
EUROGRAPHICS 2016 / J. Jorge and M. Lin
(Guest Editors)

Volume 35 (2016), Number 2

CAMA: Contact-Aware Matrix Assembly with Unified Collision
Handling for GPU-based Cloth Simulation

Min Tang1, Huamin Wang3, Le Tang1, Ruofeng Tong1, Dinesh Manocha2,1 †

1Zhejiang University, 2University of North Carolina at Chapel Hill, 3Ohio State University
http://gamma.cs.unc.edu/CAMA/

Figure 1: Benchmark Andy: Our GPU-based approach can simulate the clothes dressed on a Kung-Fu boy. The meshes of three cloth
pieces are represented by 127K triangles. Our simulator performs all of the computations, including implicit time integration and collision
handling, in 2.42s per frame (on average) on an NVIDIA Telsa K40c GPU. Our new parallel algorithms for sparse matrix assembly and
collision handling result in significant speedups over prior methods.

Abstract
We present a novel GPU-based approach to robustly and efficiently simulate high-resolution and complexly layered cloth.
The key component of our formulation is a parallelized matrix assembly algorithm that can quickly build a large and sparse
matrix in a compressed format and accurately solve linear systems on GPUs. We also present a fast and integrated solution for
parallel collision handling, including collision detection and response computations, which utilizes spatio-temporal coherence.
We combine these algorithms as part of a new cloth simulation pipeline that incorporates contact forces into implicit time
integration for collision avoidance. The entire pipeline is implemented on GPUs, and we evaluate its performance on complex
benchmarks consisting of 100−300K triangles. In practice, our system takes a few seconds to simulate one frame of a complex
cloth scene, which represents significant speedups over prior CPU and GPU-based cloth simulation systems.

1. Introduction and Background

Cloth simulation has been an active research topic for decades due
to its importance in electronic games, virtual training systems, and
fashion-related applications; based on this activity, a number of al-
gorithms have been proposed. Many animation and authoring sys-
tems provide capabilities for cloth simulation and are widely used
for computer-aided design and animation.

† {tang_m, tangle, trf}@zju.edu.cn, whmin@cse.ohio-state.edu,
dm@cs.unc.edu

In particular, research has focused on improving the robustness
and efficiency of cloth simulation and has explored the use of
implicit Euler integrators [BW98, CK02], strain limiting [Pro95],
and iterative optimization [LBOK13]. Given the importance of de-
veloping a good cloth simulator, researchers have also explored
methods of increasing the details of cloth simulation in a lo-
cal and adaptive manner [LYO∗10, NSO12] or by using data-
driven methods [FYK10, WHRO10, dASTH10, KGBS11, ZBO13,
KKN∗13]. Because collisions and contacts are difficult to han-
dle in cloth simulation, substantial research effort has also been
expanded in improving the accuracy of continuous collision de-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

http://gamma.cs.unc.edu/CAMA/


M. Tang & H. Wang & L. Tang & R. Tong & D. Manocha / Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation

tection [BEB12, Wan14, TTWM14], collision impulses [BFA02],
constraint solvers [OTSG09], and impact zone methods [Pro95,
HVTG08] for collision response.

Current methods for reliable cloth simulation can be slow, tak-
ing tens of seconds per frame on a single CPU core to simulate a
mesh with a few tens of thousands of triangles [NSO12]. Recent
trends have been focused on simulating more complex clothes (see
Fig. 1). The underlying geometric complexity of cloth is character-
ized by the mesh resolution defining each piece of cloth, and the
layered relationship specifying the likelihood of frequent and se-
vere collisions over time. For high-quality animation, cloth meshes
can contain hundreds of thousands of triangles. It should be noted
that even a single missed collision can cause invalid results and no-
ticeable visual artifacts [BFA02]. To prevent cloth from falling into
inter-penetrations as a result of those self-contacts, most existing
simulators use continuous collision detection (CCD) and appropri-
ate collision response computations. Unfortunately, these collision
handling techniques are often computationally expensive and can
easily become the bottleneck of a simulator. Therefore, a cloth sim-
ulator can take hours or even days to simulate highly complex cloth.

Many researchers have advocated the use of multiple cores on
commodity CPUs and GPUs to accelerate these computations.
Govindaraju et al. [GKJ∗05,GLM05], Selle et al. [SSIF09], Pabst et
al. [PKS10], Lauterbach et al. [LMM10], and Tang et al. [TMLT11]
developed parallelized collision detection (including CCD) and
handling algorithms. Li et al. [LWM11] presented a hybrid method
to simulate cloth by both CPU and GPU. Schmitt et al. [SKBK13]
simulated a low-resolution triangular mesh on CPU and mapped
the deformation to a high-resolution cloth mesh on GPU. Cirio et
al. [CLMMO14] implemented GPU-based implicit time integra-
tion, for simulating quad cloth meshes. Ni et al. [NKT15] used
Charm++ for parallel cloth simulation on a Cray XC30. All these
algorithms use parallelization techniques to accelerate some of the
computations. Tang et al. [TTN∗13] presented a GPU-based cloth
simulation algorithm that performs all of the computations on GPU,
including explicit time integration and CCD computations. How-
ever, this approach exploits topological regularity and is limited to
quad meshes only and cannot handle complex cloth.

Our goal is to develop a highly parallel and robust GPU-based
cloth simulation algorithm. One of the challenges is developing ef-
ficient approaches that can provide flexibility in terms of mesh rep-
resentations, time integration, and collision handling. In addition to
supporting triangle meshes, we would like to reduce the overhead
of collision computations using repulsion forces [BFA02], which
tend to push two elements that are close to each other apart or incor-
porating penetration constraints into time integration [OTSG09]. In
many of these cases, the matrix resulting from time integration does
not have a static or fixed layout, as is the case with many prior GPU-
based linear system solvers [ACF11,WBS∗13]. Matrix reconstruc-
tion in a dynamic layout is trivial on CPU, but significantly chal-
lenging on GPU because the sparse matrix in compressed format
must be updated over time.

