elastic shape design is also counter-intuitive, since the designer cannot directly
interact the actual shape under the influence of external loads.

A more natural and intuitive strategy is to allow the designer to manipulate the deformed
shape under influence first, and then estimate the rest shape that achieves the deformed shape
later. This inverse design strategy is useful not only to designers, but also to animators and
surgeons, who need to know the rest shapes of sagging objects captured from the real world, for
animation production and virtual surgery. Unfortunately, inverse elastic shape design requires
to solve the inverse problem of quasistatic simulation, which turns out to be significantly more
difficult than quasistatic simulation itself. Previous research on this topic was largely focused on
lower dimensional cases [8, 10], specific elastic material models [5, 32], or small deformation [23].
Inverse quasistatic simulation of generic elastic models remains as a challenging problem, as far as
we know.

In this paper, we present a new elastic shape design system that utilizes the power of both the
CPU and the GPU. The key features of our system are:

e Two-way design. The system enables elastic shape design in both forward and inverse
ways. In other words, the designer can modify either the rest shape or the quasistatic shape,

and the system generates the other shape on the fly.
e Flexibility. Our system flexibly handles a wide range of nonlinear elastic models, including

the neo-Hookean model, the Mooney-Rivlin model, and the spline-based model using principal

stretches [36].
e Efficiency. After user editing, the system typically finishes the modeling process of a

mesh with 73K tetrahedra in 0.5 seconds, as Figure 1 shows. This is substantially faster than
any existing system, especially for inverse shape design.
The technical contributions involved in the development of our system can be summarized as
follows.

o Inverse quasistatic simulation. = We present the Jacobian matrix evaluation scheme
for inverse quasistatic simulation of generic elastic materials. Based on this scheme, we
discovered that, inverse simulation, as a special shape optimization problem, can be directly
solved by Newton’s method.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

https://doi.org/10.1145/3203196
https://doi.org/10.1145/3203196

Interactive Two-Way Shape Design of Elastic Bodies 11:3

o Initialization by projective dynamics. Although our simulators are efficient, they are
still unable to follow fast shape changes made by the user. To address this problem, we
propose a real-time shape initialization approach based on the recent projective dynamics

technique.
e A heterogeneous system. To achieve interactive system performance, we develop a

heterogenous structure that distributes the computational workload to both the CPU and the
GPU. The use of this structure offers another level of parallelization among processors.

Our experiment demonstrates that the whole system is fast, robust, and convenient for the designer
to use in both forward and inverse shape design cases. It flexibly handles a variety of nonlinear
elastic material models, and its performance can be potentially improved by other numerical
techniques in the future, such as multi-grid.

2 RELATED WORK

Elastic body simulation. Elastic body simulation has been an important graphics research topic,
since the pioneer work by Terzopoulos and colleagues [28]. Today’s physics-based simulators often
use implicit time integration, since explicit time integration can cause the numerical instability
issue [18, 26]. To use implicit time integration, a simulator needs the Jacobian matrix of the force
with respect to the vertex position. Teran and colleagues [27] proposed a Jacobian matrix evaluation
scheme for hyperelastic materials and applied it in quasistatic simulation. Another Jacobian matrix
scheme based on principal stretches was proposed by Xu and collaborators [36].

Physics-based models are flexible and close to real-world materials, but their computational
costs are not so affordable by real-time applications. Because of that, researchers are getting more
interested in fast constraint-based simulation techniques, such as strain limiting [21, 29, 34], shape
matching [17, 22], and position-based dynamics [12, 15, 16]. Liu and collaborators [13] found
that the potential energy of a spring can be interpreted as a compliant edge constraint. This
observation guided them to the development of an iterative local/global mass-spring simulator,
whose result converges to the solution of implicit time integration. Bouaziz and colleagues [4]
generalized this idea into projective dynamics, by formulating the elastic energy of an element as
a geometric constraint. For highly stiff problems, Tournier and colleagues [30] combined forces
and constraints into a better conditioned linear system with a larger problem size. To implement
projective dynamics on the GPU, Wang [33] explored the Jacobi-preconditioned gradient descent
method, and Fratarcangeli and colleagues [9] advocated the use of multi-color Gauss Seidel. Recently,
Wang and Ying [35] generalized Jacobi-preconditioned gradient descent to accurately and efficiently
simulate generic nonlinear elastic materials, thanks to a series of divergence avoidance techniques.

Elastic shape design. While forward elastic shape design can be solved by quasistatic simulation
as many researchers explored, inverse elastic shape design, fundamentally as inverse quasistatic
simulation, is a much more complex problem. If the elastic shape is made of strands and curves,
this problem can be well solved under reduced dynamics models [8, 10]. When the goal does not
require the rest shape result to be strictly consistent with the deformed shape input, the problem
can be solved by augmented Lagrangian methods as Skouras and collaborators [24] suggested.
For inverse quasistatic simulation of neo-Hookean volumetric models, Chen and colleagues [5]
developed a Jacobian matrix evaluation formula and suggested to use an asymptotic numerical
method. Wang and collaborators [32] found that the inverse problem can be solved as a backward
simulation process for co-rotational linear materials. Shin and colleagues [23] studied inverse
quasistatic simulation of generic elastic materials, when the deformation is small. Recently, Bartle
and collaborators [1] designed a fixed point method to solve the inverse problem for cloth patches.
Their method converges fast mostly in the first few iterations.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

11:4 R. Mukherjee et al.

