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Abstract

Many objects have patterns that vary in appearance at different surface locations. We say that these are differences
in materials, and we present a material-space approach for interactively designing such textures. At the heart of
our approach is a new method to pre-calculate and use a 3D texture tile that is periodic in the spatial dimensions
(s,t) and that also has a material axis along which the materials change smoothly. Given two textures and their
feature masks, our algorithm produces such a tile in two steps. The first step resolves the features morphing by a
level set advection approach, improved to ensure convergence. The second step performs the texture synthesis at
each slice in material-space, constrained by the morphed feature masks. With such tiles, our system lets a user
interactively place and edit textures on a surface, and in particular, allows the user to specify which material
appears at given positions on the object. Additional operations include changing the scale and orientation of the
texture. We support these operations by using a global surface parameterization that is closely related to quad
re-meshing. Re-parameterization is performed on-the-fly whenever the user’s constraints are modified.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling 1.3.6 [Computer Graphics]: Methodology and Techniques

Introduction

Many natural and human-made objects have slowly chang-
ing variations in texture over their surface. For instance,
many animals have fur that changes from one pattern to an-
other across their body, and different parts of buildings may
show variations in their degree of weathering based on their
exposition to wind, rain and sun. We use the term material
to describe the changes in the nature of a texture as it varies
across an object. We present a system that allows a user to
easily create such spatially-varying textures.

Central to our work is the new idea of a material-space tile
that is represented by a 3D texture where (s,7) are the usual
spatial coordinates, and an extra dimension m represents the
variation of the material (see figure 1, next page). These tiles
are periodic in the (s,7) dimensions, that is, they wrap seam-
lessly left-to-right and top-to-bottom. The pattern of the tex-
ture varies smoothly along the material dimension m of a
tile. Such tiles are generated by a new method based on level
set advection that creates high quality morphs with smooth
transitions between different textures.

Using these material-space tiles, our system allows the user
to specify constraints on texture orientation, scale and mate-
rial that are interpolated over a surface mesh. As the tiles are

(© The Eurographics Association and Blackwell Publishing 2009. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

periodic, the texture coordinates (s,¢) of a surface point can
also be referred by any (s,7) + (ps. pr) with (ps, p:) € Z2.
This allows us to use a Periodic Global Parameterization
(PGP) [RLL*06] steered by the interpolated orientation and
scale instead of a texture atlas [MYV93]. Based on this ap-
proach, only a single material-space tile needs to be stored
with modest memory costs, and the texture distortion re-
mains low even for surfaces of arbitrary genus.

The main contributions of our work are:

¢ the introduction of a new representation of spatially-
varying material that is encoded in a tileable 3D texture.
Our representation is simple, compact and can be interac-
tively mapped onto a surface using simple “brushing” or
“combing” interaction metaphor;

¢ the automatic generation of these 3D tiles by a new
method of morphing between texture features that is based
on level set advection, and enhanced to ensure conver-
gence;

¢ the constrained texture synthesis method that generates
texture with a given feature mask, and still preserves the
color histograms.

In the rest of the paper presents a review of previous works,
introduces our material-space 3D tiles synthesis algorithm
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Figure 1: The third axis (m) of the 3D texture (left) makes
it possible to easily encode material variations over the sur-
face (right).

(Section 1), then explains how to interactively map it on the
surface (Section 2) and render the result (Section 3).

Previous work

In this section we review some of the literature in texture
synthesis and parameterization that is most closely related
to our work.