Main Results: We present a novel, GPU-based cloth simulation
algorithm that exploits GPU parallelism for time integration, colli-
sion detection, and collision handling. Our formulation is general
and can handle all triangular meshes accurately using a new sparse

(a) World space (b) Material space

Figure 2: Shirt: The shirt model in (a) is represented by a mesh of
34.6K triangles and composed of multiple patches in (b).

matrix assembly algorithm. We use discrete collision checking to
compute the contact and repulsion forces and incorporate them into
implicit time integration. We also use a unified approach for contin-
uous collision detection and response computation that can signifi-
cantly improve the runtime performance. For the purpose of devel-
oping an end-to-end GPU-based cloth simulation system, we have
developed many new GPU algorithms including:

• A unified streaming pipeline for time integration and collision
handling (Section 2).

• A parallel sparse matrix assembly algorithm that supports im-
plicit time integration of cloth models with arbitrary topology
and accurately solving the linear system (Section 3).

• Parallel implicit solver that incorporates contact forces: We
present a parallel approach for adding contact forces into time
integration. This significantly reduces the number of inter-
penetrations and improves the robustness of our approach (Sec-
tion 3).

• Unified collision handling: We present a parallel, integrated
collision detection and response algorithm. Our collision de-
tection uses spatio-temporal coherence and localized propaga-
tion, and collision response is performed using inelastic impact
zones [HVTG08] (Section 4).

We have implemented these algorithms on different NVIDIA
GPUs with varying numbers of cores and used them to simulate
complex cloth benchmarks represented by hundreds of thousands
of triangles (Section 5). Our parallel algorithm can generate a single
cloth animation frame in a few seconds. We observe 10.2− 15.4X
speedups in our GPU-based implementation due to our sparse ma-
trix assembly and collision handling algorithms. Moreover, we ob-
serve 47−58X speedups over a single threaded CPU-based imple-
mentation, available as part of ArcSim [NSO12].

2. Overview

In this section, we present an overview of our approach and our
novel GPU-based pipeline for cloth simulation. Our approach rep-
resents each piece of cloth by a triangular mesh, which consists
of many patches (Fig. 2). We use a piecewise linear model pro-
posed by Wang et al. [WRO11] to handle planar and bending
elasticity. As opposed to prior GPU-based cloth simulation algo-
rithms [TTN∗13, CLMMO14], our triangle mesh formulation can
be used for arbitrary cloth topologies and can be combined with

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



M. Tang & H. Wang & L. Tang & R. Tong & D. Manocha / Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation

Proximity Checking
Sparse Linear System 

Assembly

Sparse Linear System 
Solving

Penetration Handling

Implicit Time Integration

Figure 3: Algorithm Pipeline: Our GPU-based cloth simulation
pipeline. All of these computations are performed on GPU.

widely used sparse matrix formats, such as compressed sparse row
(CSR) or block compressed sparse row (BCSR), for compact repre-
sentations and GPU-based linear solvers [NVI15,BG13,WBS∗13].

A typical cloth simulation system contains three components:
time integration, collision detection, and collision response. Sim-
ilar to prior approaches, we use implicit time integration as that
improves numeric stability. We perform all of the computations on
GPU. To reduce the overhead of collision handling, our goal is to
employ a scheme that collects all of the contact forces for simu-
lation [OTSG09] – including repulsion forces, friction forces, and
adhesion forces – using proximity checking. Next, we combine the
internal forces, external forces, and contact forces to form a sparse
linear system using implicit time integration. After solving the lin-
ear system, we check for penetrations (including self-collisions) in
the mesh using continuous collision detection (CCD). We resolve
these penetrations to compute a collision-free mesh. The proxim-
ity computations are performed using discrete collision detection
(DCD), which are significantly faster than CCD queries. While
most prior approaches handle the contact forces as part of colli-
sion response computation, we incorporate the contact forces into
time integration, which results in fewer iterations during collision
response computation.

To support these computations, we require an integrated frame-
work that can efficiently perform DCD and CCD computations as
well as penetration handling on GPU. We require efficient schemes
for sparse matrix assembly to support dynamic layouts because we
incorporate the contact forces into implicit time integration.

Cloth Simulation Pipeline: Our novel GPU-based cloth simula-
tion pipeline is shown in Fig. 3 and is different from those used in
previous approaches [BFA02,TTN∗13]. We use this pipeline to ef-
ficiently perform the computations described above. The matrix in
the linear system is represented by the BCSR format [NVI15]. We
present novel algorithms for sparse linear system assembly, local-
ized collision computations, and integrated collision detection and
response computation. A key issue in the design of this pipeline is
to specify various GPU streams that are used to perform all of the
computations on geometric and topological mesh data. In particu-
lar, we use the following data streams (Fig. 4):

• Vertex stream & velocity stream: These two streams de-
scribe the current state of cloth vertices in simulation. They con-
tain vertex positions and vertex velocities, respectively.
• Updated vertex stream & updated velocity stream: These

streams contain the updated vertex positions and velocities after
implicit time integration. They are updated by not only internal

tS
Triangle pair stream

oS
Orphan stream

gS
Feature pair stream

iS
Intersection 

stream

fSFront stream

bvSBV stream bvhSBVH stream

vSVertex stream wSVelocity stream

vS ′Updated 
vertex stream wS ′Updated 

velocity stream

FSForce stream

mSMass stream

Time Integration

Collision Handling

Figure 4: Data Streams: We highlight various data streams used
by our GPU-based cloth simulation algorithm. We classify them
into streams for time integration and collision handling.

and external forces, but also repulsion forces that are used to
avoid future collisions.

• BV/BVH/front streams: These streams contain the data for
bounding volumes (BVs), bounding volume hierarchies (BVHs),
and bounding volume traversal trees (BVTTs). They are updated
by the collision detection module.

• Intersection stream: This stream contains the data corre-
sponding to all of the penetrations and it is used to resolve the
penetrations by updating vertex and velocity streams. It is up-
dated by the collision response algorithm.