Graphics researchers have also studied inverse elastic shape design, when the shape is paramete-
rized by edge lengths [31], control parameters [2, 7], or joints [20, 25]. Their techniques typically
involve the use of the Gauss-Newton method, by formulating shape optimization as nonlinear least
square problems. For inverse quasistatic simulation, Chen and colleagues [5] pointed out that the
Gauss-Newton method is not a suitable option, since it is often too expensive to construct its matrix,
especially when the mesh is in high resolution. Outside of the computer graphics community,
researchers investigated the inverse elastic problem mostly for identifying material parameter
distributions or buried objects [3]. The developed techniques are either limited to linear elasticity,
or too computationally expensive for interactive applications.

3 BACKGROUND ON QUASISTATIC SIMULATION

Let X € R*N and x € R3N be rest and deformed vertex position vectors of an elastic body with N
vertices. The quasistatic equilibrium state can be described using a nonlinear system:

f(x,X) =0, (1)

in which the total force f is a nonlinear function of x and X. Given X, the goal of quasistatic
simulation is to find x that satisfies Equation 1.

Numerical solutions. A typical solution to a nonlinear system is Newton’s method, which succes-
sively refines the result x**1) in the k+1-th iteration as:

x6H) = 0 [50] p), x), (2)

where Jx = 0f/0x is the Jacobian matrix of f with respect to x. Since we can define f as the negative
gradient of the total potential energy, we can treat Jx as the negative Hessian matrix of the potential
energy. Therefore, Jx must be symmetric.

The issue with Newton’s method is that it is too computationally expensive to solve J;!f in every
iteration. A natural idea explored by quasi-Newton methods and conjugate gradient methods is to
use an approximation of Jx, whose inverse can be easily calculated. These methods often require
extensive use of dot product operations, making them unfriendly with parallelization. In a special
case, if we replace Jx by the identity matrix, we reduce Newton’s method to the gradient descent
method, whose convergence rate is known to be low. Alternatively, we can replace Jx by a carefully
tuned constant matrix, which can be pre-factored as a fast runtime solver. This approach has
demonstrated its effectiveness on projective dynamics [4], but not so much on generic hyperelastic
models [14]. Recently, Wang and Yang [35] proposed to replace Jx by its diagonal. Their method
can robustly and efficiently handle generic hyperelastic models, after using a dynamically adjusted
step length.

Elastic force and matrix evaluation. A crucial step involved in many aforementioned methods
is the evaluation of the internal elastic force and its Jacobian matrix. According to continuum
mechanics, the elastic forces {go, g1, 82, g3} applied at the vertices of a tetrahedron is:

3
G=[g: g g]=PB,, =P[b; by bs], go=—Zgi, (3)
=1

in which P is the first Piola-Kirchhoff stress and b; stands for the average area-weighted normal of
the triangles adjacent to vertex i. Let F = DD} ! be the deformation gradient, where D and D,,, are
the edge vector matrix: Dy = [x; —X¢ X2 —Xo X3 —X¢] and D, = [X; - Xo X3 —Xo X3 — Xo].
After singular value decomposition F = UDVT, we can compute the stress tensor P as:

P = UP(D)V', (4)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

Interactive Two-Way Shape Design of Elastic Bodies 11:5

where the function P(D) represents the constitutive relationship between the principal stretches in
D and the stress tensor. Given Equation 3 and 4, Xu and colleagues [36] proposed to evaluate the
elastic Jacobian matrix from:
oG 0GIF (9P OF
E‘ﬁ&‘(ﬁ m)& ®
Since both B, and dF/dx are invariant to x, our focus is on JP/JF. By definition, we can formulate
the derivative of P with respect to one variable of F as:

oP ; OP(D) 9D ;
— =U ’P D) + +P(D)Qy Iy 6
OF;; : (D) + oD OF; (D) ©)
in which,
au ovT
Q” UT—, Q=" 7
dF;” vV 9F; @

To evaluate Equation 6, we calculate U, V, P(D), and dP(D)/dD by their definitions. The additional
terms needed by Equation 6 are QU Q” and dD/dF;;. According to [19], we have:

vy QD + D, DQY. (8)
OF;; OF;;

Since D is a diagonal matrix, 0D/0F;; is diagonal as well. Meanwhile, Qg and Qg must be skew-
symmetric, because Qij + (Qij)T = 8(UTU)/OF;; = 0. Based on these observations, we obtain
0D/0F;; from the dlagonal elements of UT(AF/AF;;)V. The remaining off-diagonal elements form a
linear system, whose solution gives the six unique elements of Q” and Q” To avoid the system
from being singular when two or more principal stretches are close we 51mply place a limit on the
determinant of the system matrix.

4 INVERSE QUASISTATIC SIMULATION

In this section, we will study inverse quasistatic simulation, the key component in inverse elastic
shape design. Specifically, given x, we would like to find X that satisfies f(x, X) = 0. Before we
discuss the applicability of the numerical methods, we will formulate the Jacobian matrix of the
force with respect to the rest shape: Jx = 0f /90X, based on our prior knowledge in Section 3.