Texture Synthesis on Surfaces Texture synthesis addresses
the following problem: given a reference image, generate
colors on the whole object that has the same appearance
as the reference image. Many approaches for performing
texture synthesis on surfaces have appeared in the litera-
ture. Some of these approaches are point-at-a-time synthesis
methods [TurO1, WLO1, YHBZ01, ZZV*03], and thus re-
quire additional mapping or re-sampling for rendering. In
contrast, there are few techniques that solely use the origi-
nal texture image during rendering, and perform references
into this image using texture mapping hardware. One of the
earliest such approaches is the synthesis method of Soler et
al. [SCAO02], in which they created patches from clusters of
triangles. Magda et al. [MKO3] use a preprocessing step to
optimize the assignment of (s,#) coordinates to each trian-
gle. Zelnika and Garland [ZG04] also extended their Jump
Maps to be used with per-vertex (s,7) coordinates that ref-
erence the original texture. Lefebvre and Hoppe [LHO6] use
hardware to perform an additional stage of memory indirec-
tion to do texture lookups, and their synthesis method makes
use of the GPU to provide interactive synthesis rates. The
high quality of their synthesis results is at least partly due to
the texton masks (more on this below) and PCA analysis of
pixel neighborhoods.

Texture Morphing There have been several approaches
taken to the problem of creating a morph between two or
more textures. Bar-Joseph et al. [BJEYLWO1] performed
texture analysis using wavelets. Although this paper only
created 50/50 blends of textures, the method could proba-
bly be adapted to create full texture morphs. Zigiang Liu
et al. [LLSYO02] let users specify landmarks between two
textures to establish feature correspondence, and then use
this to create a warp field. They created a texture morph by
warping and cross-dissolving. Zhang et al. [ZZV*03] used
texton masks to identify features in textures, and produced
a mixed feature mask using blending and binary threshold-
ing. This new mask was then used to guide per-pixel tex-
ture synthesis to generate a spatially-varying blend between

textures. Although they did not demonstrate general texture
morphing, the near-regular texture analysis method of Yanxi
Liu et al. [LLHO04] could be used for aligning texture fea-
tures for morphing. Matusik et al. [MZDO05] created user-
identified feature maps to produce warps between textures.
They improved on the standard cross-dissolve by performing
histogram matching to keep the features more sharply re-
solved. A similar idea is used by Qing Wu ez al. [WY04] for
improving texture synthesis by texture charts warping when
the mask contains curvilinear thin features.

Aperiodic Tiling Several texture synthesis approaches have
used the idea of pre-computing one or more texture tiles.
Jos Stam [Sta97] demonstrated that a group of 16 such tiles
could break up the periodicity of a pattern if the tiles are
made to match across their edges. Neyret and Cani [NC99]
extended this idea to triangulated surfaces, and used a set
of as few as four triangular tiles. Cohen et al. [CSHDO3]
used the notion of pre-computed Wang tiles to create large
textured regions that have no obvious repetitions to the final
patterns.

Parameterization Various researchers have presented meth-
ods for the automatic generation of (s,#) coordinates for a
mesh. This is the problem of mesh parameterization, and we
recommend Floater’s survey [DFS05] on the topic. In our
tile-based approach, two aspects of parameterization are im-
portant: taking constraints into account and defining seam-
less (s,¢) coordinates globally on objects of any topology.
Constrained parameterization enables a user to specify a
set of positional constraints interpolated by the mapping.
Lévy [LevOl1] has proposed a solution based on a gradient
preserving energy and Kraevoy ef al. [KSGO03] use a coarser
mesh to deform an existing unconstrained parameterization.
In our context, the periodic and high-frequency natures of
the signal make theses approaches inappropriate. We are
more interested in constraining the anisotropy (orientation
and scale) of the material on the surface.

Global parameterization : Gu ez al. [GY03] create global
conformal maps that have a minimal number of singular-
ities, at the price of introducing high distortion. Ray et
al. [RLL*06] introduce PGP (Periodic Global Parameteri-
zation), that has the reverse trade-off (lower distortion and
more singularities). Tong et.al [TACSDO06] propose a man-
ual method to specify an homology basis and deduce a peri-
odic method. PGP was extended [LRLO6] to take constraints
into account. Since PGP automatically generates a map in-
variant up to a grid-preserving transformation with reason-
able distortion, it is well-suited to periodic texture mapping.
In our texture mapping context, we will show how PGP can
be simplified.