In addition to these streams, we use some other geometric and topo-
logical streams to accelerate collision detection. For example, we
use connectivity data streams – such as adjacent triangles, neigh-
borhood lists and orphan sets – to efficiently perform elementary
tests for CCD [TMLT11]. By converting all of the data elements
into data streams in the GPU memory and performing all simula-
tion steps by GPU kernels, we avoid CPU-GPU data transfer during
simulation, which improves the overall performance.

3. GPU-accelerated Time Integration

A key function in our approach is to perform implicit time integra-
tion during each iteration. Specifically, our GPU-based approach
results in a sparse linear system, whose structure and entries vary
over time due to different contacts and boundary conditions. We
present a novel parallel matrix assembly algorithm that constructs
the sparse linear system dynamically and runs fast on GPU. Fur-
thermore, our algorithm can also be used to accurately solve the
linear system using a Jacobi preconditioner.

3.1. Implicit Time Integration

Given a triangular mesh with N vertices, we can formulate its dy-
namical system as follows: Mü+Du̇ = f(u), where M ∈ R3N×3N

and D ∈ R3N×3N are the mass and damping matrices, u ∈ R3N

is the stacked displacement vector, and f(u) is the force vec-
tor depending on u only. Our formulation allows u to be inte-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



M. Tang & H. Wang & L. Tang & R. Tong & D. Manocha / Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation

4

6

4

7

4

8

5

1. Space 

Counting

4

6

4

7

4

8

5

4

1

0

7

7

4

N

0

0

4

0

8

5

6

10

6

2

9

16

10

9

12

8

3

3

4

7

12

6

13

8

N

15

7

5

15

12 7

2. Filling 

Indices

4

5

4

6

4

6

4

0

0

0

0

4

4

6

4

1

2

3

7

5

9

10

6

3

7

8

7

12

12

8

4

9

16

8

N

15

13

10

15

12

3. Removing 

Duplications

0

4

9

13

19

23

K

0 0

0 0

4

6

4 1

2 3

7 4

9

10 6

3 7

8 5

12

12 8

4 9

16 7

N

15

13

8

15

10 12

4. Data 

Reduction

Compressed 

Row Indices

Column Indices

Indices of Sparse 

Matrix in CSR 

Format

Figure 5: CSR Index Assembly: By performing four-stage com-
putations, the CSR index can be assembled fully in parallel.

grated using various implicit time integrators (e.g. backward Eu-
ler method [BW98]). Following the linearization, we approximate
ft+1 at time t + 1 by: f(ut+1) ≈ f(ut)+K(ut+1−ut), where K =
∂f(ut)/∂u is the Jacobian matrix of f evaluated at time t, and obtain:

Avt+1 = (M+∆tD−∆t2K)vt+1 = Mvt +∆tf(ut), (1)

where vt+1 is the unknown velocity vector at time t + 1 that must
be solved. If f(u) contains the elastic and external forces only, the
nonzeros in the matrix, A of Equation 1, correspond to the neigh-
borhood of each vertex, and A can thus be procedurally defined
on top of the mesh connectivity. But because we use f(u) to han-
dle contact forces and constraints – which can appear anywhere in
simulation – the structure of the matrix varies over time and must
be rebuilt in each time step. It is straightforward to perform the as-
sembly process on CPU. However, no fast algorithm is known for
assembling such a matrix for cloth simulation on GPU.

3.2. Parallel Sparse Matrix Assembly on GPU

We need a general matrix representation suitable for triangle
meshes with arbitrary topology. To solve the linear system effi-
ciently on GPU, we store sparse matrices in compressed sparse
row (CSR) format. In our approach, we actually use the blocked
CSR (BCSR) format, which stores non-zero entries as 3× 3 sub-
matrices. In this section, we present a novel parallel assembly al-
gorithm for sparse matrices in CSR, and then extend it to BCSR.

Index Assembly: Our formulation first perform the CSR index as-
sembly in four stages (Fig. 5):

• Space Counting: We scan over topological elements (trian-
gles/edges) and precompute the memory space needed to store
matrix entries. We count the entries in each row. After that, we
allocate the memory for each row and use the memory entries
later to store the indices. This stage is executed in parallel as the
elements can be processed independently. The memory alloca-
tion is performed on CPU for efficiency reasons.

Algorithm 1 Sparse Matrix Assembly on GPU.
1: // Space Counting:
2: for each element Ei do
3: ColumnCount[i] += NumOfEntries(Ei)
4: end for
5: Allocate memory for column indices of size

∑iCoulmneCount[i].
6: // Filling Indices:
7: for each element Ei do
8: ColumnIndices[i] = { Entries(Ei) }
9: end for

10: // Removing Duplications:
11: for each row r do
12: SortAndRemoveDuplications(ColumnIndices[r])
13: end for
14: // Data Reduction:
15: BcsrRowIndex = PrefixSum(ColumnCount)
16: BcsrColIndex = PrefixSum(ColumnIndices)
17: // Data Filling:
18: Allocate memory for values of size of BcsrColIndex.
19: for each element Ei do
20: for each entry (s, t,val) of Ei do
21: BcsrValue[location(s, t)] += val
22: end for
23: end for

• Filling Indices: We scan all of the topological elements again.
During this pass, we fill the indices into the allocated memory.
Note that there can be duplicated indices in several rows. We
parallelize this stage for each element.

• Removing Duplications: After gathering all of the indices, we
use a simple serial merge/sort operator (with an O(N log(N))
time complexity) for each row. All the rows are sorted in par-
allel.

• Data Reduction: We use a prefix sum operator to remove the re-
dundant memory locations (due to the merged indices) and gen-
erate compact column index data. We also obtain the compress
row index data for counting. These are used as the index data of
the sparse matrix in the CSR format.

Data Filling: After generating the index data, the data filling stage
is performed during another pass of element scanning. We perform
the data filling computations in parallel. For each element, we lo-
cate its entry based on the index data and fill in its data using atomic
operators (to avoid conflicts).