4.1 Jacobian Matrix Evaluation

We consider two Jacobian matrices for the inverse problem: the Jacobian of the elastic force under
a generic elastic material model and the Jacobian of the gravity force.

Elastic matrix evaluation. To evaluate the elastic Jacobian matrix for the inverse problem, our

idea is to use the inverse of the deformation gradient:
F=F'!=D,D;! =VvD'U", 9)

which is a linear function of X. We can obtain Jx from:
G _ (0P aF 9B,
— =(=B,, _m
0X OF 6X 0X
where only dF/dX is invariant to X. To evaluate the first component in Equation 10, we compute
the derivative of P with respect to one variable of F:

(10)

P

, 9P(D) 9D
T A

+ P(D)fzif} VT, (11)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

11:6 R. Mukherjee et al.

in which,
T ou T 6VT
Qu=U"—7, Qy=—V. (12)
ij OF;;

By taking the derivative of the singular value decomposition of F and multiplying the result with
VT and U, we get:

oF \' i oD i)
(VT—A) = QD'+ — +D'Qy. (13)
As before, 0D/ (913,- j is diagonal, and both Q{f and fz(f are skew-symmetric. Therefore, we calculate
dD!/9F;; from the diagonal elements of (V' 9F/9F;;U)T, and f)g and Qif from the remaining
off-diagonal elements after solving a linear system.

The evaluation of the second component in Equation 10 needs dB,,/dX. Since B,, is made of
area-weighted triangle normals and each area-weighted normal is equal to the cross product of
two edge vectors, we formulate the derivative of one normal first:

(X5 = Xp) X (X1 = X3)
0X,
in which R}, is the skew-symmetric cross product matrix of edge X3X,. Once we obtain all of these
cross product matrices, we assemble them into dB,,/dX and obtain the second component.

=R;,, (14)

Gravitational matrix evaluation. The gravity force, as a function of the rest volume, also depends
on X. Therefore, we should consider its contribution to the Jacobian matrix of the total force as well.
For simplicity, we use a lumped mass model, which equally distributes the mass of a tetrahedron
to its four vertices. Based on this model, we calculate the Jacobian matrix of the gravity force
contributed by tetrahedron t to every vertex i as:

_ Pt adet(Dm)

t,i
=287 ox (15)

in which p; is the mass density, g is the gravity acceleration, and %de t(D,,) gives the tetrahedron
volume. By definition, we can calculate the derivative of the determinant from its 2 X 2 sub-matrices.
Once we calculate each J;i, we sum them up to form the whole gravitational Jacobian matrix.

The importance of matrix components. Our research reveals that the first component of the elastic
matrix dominates the total Jacobian matrix. In average, it contributes more than 99.7 percent
of the total Jacobian matrix, while the other two components contribute less than 0.3 percent.
This phenomenon makes us wonder whether we can ignore the other components in inverse
quasistatic simulation. Figure 2 demonstrates that the answer is no. When we ignore the second
elastic component and the gravitational component, Newton’s method fails to converge. When we
ignore the gravitational component only, Newton’s method converges within 34 iterations. Finally,
when we use all of three components, Newton’s method converges within 27 iterations. Since the
computation overhead of the two additional components is small, we choose to evaluate the whole
Jacobian matrix in practice.

4.2 Numerical Solutions

An interesting question is whether the numerical methods used for quasistatic simulation are still
applicable to the inverse problem. Here we must keep in mind that the Jacobian matrix of the
inverse problem cannot be interpreted as the Hessian matrix of a potential energy. Therefore, it
may not be symmetric.

Our first experiment is to test nonlinear descent methods on the GPU, including nonlinear
conjugate gradient and preconditioned gradient descent, both of which have demonstrated their

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

Interactive Two-Way Shape Design of Elastic Bodies 11:7

102 -
e
g 10 Elastic Component 1
Lﬁ Elastic Component 1 and 2
z 102 All Three Components
5
o 104}
10-6 1 I I J
0 16 32 48 64
Iterations

Fig. 2. The effects of Jacobian matrix components on the convergence of Newton’s method. This plot shows
that it is necessary to evaluate all of the three Jacobian matrix components, even though the contributions of
the second elastic component and the gravitational component are small. By default, we choose the armadillo
example for evaluation purposes in this paper.

robustness and performance in quasistatic simulation [35]. Figure 3 shows that gradient descent
is effective in the first few iterations. But once the error becomes small, it diverges if we do not
significantly reduce the step length. The performance of nonlinear conjugate gradient is even worse,
probably because conjugate gradient is not suitable for asymmetric matrices. We note that here the
cost of a gradient descent iteration is higher than that cost in [35], since gradient descent must
evaluate the Jacobian matrix in every iteration to avoid more severe divergence issues.