1. Material-Space Synthesis

The objective of this section is to produce 3D textures of
material-space (s,7,m) such that all iso-m, denoted as T;,,, are
tiles. We first define the extremes iso-m (for m = 0 and m =
M) by taking two input textures Iy and Ij;, and generating
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Figure 2: Overview of the parametric tiles synthesis : The
signed distance to feature is interpolated from the tile Ty to
the Ty, to give constraint masks. Then, for each layer, a tile
is synthesized from the corresponding interpolated mask and
from Ty. The same processing is applied starting from Ty.
Finally, the two resulting 3D tiles are blended to smoothly
morph from Ty to Ty.

tileable versions of them 7y and Tj;. This can be done by
using the graph-cut algorithm [KdE*03]. Now, our goal is to
generate high-quality texture tiles for our real-time system
by synthesizing new intermediate textures Ty, m € [I,M —
1]. In other words, T is a 3D texture parameterized by 2D
texture coordinates s = (s,¢) and by a material coordinate m
0O<m<M).

In order to take the structure of the texture patterns into
account during the material transition between key texture
samples, our synthesis algorithm is based on texture features
(texton masks) as suggested in [ZZV*03]. Texture features,
stored as binary masks Fy, , can either be painted by the user
or constructed automatically using image gradients. As illus-
trated in figure 3, this texture morphing based on texture syn-
thesis allows to handle more significant structure variations
than with warping approaches [LLSY02, MZDO05]. Starting
from the two input tiles, Ty and Tj;, and their binary feature
masks, Fy and Fy;, we use the following pipeline (see Fig-
ure 2) to create material-space tiles:

1. Create signed distance fields 0g(s) and ¢ps(s) for the
feature masks Fy and Fjs using Yamashita et al.’s algo-
rithm [YI86].

2. Create intermediate feature masks Fy(s) (along the m
axis) by morphing between the feature mask distance
fields (see 1.1).

3. For each layer m: synthesize a new tile from the texture
Ty where the feature mask is constrained to be Fy, (see
1.2), do the same operation based on the texture 7y, then
create the final colors 7, by blending the synthesis results
from both input tiles using m/M as the blend coefficient
(see Figure 5).

We will first describe our advection approach to morphing
between feature masks (Section 1.1), and then turn to the
issue of generating the colors of the material-space accord-
ingly (Section 1.2).
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Figure 4: Result of our feature mask morphing algorithm.
Gray areas corresponds to the sweeping process.

1.1. Texture Feature Morphing

A key aspect when creating 3D tiles is to morph the patterns
of the first texture into the patterns of the second texture.
In our case, as patterns are represented by feature masks,
this problem turns into finding intermediate feature masks
Fin(s), m € [1,M — 1]. This is usually done by a level set
approach where the masks Fyp and Fy; are converted into
signed distance fields ¢y and ¢, such that the morphing
problem becomes to construct a smooth transition from Qg
to Ops. A straightforward way to formulate the transition is
to linearly interpolate the level sets (0, = (1 —m/M)dg +
m/Myy). This idea has been used for 2D and 3D morphing
of shapes [PT92, COSL98] and enhanced in [TO99] where
D(s,m) = ¢m(s) is found as the solution of a variational
problem in 3D. Unfortunately, these methods do not con-
sider the feature integrity and work well only when most fea-
tures are nearly aligned. For this reason, we will propose a
morphing method based on feature advection [Set99, OF02]
where the level set ¢ is advected by a velocity field and en-
hanced by interior dilation and sweeping that ensure the con-
vergence.

Advection: The idea here is to advect Fy by V. This pro-
cess pushes the features of the mask Fy (called source fea-
tures, where g > 0) to the features of the mask Fy, (called
target features, where ¢ps > 0). Because the final number
of feature masks M is usually small, we get better precision
by oversampling the material space for the advection of the
distance function, i.e. choosing a number of advection steps
N >> M. Thus after advecting, material space will be sub-
sampled by choosing a proper correspondence between the
distance functions 0., n € [0,N] and the feature masks Fy,
m € [0,M]. In our experiments, standard advection suffers
from four limitations:

1. Once a source feature starts overlapping a target feature,
it does not fill it/align with it properly. Defining a proper
advection inside the Fj-features is tricky and not robust
in general.