Extension of BCSR format: We use the same algorithm to per-
form the index assembly step. The main difference between CSR
and BCSR format computations is in data filling. We fill in each
entry with a double-precision number or 3×3 matrices in the value
data for CSR or BCSR formats, respectively.

The overall matrix assembly algorithm, described in Algo-
rithm 1, exploits GPU architectures by performing the entire com-
putation over thousands of GPU cores. We incorporate all of the
forces, including internal forces, external forces, contact and fric-
tion forces, into our cloth simulation algorithm, and build a sparse

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



M. Tang & H. Wang & L. Tang & R. Tong & D. Manocha / Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation

Algorithm 2 Computing VF Proximity Forces to Update the Linear
System: The vertex is defined by a node nv and the face is defined
by three nodes na, nb, and nc.

1: Find the projection of nv onto the triangle {na,nb,nc} plane.
2: Compute the barycentric coordinates {w1,w2,w3} of nv with

respect to the triangle.
3: Compute the proximity force fp with Equation 2.
4: Distribute the proximity force among node pairs:
{nv,na,w1 ∗ fp}, {na,nv,−w1 ∗ fp},
{nv,nb,w2 ∗ fp}, {nb,nv,−w2 ∗ fp},
{nv,nc,w3 ∗ fp}, {nc,nv,−w3 ∗ fp},
and update the corresponding entries in the linear system.

linear system for parallel implicit time integration with a low com-
putation overhead.

VF/EE Proximity Forces: For every close vertex/face or edge-
edge pair (computed using proximity checking module in Figure 3),
we compute the penalty force:

fp = k ∗ (d− thickness)∗np, (2)

where k,d, thickness,np are the stiffness constant, proximity dis-
tance between the VF/EE pair, thickness of a given face/edge, nor-
mal direction, respectively. The force fp is distributed among var-
ious nodes [BFA02] and added to the stiffness matrix as multiple
entries. For example, for a VF pair, the vertex is defined by a node
nv and the face is defined by three nodes na, nb, and nc. We use
the algorithm described in Algorithm 2 to update the linear system
accordingly. EE pairs are processed similarly. Please note that the
same entry may be updated by multiple VF or EE pairs, so we need
to remove duplications, as shown in Algorithm 1.

Linear System Storage: Each element has a fixed entry number
to update. For example, a VF pair needs to update 6 entries; an
EE pair needs to update 8 entries. We compute NumOfEntries in
Algorithm 1 by summing them. The dimension of the full linear
system is N ∗N ∗ 3 ∗ 3, where N is the number of nodes. It is a
sparse linear system, so the number of entries stored is much less.
For a cloth with 200K triangles, we only need 300− 400MB to
store the linear system.

3.3. Solving Sparse Linear System on GPU

We use the standard conjugate gradient (CG) solver [BW98] to
solve the sparse linear system on GPU. We use accelerated matrix-
vector multiplication operator (between a sparse matrix and a dense
vector) and vector-vector dot product operator (between dense vec-
tors) in each iteration. The solver is ended when the error is below
a pre-specified convergence threshold. To further improve perfor-
mance, we use a Jacobi preconditioner, which can be easily inte-
grated into our solver because we record the storage locations of
all the diagonal entries of the sparse matrix during the Index As-
sembly stage. With all of these locations, the values of the diagonal
entries can be retrieved in parallel after the Data Filling stage. Fig-
ure 6 shows the benefits of the Jacobi preconditioner. Compared
with the CG solver without preconditioner, we are able to reduce
the average number of iterations by 32%, and considerably reduce
the overall running time of implicit time integration.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 201 401 601 801
0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 201 401 601 801

(a) Iterations/frame (b) running time (second)/frame

CG Solver without Pre-conditioner CG Solver with Jacobi Preconditioner

Figure 6: Conjugate Gradient with Jacobi Preconditioner: We
use our matrix assembly algorithm for PCG solve with Jacobi pre-
conditioner. The use of Jacobi preconditioner reduces the average
number of iterations by 32%. The overall running time of implicit
time integration is reduced by 28% for the Funnel benchmark.

4. GPU-accelerated Unified Collision Handling

In this section, we describe our algorithm for GPU-based colli-
sion handling, including collision detection and collision response.
In general, collision handling for high-resolution cloth simulation
can be time consuming and might take up to 60%− 80% of total
running time in challenging scenarios [SSIF09]. In our streaming
pipeline, collision detection and collision response computations
are tightly integrated (see Fig. 4). In particular, collision detection
algorithms are used to compute the contact constraints as well as
the penetrations, and a GPU-friendly collision response algorithm
is used to handle the penetrations.

4.1. Proximity and Penetration Computations

Prior cloth simulators perform fast and reliable CCD computa-
tions for collision detection [BEB12,Wan14,TTWM14,WTTM15].
Moreover, techniques have also been proposed for parallel GPU-
based CCD computations [TMLT11]. These algorithms use bound-
ing volume hierarchies and compute the global front of the bound-
ing volume traversal tree (BVTT) [LC98] for parallel collision
checking. However, for complex benchmarks the size of the front
can become very large and updating the entire front can be expen-
sive.

We present two techniques to accelerate the performance of col-
lision detection. Firstly, our overall simulation algorithm (Fig. 3)
decomposes these computations into two parts: (1) Proximity com-
putations for contact and friction constraints using DCD. These
constraints are used by our implicit time integrator to avoid many
potential penetrations and thereby reduce the number of CCD
queries; (2) Penetration computations using CCD. In practice, DCD
queries are at least one order-of-magnitude cheaper than CCD
queries and our decomposition scheme improves the overall perfor-
mance. Moreover, we present a faster algorithm for CCD computa-
tion that uses localized propagation to update the front and exploits
the spatial coherence between successive queries. The combination
of these two techniques results in faster parallel collision detection
algorithm for cloth simulation.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



M. Tang & H. Wang & L. Tang & R. Tong & D. Manocha / Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation

Triangle 
Pairs

Proximities

Penetrations

Updating 
BVs/BVH

Updating 
BVTT Front

Feature BV 
Tests

VF/EE Proximity 
Tests (DCD)

Feature BV 
Tests

Non-penetration 
Filters

VF/EE Penetration 
Tests (CCD)

Proximity Checking

Penetration Detection
Feature Pairs

Feature Pairs

Feature Pairs

Figure 7: Collision Detection: We use a unified framework for
proximity checking and penetration detection. These modules are
combined with implicit time integration and collision response.