Since some nonlinear descent methods can be considered as applying one step of an iterative
solver in every iteration of Newton’s method, our next experiment is to choose Newton’s method
and try different iterative solvers and different numbers of iterative steps. Figure 3 shows that if we
use 128 steps of a Jacobi solver in each Newton iteration, the error curve behaves just like that of
preconditioned gradient descent: the error decreases only in the first few iterations. The reason it
runs faster is because it does not need frequent force or matrix evaluation. The asymmetric nature
of the system matrix inspires us to test the biconjugate gradient stabilized method next. Figure 3
shows that this method still cannot reach a small error, even if we use 1,024 iterative steps per
Newton iteration. It also verifies the high computational cost of the biconjugate gradient stabilized
method on the GPU, due to extensive use of inner and matrix-vector products.

In the end, we believe that Newton’s method with a direct solver provides the best way to solve
inverse quasistatic simulation. Our simulator chooses to evaluate forces and matrices on the GPU,
and solve each linear system by a LU solver on the CPU. In most cases, the simulator can reduce
the error to a low level within one second, as Figure 3 shows. To further improve its robustness
and efficiency, we will investigate error metrics, step lengths, and matrix evaluations in the rest of
this subsection.

Errors and step lengths. When the initialization is away from the solution, Newton’s method
needs a sufficiently small step length to protect it from the divergence issue. One way to find the
step length is to perform backtracking line search based on the Armijo rule, which requires the
system energy to decrease monotonically. Since we cannot define inverse quasistatic simulation as
an energy minimization problem, we replace the energy in the Armijo rule by the residual error,
i.e., the magnitude of the residual force in Equation 1. We also change the rule to accept a step
length, as long as it does not introduce too much error increase. The reason we do not strictly
enforce an error decrease condition is because the error behaves differently from the energy and a
strict condition can cause an unnecessarily small step length, as we experienced in our experiment.
Figure 3 demonstrates that although the error reported from Newton’s method increases in the
first few iterations, it quickly drops afterwards.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

11:8 R. Mukherjee et al.

102

100
5
£ | — Nonlinear CG
LE 102 Gradient Descent
£ 104t Newton (Jacobi, 128)
> Newton (BiCGStab, 128)
P 106 | — Newton (BiCGStab, 1024)

—— Newton (Direct)
108 . L 1 1 !
1073 102 101 100 10! 102
Time (sec)

Fig. 3. The performances of different numerical methods solving the same inverse simulation problem. Due
to the complex nature of the problem, many methods fail to converge. In contrast, Newton’s method with a
direct solver converges within one second.

—_
(==
=}

Relative Error
=
e}

104

10 . -
0.0 0.2 0.4 0.6 0.8 1.0

Time (sec)

Fig. 4. The performances of Newton’s method when it chooses different M values. Newton’s method converges
slowly when M is too small or too large. It converges the fastest when M = 4.

Skipping matrix evaluations. Newton’s method spends a large portion of its computational
time on Jacobian matrix evaluation and factorization. Therefore, a natural idea of improving its
performance is to skip matrix evaluations and reuse factored matrices from previous iterations.
Researchers have explored this idea as high-order Newton’s methods [6] before. In this work, we
simply perform matrix evaluation and factorization every M iterations, and use the same factored
matrix to construct the linear systems in the M iterations. Figure 4 shows that Newton’s method
converges the fastest when M = 4. If M is too large, this approach will be not efficient either, since
the error cannot decrease sufficiently in many iterations.

5 AN INTERACTIVE SYSTEM

The goal of our system is to achieve interactive elastic shape design in two ways. In the forward
way, the user interacts with the rest shape and the system updates the quasistatic shape in real
time. In the inverse way, the user modifies the quasistatic shape and the system generates the rest
shape accordingly.

Given the techniques described in Section 3 and 4, it is straightforward to implement basic
functionalities of our system. Specifically, we use the preconditioned gradient descent method [35]
to handle quasistatic simulation in forward elastic shape design. For inverse quasistatic simulation,
we use Newton’s method solved by a direct solver, as mentioned in Subsection 4.2. Our system
can adopt any tool for interactive shape editing. In practice, we simply use another quasistatic
simulator, which allows the user to modify the shapes by adding new fix constraints (in red), as
shown in Figure 5.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

Interactive Two-Way Shape Design of Elastic Bodies 11:9

(a) The rest shape (b) The quasistatic shape

Fig. 5. The pegasus example. Our system allows the user to interactively modify the quasistatic shape by
new fix constraints (in red) and examine the rest shape at the same time.

1021
g
£ 100
43}
2 107
B
é 104 Without Initialization

—— With Initialization
106 L L L d
0 4 8 12 16

Iterations

Fig. 6. The convergence of Newton’s method with and without using shape initialization. Based on projective
dynamics, our shape initialization technique speeds up inverse quasistatic simulation by approximately 30
percent, as shown in this plot.

A basic way of implementing our system is to run interactive shape editing and forward/inverse
quasistatic simulation at the same time. However, such a system is highly susceptible to the
divergence issue, since the simulation result in the current iteration can become a bad initialization
in the next iteration, when the designer makes dramatic shape changes. Even though this issue can
be addressed by using small step lengths, it reduces the system performance and makes divergence
avoidance sophisticated. Our solution is a projective dynamics initialization method for estimating
shape deformation in both forward and inverse directions. This method not only allows the designer
to preview the outcome in real time, but also speeds up the convergence of simulation and inverse
simulation after each user modification.