2. Some target features might not even be reached by an
advected source feature.

3. Around sources of the advection field (at maximum dis-
tance to target features), the value of the advected dis-
tance function ¢ tends to zero, so it whether if these areas
should be inside or outside the feature mask is undefined.
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Warping based methods [Liu et.al, Matusik et.al]

Our approach (Mask Morphing) - better captures topology changes

Figure 3: Our mask-morphing method (top) allows to change the features’ topology without introducing stretch, while classic
warping (bottom) cannot change the topology and may introduce a lot of stretch.

4. The source features are transformed into the target fea-
tures at a very irregular speed.

We will overcome limitation 1. by interior dilation, limita-
tion 2. and 3. by sweeping, and limitation 4. by speed adap-
tive subsampling as detailed in the following Texture Feature
Morphing algorithm description (see Figure 4):

© Material space oversampling: we start by choosing a
number of advection steps N >> M in order to accu-
rately simulate the advection. We then define a step length
dr = ming Oy (s)/N to ensure that after N advection steps,
even the source features which were the furthest from tar-
get features will have been advected far enough.

¢ Enhanced advection:

& Advection: the source features are pushed toward tar-
get features by an advection field. This is done by
advecting ¢ outside Fy; (¢ < 0) along the field
Vopn(s). As ¢ consists of one real value associated
with each texel, we displace each texel of coordi-
nate s to adv(s) = s+ Vy(s)dt and rasterize it on
the texel grid: ¢;11(s') = Ysoverlap(s',adv(s)).0:(s)
where overlap(s’,s) = sup(1 — |s — s|,0) + sup(1 —
|t —¢'|,0) denotes the overlap ratio between a texel cen-
tered at s and a texel centered at s’

¢ Interior dilation: we dilate the advected Fj-features in-
side the Fys-features. For all the neighbor texels s’ of
each texel s : if s’ is inside Fj;-features (i.e ¢n(s’) > 0)
and s is inside an advected Fy-feature (i.e. ¢n(s) > 0),
then 0,41 (s') — 0 (s).

© Sweeping: we have to ensure that, at the end of the pro-
cess, the advected feature mask will corresponds to the
target features. We do that by replacing ¢, (s) by dn(s)
on the texels where |0g(s)| > (1 —n/N)sups |0on(s')).
This process removes the features that will not be able
to be advected to a target feature, and it progressively
fills the target feature that may not by reached by any
advected feature.

o Speed-adaptative subsampling: we extract a subsequence

Or(m) (s) of level sets through a monotonous function H :
[0,M] — [0,N] such that H(0) =0, H(M) = N. We choose
H(m) for m € [1,M — 1] such that the number of pixels
for which ¢ ,,) and ¢4 1) have opposite signs is the
closest to constant. The feature masks F,(s) are then the
positive sets of Oz, (s)-

Conclusion: Using this method, the feature masks may
undergo topological changes such as splitting or merging,
which produces visually pleasing results, close to what one
would expect. Note however that our scheme is asymmet-
ric with respect to the two textures (we are pushing the
source features to the target features). Our advection is sim-
ilar to the 3D shape metamorphosis method of Breen and
Whitaker [BWO1], with the important addition of interior
dilation and sweeping. This is important for our particular
problem, where one source feature may be pulled into more
than one target feature. Finally our method is robust and au-
tomatic, requiring no user input for feature correspondences.

1.2. Constrained Tile Synthesis

For each layer, a morphed feature mask F;; has been pro-
duced (previous section), we now turn to the problem of gen-
erating two tiles having F, as feature mask and the colors
defined by the input textures T (respectively Ty). Instead of
working directly on colors, we simplify the upscaling in the

Figure 5: Each layer Ty of a parametric pattern is found by
blending two tiles. Each tile is obtained by texture synthesis
based on colors from the corresponding input tile, but with
the common constraint feature mask Fy,.