Unified framework: We use the same framework for proximity
checking and penetration detection in our simulation pipeline (see
Fig. 3). The framework is shown in Fig. 7. We first update the
bounding volume stream and bounding volume hierarchy stream
by the vertex stream returned by the time integration stage. We
then update the BVTT front stream and BVTT self-front (for self-
collisions) stream in parallel and collect the triangle pairs that pass
the bounding volume overlap test. We use vertex, edge, and face
features of the triangle pairs to perform DCD for proximity com-
putations and CCD for penetration computations (Fig. 7).

Localized Collision Detection: The collision response computa-
tion based on inelastic impact zone [HVTG08] only updates a few
nodes (i.e., less than 20 in most cases, as shown in Fig. 17) to avoid
penetration at each iteration. We exploit the fact that any new pen-
etrations after that iteration are likely to appear in close geomet-
ric proximity to those nodes. As a result, we update only a subset
of the front of the BVTT that corresponds to those nodes, as op-
posed to the entire global front. In particular, we use a localized
BVTT propagating method to perform collision checking locally
(see Fig. 8). By scanning the current BVTT front, the nodes whose
features (vertices/faces/edges) are incident to the updated vertices
are marked. We propagate only these marked nodes to check for
new penetrations. The complexity of this approach is almost lin-
ear to the number of updated nodes during that iteration, as op-
posed to the total number of nodes in the global front. This local-
ized BVTT update yields significantly reduced memory space and
running time. In our current benchmarks, this localized propaga-
tion can provide 32%− 54% improvement to the performance of
our GPU-based CCD algorithm, as compared with [TMLT11].

4.2. Collision Response

We follow the approach based on inelastic impact zones [HVTG08]
and extend it to GPU parallelization. Figure 9 shows the basic
pipeline of [HVTG08] and our modified approach. The key differ-
ence is that we do not group all of the impacts into isolated impact
zones. Instead, we assemble all of the impacts into one linear sys-
tem to perform inelastic projection and then solve the linear system
to compute the new velocities of cloth nodes. This is because solv-
ing a smaller linear system is fast on CPU, while assembling and
solving a large linear system is fast on GPU as it avoids launching
a large number of kernels.

We use techniques similar to those described in Section 3.2 and

A,A
B,BB,C C,C

D,D D,E E,EB,FB,G F,FF,G G,G

H,H H,I J,J J,K K,KD,J D,K

a,b H,db,c

a,d b,d

H,J I,J H,K I,K e,e J,gJ,h g,h

H,e H,f I,e I,f H,gH,h I,gI,h

a,e b,e a,f b,f c,e d,e c,fd,f

Current BVTT Front

Last BVTT Front Updated 
Nodes

Unchanged 
Nodes

Figure 8: Localized BVTT Propagating: Our collision detection
algorithm first marks the nodes (i.e., updated nodes) whose features
are associated with the updated vertices. We propagate only these
marked nodes to check for new penetrations based on our localized
BVTT front computation algorithm.

No Impact!

(a) CPU based penetration solving

(b) GPU based penetration solving

Find Impacts with 
Penetration Detection

Isolate Independent 
Impacts into Impact Zones

Apply Inelastic Projection 
for Each Impact Zone

Have Impacts.

No Impact!

Find Impacts with 
Penetration Detection

Sparse Linear System 
Assembly

Solving Sparse Linear 
System

Have Impacts.

Figure 9: Collision Response: Difference between the original
collision response algorithm [HVTG08] (a) and our GPU-based
formulation (b). We do not group the impacts into isolated zones.
Instead, we assemble them into a large linear system for inelastic
projection and node velocity update.

Section 3.3 to construct and solve the sparse linear system on GPU.
To assemble the matrix dynamically, we execute different steps cor-
responding to space counting, index filling, and data filling by scan-
ning all the impacts rather than the topological elements. We still
use the Jacobi preconditioner to accelerate the CG solver. Com-
pared with a single-core CPU implementation, our new collision re-
sponse algorithm results in 55−80X speedups in our benchmarks.

5. Implementation and Performance

In this section, we describe our implementation and highlight the
performance of our algorithm on several benchmarks.

Implementation. We have implemented our algorithm on three
different commodity GPUs: an NVIDIA GeForce GTX 780 (with
2304 cores at 902MHz and 3G memory), an NVIDIA Tesla K20c
(with 2496 cores at 706MHz and 4G memory), and an NVIDIA
Tesla K40c (with 2880 cores at 745MHz and 12G memory). For
these NVIDIA GPUs, we used CUDA toolkit 7.0 and Visual Stu-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



M. Tang & H. Wang & L. Tang & R. Tong & D. Manocha / Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation

Figure 10: Benchmark Sphere: Three pieces of hanging cloth
with totally 200K triangles hit by a moving forward and backward
sphere. Our GPU-based cloth simulation algorithm takes 2.84s per
frame, on average.

dio 2013 as the development environment. We use a standard PC
(Windows 7 Ultimate 64 bits/Intel I7 CPU@3.5G Hz/8G RAM)
as the testing environment. We use double-precision floating-point
arithmetic for all the computations on GPU. We use Thrust for
prefix-sum operator and cuBLAS/cuSPARSE for linear operations.
No other GPU library is used in our implementation. Our GPU al-
gorithm also uses double precision (similar to CPU methods) for
all the computations, while [TTN∗13] and many other approaches
used single-precision arithmetic and may be prone to floating-point
errors [TTWM14].