5.1 Shape Initialization by Projective Dynamics

Without loss of generality, here we study the initialization during inverse elastic shape design.
It is straightforward to adjust the proposed method for forward elastic shape design, by simply
swapping the quasistatic shape with the rest shape.

Let x¢ and X, be a pair of the quasistatic shape and the rest shape obtained from the last inverse
simulation process. Let x be the newly modified quasistatic shape and X be the corresponding
rest shape to be found. We argue that the transformation from x to X should be similar to the
transformation from x(to Xy. For every tetrahedron, this similarity can be measured by the

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

11:10 R. Mukherjee et al.

difference between two deformation gradients:
Ej™ = ||D,D;! - DD = [|AX - |, (16)

where A, is the matrix that converts X into the deformation gradient and F;| is the deformation
gradient from x, to X,. We also argue that the tetrahedron should not be too stretched or compressed
from its input shape. This strain limiting condition can be quantified using another energy metric:

Ef™t = ||B,X - p,(B,X)|I%, (17)

in which B, X is the deformation gradient of the tetrahedron from the input shape to X, and p;(B;X)
is its projection after isotropic strain limiting [34]. Finally, we use another energy to keep the
vertices fixed in simulation remain fixed in initialization:

Ef* = (X - XO)Ts(X - X©), (18)

in which X(© is the starting X, and S is a diagonal matrix containing nonnegative fixing weights.
By putting the three energies together, we form an energy minimization problem that finds an

optimal X as: X = arg min {% Y Em 4+ % >, Elimit 4 %Eﬁ"}, which leads to a nonlinear system:
MX =X + 3 (koATF;d + kiBIp),

(19)
M=$+ 3 (koATA, + kiB]B,).
t

Here the nonlinearity comes from the dependence of p; on X. The projective dynamics technique [4]
proposes to solve Equation 19 as a linear system multiple times, by treating p, as constant each time.
Projective dynamics is fast not only because M is independent of X and it can be pre-factored by
Cholesky decomposition for less runtime cost, but also because the linear system can be separated
into three for the three coordinates of X. Since the initialization is called repetitively during user
interaction and strain limit violation is uncommon, we found it is sufficient to solve Equation 19 just
once per frame on the CPU. Note that M is symmetric positive definite, so the linear system must
have a solution. Figure 6 reveals the effect of shape initialization on the convergence of Newton’s
method handling the inverse simulation process that follows.

5.2 A Heterogeneous Structure

Based on the initialization method proposed in Subsection 5.1, we present our elastic shape design
system as Figure 7 shows. This system divides the shape design process into two stages. In the
preview stage, the system uses the initialization technique to estimate the other shape from the
modified shape, for real-time preview purposes. Once the user stops editing and the modified shape
converges, the system switches to the simulation stage and runs quasistatic or inverse quasistatic
simulation to obtain the final optimized result.

An interesting feature of our system is that shape modification is performed on the GPU, while
shape initialization is performed on the CPU'. This provides another level of parallelization between
the processors in the preview stage, so they do not need to wait each other. For the armadillo
example, shape modification takes 4.1ms per frame and shape initialization takes 12.6ms per frame
in average. The theoretical upper bound on the speedup caused by CPU-GPU parallelization is 24.5
percent, while the actual speedup we observed from the experiment is approximately 18.0 percent,
due to the overhead of multi-threading. We expect this speedup to be greater in the future, once
the performance of a GPU receives more improvement than that of a CPU.

ILike inverse simulation, shape initialization runs the linear solver on the CPU. It still performs force and matrix evaluation
on the GPU.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

Interactive Two-Way Shape Design of Elastic Bodies 11:11

l User Input
S
X ?5 Rest. Shape X
Modification [>

(quasistatic simulation)

= . . 5 = . .
X = Quasistatic Shape X ‘:‘ = Quasistatic Shape
—_— Initialization — e — Computation X
(projective dynamics) (quasistatic simulation)
Preview Stage Simulation Stage
(a) Forward elastic shape design
= =
X e Rest Shape X 15 Rest Shape X
Initialization e g Computation ’
(projective dynamics) (inverse simulation)
=) . .
X = Qua51stgt1c Shape X
Modification [
(quasistatic simulation)
User Input
Preview Stage Simulation Stage

(b) Inverse elastic shape design

Fig. 7. The system pipeline. When the user performs modification on one shape during the preview stage,
the system utilizes both the CPU and the GPU to initialize the other shape in real time. After that, it runs
quasistatic or inverse quasistatic simulation to reach the final result of the other shape.

6 RESULTS AND DISCUSSIONS

(Please watch the supplemental video for animation examples.) The implementation of our system
uses the Intel MKL PARDISO library and the CUDA library. Our experiment runs on an Intel
Core i7-5930K 3.5GHz processor and an NVIDIA GeForce GTX TITAN X Graphics Card. Table 1
summarized the statistics and the timings of our examples. In each frame, our quasistatic simulator
runs 96 gradient descent iterations for shape modification, or 128 gradient descent iterations for
forward simulation. The other two simulators, i.e., the projective dynamics simulator and the inverse
simulator, run only one Newton iteration in each frame. By default, we choose the neo-Hookean
model for our examples.

Comparison to asymptotic numerical methods (ANM).. To verify the correctness of our inverse
simulator, we compare the visual results with that of an asymptotic numerical method [5] by using

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

11:12 R. Mukherjee et al.