(© The Eurographics Association and Blackwell Publishing 2009.
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hierarchical synthesis process by using an indirection map
I, for each material m and resolution r.

That is, each pixel in the synthesized texture has 2D coor-
dinates that refers to the input tile. Our synthesis algorithm
is inspired by [LHO6], but we have many differences that
come form the constrained mask : it is impossible to paste
large charts of the original image, it does not allow using K
Nearest Neighbors and it requires to pay special attention to
the conservation of the color histograms.

The first step of the synthesis pipeline repeatedly downscales
the inputs (input color, input mask and interpolated feature
mask) by a factor of 2 in order to create image pyramids
for each of the inputs. Then, from coarsest (r = 0, typically
32 x 32) to finest (r = R, typically 256 x 256) resolution, the
following process is applied:

Initialization: In this process, the initialization plays an im-
portant role since it ensures coherence between adjacent lay-
ers in mm and also between resolutions r. The indirection map
of the tiles is initialized as follows (recursion is initiated by
the input image for which » = m = 0):

o m = 0 (the current layer is the first one): Ij(i,]) —
(8, j&,) where &, is the pixel size at resolution r.

o m > 0, r = 0 (the resolution is the coarsest): the indi-
rection map is initialized by a simple copy of the opti-
mized texture coordinates of the previous layer: I,?l(i J)—
I ,(,),, 1 (lv ] ) .

o m > 0, r > 0: the result of the coarser level is upsam-
pled : V(bi,bj) € {0,1} x {0,1}, I,;(2i+bi,2j+bj) —
I i, j) + (bidr,b;8y)

Optimization: The optimization repeats the following pro-

cess several times (20 iterations for the coarsest resolution,

and 3 iterations for the other resolutions): for each pixel (i, ;)
taken in random order, replace I, (i, j) by the coordinates of
the pixel of the input tile that have the most similar neigh-
borhood (a 3 x 3 neighborhood in our implementation). The
comparisons of the neighborhoods are accelerated by a com-
pression scheme similar to [LHO6], and the kd-tree imple-
mentation of the ANN (Approximate Nearest Neighbor) 1i-
brary to find the best matching regions. To enhance the re-
sults, we penalize the input pixels according to the number of
times they have already been used. This ensures that almost
all pixels from the input tile are used, and in particular that
the color histograms of the input and output tiles are similar.

In our experiments, the PCA reduces the neighborhood vec-
tors to 8 coefficients, and the feature mask is scaled by two
to ensure that the texture follows the mask. Compared with
[LHO6], the optimization process is slower because the con-
strained mask makes it impossible to paste large charts from
the input image and to use kNN instead of ANN.

2. Interactive Design of the Mapping
Each material-space tile that is generated by our method
is represented by a 3D texture, indexed by (s,7,m) coordi-

(© The Eurographics Association and Blackwell Publishing 2009.

nates, where (s,) denote the tileable spatial coordinates, and

where m denotes the material axis.

Our goal is now to provide the user with interactive tools

to map the material-space onto an object, i.e. to define the

(s,¢,m) coordinates at each vertex of the surface that we

want to texture. We provide to the user an interactive tool

to constrain the characteristics of the texture at some points

of the surface mesh:

¢ Orientation: two orthogonal unit vectors dsT and d,T at-
tached to each triangle T,

¢ Scale: scalars S; attached to each vertex i,

© Material: m; coordinates attached to each vertex i,

As shown on Figure 7, each time the user constrains such a

characteristic, the mapping is updated in 3 steps:

1. Compute an effect area around the constraint by a greedy
algorithm (see subsection 2.1). All the subsequent steps
will be limited to this effect area by locking all other ver-
tices.

2. Interpolate the constraints (see subsection 2.2):

¢ Constraints on scale S and material m are interpolated
by a Laplacian smoothing algorithm.

¢ Constraints on orientation are interpolated by a vector
field smoothing algorithm that generates the two or-
thogonal unit vector fields ds and d;, attached to the
triangles of the surface.