We used different kernels for each block shown in Figure 4. Our
sparse matrix is stored using the BCSR format, which is regarded as
the most efficient format in cuSPARSE. We could also use CSC for-
mat, but currently there is no support for block CSC in cuSPARSE.
We used data coalescencing techniques, such as SOA (Structure
of Arrays) instead of AOS (Array of Structures) to store the mesh
topology and geometry data, including triangle node indices, edge
node indices, vertex positions, etc. It can be further improved using
shared memory (Section 7). We performed atomic write operators
for index counting and matrix filling (Section 3.2). In practice, we
did not observe much overhead due to these atomic operators, be-
cause there are not too many conflicts in the writing operations.

Benchmarks. We used three different benchmarks for regular
shaped cloth simulation:

• Sphere: Three pieces of hanging cloth with a total of 200K tri-
angles are hit by a forward/backward moving sphere (Fig. 10).
• Funnel: Three pieces of cloth with a total of 200K triangles fall

into a funnel and fold to fit into the funnel (Fig. 11 (b)).
• Twisting: Three pieces of cloth with a total of 200K triangles

twist severely as the underlying ball rotates (Fig. 11 (c)).

These benchmarks contain many inter- and intra-object collisions.
We used four other benchmarks for garment simulation:

• Andy: A boy wearing three pieces of cloth (with 127K triangles)
is practicing Kung-Fu (Fig. 1).
• Bishop: A swing dancer wears three pieces of cloth (with 124K

triangles) (Fig. 12).
• Falling: A man wearing a robe (with 172K triangles) falls down

rapidly under strikes (Fig. 11 (d)).

(b)

(c)

(d)

(a)

Figure 11: Benchmarks: We use seven different benchmarks aris-
ing from regular shaped cloth simulation ((b), (c), and Fig. 10 ) and
garment-design simulation ((a), (d), Fig. 1, and Fig. 12).

Figure 12: Benchmark Bishop: A swing dancer wears three
pieces of cloth (with 124K triangles). Our GPU-based cloth simu-
lation algorithm takes 1.19s per frame, on average.

• Dryer: Five pieces of cloth (a pair of pants, a T-shirt, a jacket, a
skirt, and a robe) fall into a rotating dryer. This benchmark has
98−310K triangles (Fig. 11 (a)).

These are complex benchmarks with multiple pieces, layers and
wrinkles that result in a high number of collisions. Our algorithm
can handle inter- and intra-object collisions reliably (see video).

Performance. Figure 13 shows the resolutions and time steps for
different benchmarks, and highlights the performance of our algo-
rithm on these benchmarks. This includes the average frame time
of our GPU-based algorithm on three commodity GPUs with differ-
ent numbers of cores. These results demonstrate that our streaming
cloth simulation algorithm works well on different GPU architec-
tures and the performance is proportional to the number of cores.
We show the detailed results of the Sphere benchmark over all the
frames on three different GPUs in Fig. 14. We also compare our
performance with the ArcSim [NSO12] single-threaded CPU sys-
tem and a simple GPU implementation using prior sparse matrix
assembly and collision handling algorithms. We observe signifi-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



M. Tang & H. Wang & L. Tang & R. Tong & D. Manocha / Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation

Resolution
(triangles)

Bench-
marks

Time
Step(s)

GTX
780

Tesla
K20c

Tesla
K40c

Simple
GPU

CPU
(s/frame)

200K Funnel 1/300 2.22 1.82 1.68 19.03 /
200K Moving 1/200 3.78 3.44 2.84 28.99 /
200K Twisting 1/200 4.09 3.70 2.92 30.63 /
124K Bishop 1/30 1.58 1.41 1.19 18.29 68.34
172K Falling 1/30 3.74 3.07 2.49 35.68 137.31
98K-310K Dryer 1/200 5.83 5.08 4.13 52.90 212.45
127K Andy 1/25 3.40 2.98 2.42 28.26 143.35

Our AlNaïve Algorithm
Funnel 0.263 1 3.8
Moving 0.213 1 4.7
Twisting 0.233 1 4.3
Bishop 0.244 1 4.1
Falling 0.189 1 5.3
Dryer 0.208 1 4.8
Andy 0.233 1 4.3

Figure 13: Performance: This figure shows the average running
time for a single frame of our algorithm on the three different gen-
erations of NVIDIA GPUs. We also compare our performance with
a CPU system ArcSim [NSO12] running on a single thread and a
simple GPU-based system. ArcSim’s collision response fails on a
few benchmarks, so we can’t report any results. We observe signif-
icant speedups over prior cloth simulation systems.

2

3

4

5

6

7

8

9

10

1 101 201 301 401 501 601 701 801

Tesla K40c

Tesla K20c

GTX 780

seconds

frames

Figure 14: Performance on Different GPUs: This figure high-
lights the performance of our simulator running on three different
GPUs on the Sphere benchmark (200K triangles). The parallel per-
formance almost scales linearly with the number of GPU cores.

cant speedups over these prior systems. Note that ArcSim fails on
several benchmarks due to unsuccessful penetration handling.

Figure 15 shows the simulation output for the cloth mesh rep-
resented with different resolutions: 16K, 64K, 256K, and 1M tri-
angles. Figure 16 shows the running time per frame for the cloth
benchmark represented with different resolutions. This demon-
strates the change in frame rate as a function of mesh complex-
ity. The number of wrinkles and self-collisions tend to increase at
a super-linear rate for higher resolutions. The memory overhead
is also proportional to the number of triangles. We also evaluated
the runtime performance as a function of the error threshold used
in our algorithms. In our current implementation, the convergence
threshold in the preconditioned conjugate gradient (PCG) solver is
10−6. If we decrease it to 10−11, the average frame time increases
by 30%. Figure 17 highlights the proximity configurations (in blue)
and penetrations (in green) per frame of the Sphere benchmark. We
can see only a few penetrations (< 1 per frame on average) need
to be resolved during penetration handling. Figure 18 shows run-
ning time ratios for different stages of our pipeline (i.e., proximity
checking(PC), sparse linear system assembly (MA), sparse linear
system solving (LS), and penetration handling (PH)) and the run-
ning time per frame for the Sphere benchmark. Note that most of
the time is spent in proximity query (using DCD) and penetration
handling (using CCD and collision response).