Preview Costs | Simulation Costs
Name (#vert, #ele) | Before | After | Forward | Inverse
Pegasus (12K, 49K) | 14.9ms | 12.1ms | 12.0ms 15.8ms

Plant (14K, 47K) 14.8ms | 12.1ms | 11.8ms | 15.5ms
Armadillo (14K, 55K) | 16.7ms | 13.7ms | 12.6ms | 20.4ms
Statue (16K, 60K) 19.0ms | 14.7ms | 14.1ms | 23.0ms
Piranha (20K, 73K) | 23.3ms | 17.1ms | 16.9ms | 29.0ms

Table 1. Statistics and timings of our examples. This table summarizes the computational cost per frame
in each stage. Here the two preview costs are the costs before and after implementing our CPU-GPU
parallelization concept.

(a) The target shape (b) Our result (c) The result of ANM

Fig. 8. The plant example. The result of our inverse simulator in (b) is identical to that of the asymptotic
numerical method in (c).

the same example as shown in Figure 8 on both the methods. Our experiments shows that our
simulator can generate its result in 0.6 seconds, while ANM needs 3.5 seconds. Both methods use
the Intel MKL PARDISO library on the CPU. We note that ANM is currently designed for the
neo-Hookean model only.

Each step of ANM can be considered as a combination of three steps: computation of an expansion
coefficient using a linear solver, a residual estimation based on Brent’s method and finally some
(less than 3) Newton Raphson iterations. Because of the first two steps, the guesses are very close to
the actual solution and so few steps are required for convergence. Our method guarantees the same
assumption using the Projective Dynamics based initialization step which is performed only once
at the start of the simulation stage. Additionally note that in our method, we can skip the costly
hessian evaluation step occasionally and a part of the force and matrix computation is offloaded
to the GPU which brings on another layer of parallelism as compared to ANM. A combination of
these factors is responsible for the speed advantage compared to ANM.

Validation by 3D printing. We validate the correctness of our simulation results by 3D printing,
as shown in Figure 1 and 9. In both examples, we use a Stratasys Objet 30 Prime Printer with a
rubber-like tango black material. Since we do not exactly know the physical properties of tango
black, we print the model in the target shape (in Figure 1c) and estimate material parameters
manually from forward simulation. Given these parameters, we run inverse simulation on the
target shape (in Figure 1a) to get the rest shape (in Figure 1b). The printed model in the rest shape
sags to the desired target shape, as shown in Figure 1d. The statue example demonstrates that
our inverse simulator can handle additional loads, which are invariant to the rest shape. In this
example, we treat the input shape as the rest shape in Figure 9a, and run forward simulation to get

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

Interactive Two-Way Shape Design of Elastic Bodies 11:13

(a) The rest shape (b) The model made in the rest shape

Fig. 9. The statue example. Our inverse quasistatic simulator can successfully recover the rest shape of this
model in (a) from the deformed shape under an additional 500g load shown in (b).

(a) The target shape (b) The rest shape (c) The inverted shape

Fig. 10. The box example. This example reveals that our inverse quasistatic simulation method cannot easily
handle inverted element cases, as shown in (c).

the deformed shape in quasistatic equilibrium as Figure 9b shows. By running inverse simulation
on the deformed shape, our system successfully recovers the rest shape.

Inverted elements. Since many elastic material models do not consider inverted element cases,
researchers developed a variety of techniques to help quasistatic simulation handle inverted ele-
ments in the past. An interesting question is whether these techniques can help inverse quasistatic
simulation handle inverted elements as well. Figure 10 shows the results of a box simulated by our
inverse simulator. When the initialization is completely mirrored, the simulator fails to recover
the mesh shown in Figure 10c, as expected. Unfortunately, techniques that work in quasistatic
simulation, such as clamping the energy or the principal stretches [27, 35], do not work in inverse
quasistatic simulation as far as we have experienced. While this issue can be easily addressed by
placing a strain limit on the initial mesh, we would like to know whether a better solution exists in
the future.

Nonlinear elastic models. Figure 11 demonstrates the capability of our system in handling the
armadillo example under different nonlinear elastic models. In this experiment, we treat the input
shape as the quasistatic shape as shown in Figure 11a. Since our spline-based stVK model [36] is the
most compliant one, its rest shape differs the most from the quasistatic shape as Figure 11b shows.
We note that the original StVK model has little resistance to compression, so we incorporate an
additional volumetric strain energy as proposed in [11]. Figure 11c and 11d show that the results
under the neo-Hookean model and the Mooney-Rivlin model are similar, because the system uses

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

11:14 R. Mukherjee et al.

(b) The result of spline-based StVK

(c) The result of neo-Hookean (d) The result of Mooney-Rivlin

Fig. 11. The armadillo example. This example compares the rest shape results of our inverse quasistatic
simulator under different nonlinear elastic models.

the same elastic modulus values. The Mooney-Rivlin result looks slightly closer to the quasistatic
shape, due to an additional energy term.