3. Compute the (s,7) coordinates based on a simplified ver-
sion of Periodic Global Parameterization (PGP) steered
by both the scale S and the guidance vector fields ds and
d; (see subsection 2.3).

2.1. Computing the effect area

When the user specifies or edits a constraint, we compute
an effect area around the constraint (as in Kobbelt et al.’s
work [KCVS98]). This effect area is determined by a classi-
cal greedy algorithm that visits the triangles in order of in-
creasing distance to the nearest constraint. When the user de-
fines an orientation constraint, triangles are iteratively added
to the effect area when the user moves the mouse (see Fig-
ure 8).

The effect area is used for the interpolations as well as for the

Figure 6: The upper part of this bunny ear is rendered
with intermediate layers generated by our system whereas
the lower part is rendered using only a linear interpolation
of the input tiles.
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Figure 7: Scheme of our interactive mapping method.

Figure 8: Marking the effect area is like using a brush. Left:
fix the size of the brush (border indicated by yellow); Middle:
a stroke serves at both marking the area and specifying the
orientation constraint (red arrow); Right: orientation con-
straint applied with an infinite effect area.

mapping that are only updated on this region. The benefits
are twofolds: it provides interactive design, and ensures that
local editing will not affects other areas. To ensure continuity
at the region boundary, all variables m, S, s, f associated to the
boundary are fixed to their initial value. Since all these scalar
fields are computed by solving linear system of equations,
locking the boundary variables is simple [Lev05].

2.2. Constraints interpolation

We need to interpolate the user-defined constraints in ma-
terial, scale and orientation. As scalars, the material m and
the scale S are simply interpolated by Laplacian smoothing
(see [NGHO4] for instance) with locking user constraints. In
some cases (see Figure 9) Laplacian smoothing might gen-
erate material values outside of the valid interval [0,1], so
the material m has to be clamped. The scale S should also be
enforced to be greater than a constant € > 0 to avoid invalid
mappings.

The orientation interpolation requires some more care. Note
that orientations rather than vectors need to be smoothly
interpolated to define the field dST on triangle 7 (the
scale is interpolated separately). The method proposed in
[RVLLO8] allows a fine control of both the singulari-
ties and orientations. However, we preferred to allow for

Figure 9: A new material constraint is added to the dragon’s
tail (right) and is interpolated across the surface. The clamp-
ing ensures that the material m remains in a valid range on
the dragon’s head.

Figure 10: Dragging the mouse on the bunny head (left)
adds orientation constraints on the mouse path (red arrows).
A small number of strokes suffices to orient the pattern on the
whole model.

more intuitive interaction by using an algorithm that lets
the singularities emerge from the geometric constraints
[HZ00, RLL*06, LRLO6] (we chose the latter for simplic-
ity and efficiency). Finally, al is simply obtained from dsT
by a /2 rotation in the triangle 7.

2.3. Computing the (s,7) Coordinates

Our goal is now to generate texture coordinates s,-T (the equa-
tions for t,-T are identical) attached to each triangle corner
(T,i) satisfying two constraints:

1. On triangle T, the tiles should be oriented by a! and
have size ST = (S; + S+ Sx)/3. This can be written as:
VsT =d,/ST =g! such that if we call ; j the vector cor-
responding to the edge (i, j), we have:

T T 6 = T T 6 = T
sj =i -I—eij.VS =S5; +6ij.8s @))]

2. All the corners incident to the same vertex should be

(© The Eurographics Association and Blackwell Publishing 2009.
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mapped to the same texel:

HpiT € 7 such that siT = s,-Tl —I—piT VT,T' D@ (2)

We can solve this global parameterization problem following
[RLL*06], with some simplifications as in our tile-mapping
context, singularities can be handled at rendering time and
there is no swapping of texture coordinates. In short, (1) is
averaged on the two triangles 7 and T’ sharing (i, j), and by
taking its cos and sin we get:

| cos(oy;) osin(oyy) | e
I —sin(oyy)  cos(oyy) |V Rlaij)si @
where o;; = 2n;.(g] + gsT/)/Z and s; =

[cos(2ms] ),sin(27ms! )] implicitly satisfies the second
constraint as we take the same variable for all 7. Equation
(3) can be satisfied in the least squares sense by minimizing:

2
Fpgp(s) = Y, (Ar +Ar)||s; — R(ct; j)si]|
(i.J)
where Ar is the area of triangle 7. In the special case of

initialization, we lock a single vertex s = 0 < sy = [1,0],
else s is locked outside the effect area.