16K 
Triangles

64K 
Triangles

256K 
Triangles

1M
Triangles

Figure 15: Simulation Results with Varying Resolution: We high-
lights the results from our simulator for the cloth with different res-
olutions (16K, 64K, 256K, and 1M triangles, respectively).

Resolution 16K 64K 256K 1M
Avrg. Time 0.27 1.22 5.30 35.57

Figure 16: Performance under Varying Resolution: This figure
highlights the average running time (seconds) per frame for the
cloth with different resolutions.

6. Comparisons and Analysis

We are not aware of any prior GPU-based cloth simulation algo-
rithm or system that can handle triangle meshes of arbitrary topol-
ogy and performs robust collision handling only using GPU cores.
As a result, it is not possible to perform fair performance compar-
isons with prior work. Furthermore, other algorithms use different
numeric solvers and collision handling algorithms. In this section,
we compare the features and performance of our approach with
prior methods.

Single-threaded CPU systems: We have compared the timings with

1 101 201 301 401 501 601 701

Frames

Proximities Penetrations

0

20000

40000

60000

80000

100000

120000

140000

160000

0

20

40

60

80

100

120

140

Figure 17: Proximity Computations/Penetrations per Frame:
This figure highlights proximity computations using DCD (in blue)
and penetrations using CCD (in green) per frame of the Sphere
benchmark.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



M. Tang & H. Wang & L. Tang & R. Tong & D. Manocha / Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation

1

2

3

4

5

6

1 101 201 301 401 501 601 701

Tesla K40c

0%

20%

40%

60%

80%

100%

1 101 201 301 401 501 601 701

PC LS MA PH Misc

(a) Running Time Per Frame (seconds)

(b) Running Time Ratios for Each Stage

Figure 18: Running Time Ratios of Benchmark Sphere: This
figure shows the timing breakdown for different stages of the al-
gorithm (a) and total time per frame (b) of the Sphere benchmark
(with 200K triangles).

a single-threaded CPU-based system, ArcSim [NSO12]. Note that
the underlying pipeline in this system is slightly different from
ours. Moreover, ArcSim uses a different sparse solver (TAUCS).
For some benchmarks, we get very similar simulation results, as
shown in the video. However, for some multi-layer benchmarks,
such as Twisting, Funnel and Sphere, ArcSim fails (during a few
frames) as it uses only impact zones for inter-layer collision re-
sponse. In contrast, our modified pipeline incorporates inter-layer
contacts into implicit time integration and is able to handle these
challenging benchmarks. Moreover, we observe 47−58X speedups
in our benchmarks over this single-threaded system.

Multiple-threaded CPU systems: Selle et al. [SSIF09] acceler-
ated cloth simulation with a 16-core workstation. For a twisting
cloth with 1M triangles, they reported 5− 6 minutes per frame,
which is much slower than our method. On the other hand, for
a cloth benchmark with 1M triangles (Figure 15 (d)), our system
takes 12s on average for each frame. ArcSim [NSO12] also can
be accelerated with multiple CPU cores, but only demonstrates
30− 100% improvement on 8 cores. Our GPU-based implemen-
tation is about 24− 44X faster than an 8-core implementation of
ArcSim on the same benchmarks. Ni et al. [NKT15] presented a
scalable approach and implementation of the asynchronous con-
tact method [HVS∗09] and used that for cloth simulation. They
describe the results on 384 cores of a Cray XC30 and it takes many
tens of minutes on very complex benchmarks with contacts. It is
hard to compare the formulation with our approach as the underly-
ing formulation and performance are quite different from ours.

GPU-based accelerations and simulation: Some prior GPU-based
methods [Kal09, Zel06] perform explicit integration and demon-
strate good runtime performance, but do not perform accurate colli-
sion detection and handling. As a result, it is not clear whether these
methods can reliably simulate complex benchmarks. Most of the
prior GPU-based algorithms [Kal09, Zel06, TTN∗13, CLMMO14]
are limited to quad-mesh based cloth representations. In contrast,
our approach can handle triangular meshes with arbitrary topolo-
gies. The AirMesh technique proposed by Müller et al. [MCKM15]

is an alternate technique can be integrated into our approach for
collision culling. As compared to the prior GPU-based cloth simu-
lation algorithm [TTN∗13], our approach offers the following ben-
efits:

• Different GPU pipelines (Fig. 3): We incorporate proximity in-
formation into implicit time integration and perform proximity
queries using DCD before time integration. In [TTN∗13], DCD
is used to compute repulsion forces after time integration. Our
approach is more robust and can perform robust collision han-
dling between multiple layer cloths (See Figs. 1, 10, 11, and 12).
[TTN∗13] would fail on these benchmarks.
• Arbitrary topology: We can represent cloth models with tri-

angle meshes of arbitrary topology, with no restrictions. This
is due to our novel matrix assembly algorithm. The algorithm
in [TTN∗13] can only support rectangle cloths (as shown in their
benchmarks) and will not be able handle benchmarks shown in
Fig. 1 and Fig. 12 (garment benchmarks).
• Robust penetration handling: [TTN∗13] uses penalty and im-

pulse based methods for penetration handling. In contrast, our
method performs more robust penetration resolving by integrat-
ing proximity constraints into implicit time integration; and com-
bines CCD with inelastic impact zone to resolve (much fewer)
remaining penetrations. As a result, our GPU cloth simulation al-
gorithm can handle complex benchmarks (see Fig. 19 & video).
• Efficient collision handling: We perform localized BVTT front

propagation, which improves the performance of the inte-
grated collision detection and response modules, as compared
to [TTN∗13].