Limitations. Perhaps the biggest limitation of our system is its requirement on the mesh quality.
When the quality of the rest mesh is lower, forward elastic shape design needs smaller step lengths
and more computational time to avoid the divergence issue. Interestingly, the mesh quality also
affects inverse elastic shape design, if the modified mesh leads to a bad rest mesh. For example,
when the user lifts the beam in the quasistatic shape as shown in Figure 12, the top white vertices
will become more squeezed in the rest shape to count against gravity. This will cause oscillation or
even divergence during the transition from the preview stage to the simulation stage, unless we
eliminate the preview stage and always run Newton’s method for inverse simulation. Our solution
to this problem is to relax the fixing weights of the fixed vertices according to their distances to the
free vertices, so that the free vertices do not get squeezed too much. Our experiment indicates that
this solution effectively avoids oscillation or divergence issues.

Other limitations of the system include interruptive transition from the preview stage to the
simulation stage, the need of a balanced workload between the CPU and the GPU, and lower
convergence rates when it deals with stiffer or more nonlinear materials.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we find that inverse quasistatic simulation can be immediately solved by Newton’s
method with a direct solver. Based on this observation, we develop an interactive two-way elastic
shape design system, using a novel shape initialization method and a heterogeneous structure that
utilizes both the CPU and the GPU.

In the future, we will explore better ways to handle inverted elements in inverse quasistatic
simulation and we will improve the performance of our system using other acceleration techniques,
such as multi-grid. We also would like to integrate adaptive remeshing into our system, in case
the user performs significant changes to the rest shape or the quasistatic shape. Finally, we are

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

Interactive Two-Way Shape Design of Elastic Bodies 11:15

Fig.

To be squeezed

™~

12. A challenging example. When the red vertices are fixed and the white vertices get lifted in the

quasistatic shape, the white vertices must be lifted even more in the rest shape to fight against gravity. This
causes the top white vertices to be squeezed and deteriorates the rest mesh quality.

interested in developing fast simulation systems on other platforms, such as field-programmable
gate array (FPGA).

ACKNOWLEDGMENTS

This work was funded by NSF grant CHS-1524992. The authors would also like to thank Adobe
Research and NVIDIA Research for additional equipment and funding supports.

REFERENCES

(1]

Aric Bartle, Alla Sheffer, Vladimir G. Kim, Danny M. Kaufman, Nicholas Vining, and Floraine Berthouzoz. 2016.
Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. (SSGGRAPH) 35, 4, Article 50
(July 2016), 11 pages.

Bernd Bickel, Peter Kaufmann, Mélina Skouras, Bernhard Thomaszewski, Derek Bradley, Thabo Beeler, Phil Jackson,
Steve Marschner, Wojciech Matusik, and Markus Gross. 2012. Physical Face Cloning. ACM Trans. Graph. (SIGGRAPH)
31, 4, Article 118 (July 2012), 118:1-118:10 pages.

Marc Bonnet and A. Constantinescu. 2005. Inverse problems in elasticity. Inverse Problems 21, 2 (2005), R1-R50.
Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing
Constraint Projections for Fast Simulation. ACM Trans. Graph. (SSGGRAPH) 33, 4, Article 154 (July 2014), 11 pages.
Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An Asymptotic Numerical Method for Inverse Elastic
Shape Design. ACM Trans. Graph. (SSGGRAPH) 33, 4, Article 95 (July 2014), 11 pages.

Alicia Cordero, José L. Hueso, Eulalia Martinez, and Juan R. Torregrosa. 2010. New Modifications of Potra-PtaK’s
Method with Optimal Fourth and Eighth Orders of Convergence. J. Comput. Appl. Math. 234, 10 (Sept. 2010), 2969-2976.
Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher, Robert Sumner, and Markus Gross.
2012. Deformable Objects Alive! ACM Trans. Graph. (SSGGRAPH) 31, 4, Article 69 (July 2012), 9 pages.

Alexandre Derouet-Jourdan, Florence Bertails-Descoubes, Gilles Daviet, and Joélle Thollot. 2013. Inverse Dynamic
Hair Modeling with Frictional Contact. ACM Trans. Graph. (SSIGGRAPH Asia) 32, 6, Article 159 (Nov. 2013), 10 pages.
Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: a Practical Gauss-Seidel Method for Stable
Soft Body Dynamics. ACM Trans. Graph. (SIGGRAPH Asia) 35, 6 (Nov. 2016), 214:1-214:9.

Sunil Hadap. 2006. Oriented Strands: Dynamics of Stiff Multi-body System. In Proceedings of SCA. 91-100.

Ryo Kikuuwe, Hiroaki Tabuchi, and Motoji Yamamoto. 2009. An Edge-based Computationally Efficient Formulation of
Saint Venant-Kirchhoff Tetrahedral Finite Elements. ACM Trans. Graph. 28, 1, Article 8 (Feb. 2009), 13 pages.
Tae-Yong Kim, Nuttapong Chentanez, and Matthias Milller-Fischer. 2012. Long Range Attachments - A Method to
Simulate Inextensible Clothing in Computer Games. In Proceedings of SCA. 305-310.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast Simulation of Mass-Spring Systems.
ACM Transactions on Graphics 32, 6 (Nov. 2013), 209:1-7. http://cg.cis.upenn.edu/publications/Liu-FMS Proceedings

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

http://cg.cis.upenn.edu/publications/Liu-FMS

11:16 R. Mukherjee et al.

of ACM SIGGRAPH Asia 2013, Hong Kong.