Finally, in each triangle T = (i, j, k), the texture coordinates
siT , s]T , s[ are retrieved from s;, s, 8;:

st = Arg(s;)/2n
sto= Arg(sj)/Zn—l—pT- 4)
sp = Arg(sg)/2m+ py

where Arg(s;) denotes the oriented angle between the vec-

tor [1,0] and s;, and where the integer pJT- minimizes |(sz —
T T

si ) =0 j+njl.

3. Rendering

PGP generates a visually pleasing parameterization by relax-
ing deformations, but at the expense of introducing singular
zones, where the mapping is invalid. This generates notice-
able visual artifacts, concentrated in these zones (Figure 11).
They correspond to triangles (i, j, k) for which the optimal
mappings from the point of view of vertices i, j and k dis-
agree. Fixing these artifacts is easy, using an approach that
is similar to the method used to display jump maps [ZG04].

To detect the singularities, the algorithm analyzes the map-
ping for each vertex i and its neighbors jy, .. j». The singular
neighborhoods are characterized by two criteria, one geo-
metric and one topologic. The neighborhood is singular:

o if it contains a triangle 7 that is highly distorted (|| Vs —
gl 2> 0.50r |[Vi—gl | > 0.5)

© or if it contains an edge (i, j) for which the (s,#) coordi-
nates mismatch: s! — s]T~ # siT/ — s]T~/ orr] — th # tiT/ — th/
where T,T’ denote the two triangles shared by the edge

(i,J)-

(© The Eurographics Association and Blackwell Publishing 2009.

For each invalid 1-ring neighborhood i, jy, jo,...jn,
we recompute a set of texture coordinates
(siintli), (sl/-d»I ,t,{‘j] ),‘..(sl{_’jn,ll-'.’j“), optimized from the
point of view of vertex i, and defined by:

(sg,i ) ti/,i) = (szT ) lzT)

(SL/',j ) til,j) = (Sf,i+0°f,j ) li/,i‘i'a;j)

where o ;j and of ; are given in Equation 3 and where T
denotes one of the triangles incident to vertex i.

Each triangle T = (i, j,k) now has three sets of texture co-
ordinates (obtained from the neighborhoods of each vertex
i, j,k). Then, we use them to perform three texture lookups.
Finally, we linearly blend the obtained three colors using the
barycentric coordinates in the triangle. This makes the tex-
ture lookup use the optimal coordinates at each vertex, and
linearly interpolates the result between them. As shown in
Figure 11, this hides both the poles (1) and T-Junctions (2,3)
of the parameterization. Note that this can be also applied
to additional attributes, such as normal maps, as done in the
examples shown in Figure 13 (Right).

4. Results

The material-space tile synthesis algorithm produces satisfy-
ing results even when the input images are sightly different
in terms of colors or feature shapes such as stripes, dots or
more complex shapes (see figure 12). However, when the in-
put tiles do not have well identified features, the morphing
cannot outperform a simple fading between inputs.

We have developed an intuitive user interface to create and
edit constraints for designing the (s,#,m) mapping. The user
is provided with four different tools: the first one defines the
area that will be affected by the other tools (determines the
distance threshold used in subsection 2.1), the second and
third ones pick a triangle and changes either its scale or its
material parameter (see figure 9), and the last one (see figure
10) applies constraints to the guidance vector field by drag-
ging the mouse over the model. Orientations are specified by
the velocity vector of the mouse projected from 3D onto the
model.

Our system enhances the visual richness of 3D objects at a
low memory cost. Moreover, since our mapping system is
totally disconnected from the material synthesis, it is easy to
switch materials in real-time or to animate them. The para-
metric patterns can be used to morph one material into an-
other as presented in section 1, but they can also be used for
morphing with multiple key tiles. Such a morphing can be
obtained by a simple concatenation of morphings between
pairs of consecutive key tiles, and this yields a rich collec-
tion of patterns as shown in Figure 1. Another possibility is
to use our system to hide the periodicity of a single tile. This
can be done by generating a set of tiles sharing the same
mask. Figure 14 shows how a 3D (s,#,m) texture with four
layers suffices to remove the artifacts due to periodicity.
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Figure 11: The singularity (1) and T-junctions (2,3) can be fixed at rendering time by our method. Close-up images show the

result without (left) and with (right) our singularity correction.

Performance

Our system can be decomposed into three parts: material
synthesis (precomputing), mapping (interactive design) and
rendering. The performance of each part is given in table 1.
Texture synthesis: The texture synthesis takes 5 minutes for
8 layers at resolution 256 x 256 with 5 x 5 patch size for
colors (reduced to a 5 dimensions vector), 3 x 3 patch size
for feature (reduced to a 3 dimensions vector) and with 3
levels of resolution. Each pixel is updated 20 times for the
coarser level and 4 times for the other levels. Most of the
examples presented in the paper have 3 key image inputs,

Figure 14: A: when mapping a brick pattern in repeat mode,
the tile is noticeable; B: our technique hides the periodic-
ity by modulating the mapping along the extra “material”
axis (m); C: four layers are sufficient to hide the pattern; We
show another example mapped with the same tile, without
(D) and with (E) our technique. The small image shows the
“material” coordinate.

Model Dragon | Bunny | Dragon 2

# Triangles 11K 24K 50K

Interpolate orientation 1.2s 4.1s 8.9s

Initialize (u,v) 1.3s 3.7s 7.4s
Material constraint 0.5s 0.7s 1s
Orientation constraint 1s 2s 4s

Scale constraint 0.8s 1.7s 3.7s

Memory usage 3Mb 3Mb 3Mb

Table 1: The first three rows give the timings for comput-
ing the initial material-space coordinates. The next three
rows give the average time for interactions (ROI with ap-
prox. 25 percent of the model triangles). The last row gives
the amount of graphic RAM used by our representation.

and such examples require synthesis of two morphs, giving
a total time of 10 minutes.

Mapping design: The initialization of the (s,#) coordinates
can take up to 30 seconds for models with approximately
50K triangles. Adding new constraints is then much faster
thanks to the local updates. A typical effect area usually con-
tains approximately 10K triangles, which allows the model
to be updated interactively, as shown in the video.
Rendering: Our representation is especially well suited to
interactive rendering on the GPU. In terms of computation,
we only need one 3D texture lookup for non-singular regions
and three 3D texture lookups around singularities (5 to 10
percent of the triangles). Using a normal map requires one
additional lookup in the regular regions (and three lookups
around singularities). In terms of memory usage, our repre-
sentation is between 10 to 15 times smaller than an equiva-
lent texture atlas. Using a texture atlas would require roughly
36 Mb to 48 Mb for our examples, and even more if we count
the empty space lost in the atlas.

(© The Eurographics Association and Blackwell Publishing 2009.
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Figure 12: The synthesis algorithm is able to morph between different type of feature mask (stripes, dots, others), but fails when
meaningful features cannot be defined in the input image (lower right).

Conclusion

We have presented a material representation that is simple,
compact and independent from its mapping onto the object.
This makes it possible to generate visually rich patterns at
a minimal memory cost. These characteristics make it es-
pecially well suited for interactive user editing and for real-
time rendering. The main limitation of our method is that
a single material m axis is represented. In future work, we
will investigate the possibility of creating and compressing
4D (or nD) tiles by using PCA. Moreover, our results could
be improved by future advances in textures synthesis and by
using richer material definitions (e.g. multiscale PRT).
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