[14] Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2016. Towards Real-time Simulation of Hyperelastic Materials. arXiv
preprint arXiv:1604.07378 (2016).

[15] Matthias Miiller. 2008. Hierarchical Position Based Dynamics. In Proceedings of VRIPHYS. 1-10.

[16] Matthias Miiller, N. Chentanez, TY. Kim, and M. Macklin. 2014. Strain Based Dynamics. In Proceedings of SCA. 21-23.

[17] Matthias Miiller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005. Meshless Deformations Based on
Shape Matching. ACM Trans. Graph. (SIGGRAPH) 24, 3 (July 2005), 471-478.

[18] James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins. 2002. Graphical modeling and animation of ductile
fracture. ACM Trans. Graph. (SSGGRAPH) 21, 3 (July 2002), 291-294.

[19] Théodore Papadopoulo and Manolis I. A. Lourakis. 2000. Estimating the Jacobian of the Singular Value Decomposition:
Theory and Applications. In Proceedings of the 6th European Conference on Computer Vision-Part I. 554-570.

[20] Jests Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal, Robert Sumner, and Miguel A.
Otaduy. 2015. Design and Fabrication of Flexible Rod Meshes. ACM Trans. Graph. (SSGGRAPH) 34, 4, Article 138 (July
2015), 12 pages.

[21] Xavier Provot. 1996. Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior. In Proceedings
of Graphics Interface. 147-154.

[22] Alec R. Rivers and Doug L. James. 2007. FastLSM: Fast Lattice Shape Matching for Robust Real-time Deformation.
ACM Trans. Graph. (SIGGRAPH) 26, 3, Article 82 (July 2007).

[23] Hijung V. Shin, Christopher F. Porst, Etienne Vouga, John Ochsendorf, and Frédo Durand. 2016. Reconciling Elastic
and Equilibrium Methods for Static Analysis. ACM Trans. Graph. 35, 2, Article 13 (Feb. 2016), 13:1-13:16 pages.

[24] Mélina Skouras, Bernhard Thomaszewski, Bernd Bickel, and Markus Gross. 2012. Computational Design of Rubber
Balloons. Comput. Graph. Forum 31, 2pt4 (May 2012).

[25] Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus Gross. 2013. Computational Design
of Actuated Deformable Characters. ACM Trans. Graph. (SIGGRAPH) 32, 4, Article 82 (July 2013), 10 pages.

[26] J. Teran, S. Blemker, V. Ng Thow Hing, and R. Fedkiw. 2003. Finite Volume Methods for the Simulation of Skeletal
Muscle. In Proceedings of SCA. 68-74.

[27] Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust Quasistatic Finite Elements and
Flesh Simulation. In Proceedings of SCA. 181-190.

[28] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically Deformable Models. SIGGRAPH
Comput. Graph. 21, 4 (Aug. 1987), 205-214.

[29] Bernhard Thomaszewski, Simon Pabst, and Wolfgang Strasser. 2009. Continuum-based Strain Limiting. Computer
Graphics Forum (Eurographics) 28, 2 (2009), 569-576.

[30] Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and Francois Faure. 2015. Stable Constrained Dynamics. ACM
Trans. Graph. (SSGGRAPH) 34, 4, Article 132 (July 2015), 10 pages.

[31] Christopher D. Twigg and Zoran Kaci¢-Alesi¢. 2011. Optimization for Sag-free Simulations. In Proceedings of SCA.
225-236.

[32] Bin Wang, Longhua Wu, KangKang Yin, Uri Ascher, Libin Liu, and Hui Huang. 2015. Deformation Capture and
Modeling of Soft Objects. ACM Trans. Graph. (SSIGGRAPH) 34, 4, Article 94 (July 2015), 12 pages.

[33] Huamin Wang. 2015. A Chebyshev Semi-iterative Approach for Accelerating Projective and Position-based Dynamics.
ACM Trans. Graph. (SIGGRAPH Asia) 34, 6, Article 246 (Oct. 2015), 9 pages.

[34] Huamin Wang, James O’Brien, and Ravi Ramamoorthi. 2010. Multi-resolution isotropic strain limiting. ACM Trans.
Graph. (SIGGRAPH Asia) 29, 6, Article 156 (Dec. 2010), 156:1-156:10 pages.

[35] Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on the GPU. ACM Trans. Graph.
(SIGGRAPH Asia) 35, 6, Article 212 (Nov. 2016), 10 pages.

[36] Hongyi Xu, Funshing Sin, Yufeng Zhu, and Jernej Barbi¢. 2015. Nonlinear Material Design Using Principal Stretches.
ACM Trans. Graph. (SIGGRAPH) 34, 4, Article 75 (July 2015), 11 pages.

—

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 11. Publication date: May 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Background on Quasistatic Simulation
	4 Inverse Quasistatic Simulation
	4.1 Jacobian Matrix Evaluation
	4.2 Numerical Solutions

	5 An Interactive System
	5.1 Shape Initialization by Projective Dynamics
	5.2 A Heterogeneous Structure

	6 Results and Discussions
	7 Conclusions and Future Work
	Acknowledgments
	References