Dynamic matrix assembly and unified collision handling on GPUs:
In order to evaluate the benefits, we implemented various compo-
nents of our algorithm, including sparse matrix assembly, linear
system solving and collision handling, using prior GPU-based al-
gorithms. The sparse matrix assembly implementation collects all
the matrix entries, sorts and removes duplicated entries, and con-
verts this matrix into the CSR format. We also use prior GPU-based
collision detection algorithm in [TMLT11] without localized prop-
agation in this system. As compared to this simple GPU system,
our new algorithms for sparse matrix assembly and collision han-
dling result in 10.2− 15.4X speedups in our benchmarks. We also
tried another implementation without dynamic matrix assembly.
The sparse linear system has to be assembled at CPU and trans-
fers to GPU for solving. We observed up to 31.3− 54.2 speedups
over this implementation in our benchmarks. Here the data-transfer
between CPU and GPU is the main bottleneck.

Hybrid CPU-GPU systems: Some parallel algorithms are based on
a hybrid use of CPU and GPU for cloth simulation. For example,
Cirio et al. [CLMMO14] used GPU for implicit time integration
and transferred data back to CPU for collision handling. The over-
head of memory transfer can be high for complex benchmarks.
Their method also limited to quad-mesh based clothes.

Prior collision handling schemes: Even with static obstacles, Tang
et al. [TTN∗13] requires multiple passes of impulse-based collision
response (e.g., 4− 5 passes per time step for the Sphere bench-
mark) to overcome the potential penetrations, whereas our algo-
rithm requires only one pass of proximity computation to gener-
ate contact/friction constraints that are used by the implicit time

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



M. Tang & H. Wang & L. Tang & R. Tong & D. Manocha / Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation

Figure 19: Artifacts Caused by Unresolved Penetrations: The
prior GPU-based algorithm [TTN∗13] can result in artifacts,
caused by unresolved penetrations between the multiple layers of
the cloth. Our simulator can robustly handle these penetrations.

integration. Our approach of incorporating penetration constraints
into time integration is similar to the one proposed by Otaduy et
al. [OTSG09], which uses an optimized LCP solver. However, our
formulation is simpler to parallelize and maps well to GPU archi-
tectures. In practice, for a cloth with 120K triangles, the algorithm
in [OTSG09] takes about 135 seconds for 1/200s of simulation
time step on a Intel CPU@3.2G, whereas our approach takes 3.2
seconds for the same time step on a NVIDIA Tesla K40c. Overall,
our formulation of incorporating contact constraints into implicit
time integration improves the robustness and efficiency.

Topological Changes: Currently, our system can not handle topo-
logical changes, e.g. adaptive remeshing, tearing, etc. In terms of
all the stages of the algorithm shown in Fig. 3, the implicit time in-
tegration stage can directly support topological changes. However,
the proximity checking and penetration handling stages need to be
extended to handle topology changes in BVTT front computation.

Compute Bound vs. Memory Bound: For high resolution cloth
simulation (> 100K triangles), the performance of our algorithm
is compute bounded. As a result, we can expect a higher perfor-
mance with increase in the number of GPU cores. However, for low
or medium resolution cloth, our system’s performance is memory-
bounded. A good topological/geometric data layout is important to
achieve higher system performance.

7. Conclusion and Future Work

We present a GPU-based streaming cloth simulation algorithm that
exploits the current GPU architectures for high parallel perfor-
mance. This includes efficient parallel algorithms for sparse matrix
assembly and collision handling. We use a slightly different simu-
lation pipeline in which collision handling is closely coupled with
time integration. We have demonstrated its performance on many
complexly layered cloth benchmarks containing 100−300K trian-
gles. We observe significant speedups over prior single-threaded
CPU-based systems as well as parallel GPU-based systems.

Our approach has several limitations. Our algorithm relies on
BVTT front-based collision detection. Maintaining the BVTT front
on GPU requires substantial memory space (e.g., 1.5G for the Fun-
nel benchmark). Our time integration and collision handling algo-
rithms do not use shared memory on GPU, since that memory is not

big enough for complex benchmarks. The accuracy is governed by
current GPU-based numeric libraries, such as cuSPARSE [NVI15].
Our conjugate gradient solver sometimes need a large number of it-
erations (from 300 to 600) to converge. Its performance may be fur-
ther improved by sophisticated preconditioners. We observe good
speedups due to GPU parallelization on high resolution and com-
plexly layered cloth, and parallel CPU-based algorithms may pro-
vide equally good performance on low resolution cloth.

There are many avenues for future research. In addition to over-
coming the limitations, we feel that it is possible to further im-
prove the performance by exploiting the memory hierarchy of
GPUs. The sparse matrix assembly and linear system solving al-
gorithms could also be useful for FEM and other simulations
[ACF11, WBS∗13, LQT∗15]. It would be useful to combine our
approach with adaptive meshes [NSO12] and/or data-driven meth-
ods [FYK10,dASTH10,KGBS11,ZBO13,KKN∗13] to further im-
prove the performance and realism. Another goal would be to fur-
ther parallelize the computations by using a combination of CPU
and GPU, or using large clusters of CPUs and GPUs to perform
interactive cloth simulation.

Acknowledgements: This research is supported in part by
the National High-Tech Research and Development Program
(No.2013AA013903) of China, the National Key Technology R&D
Program of China (2012BAD35B01). Min Tang is supported in
part by NSFC (61572423, 61170140), Zhejiang Provincial NSFC
(LZ16F020003), the Doctoral Fund of Ministry of Education of
China (20130101110133), and EU ANNEX project (612627). Di-
nesh Manocha is supported in part by ARO contract W911NF-
14-1-0437 and NSF grant 1547106, and the National Thousand
Talents Program of China. Huamin Wang is supported in part by
NVIDIA and Adobe. Ruofeng Tong is partly supported by NSFC
(61572424, 61170141). We gratefully acknowledge the support of
NVIDIA Corporation for the donation of Tesla K20x/K40c GPUs
used for this research. We thank FxGear for providing the models
for Benchmark Andy, Bishop, and Falling. We also thank Zhen-
dong Wang for useful discussions and making the video.

References

[ACF11] ALLARD J., COURTECUISSE H., FAURE F.: Implicit FEM
solver on GPU for interactive deformation simulation. In GPU Com-
puting Gems, Jade Edition, Hwu W., (Ed.). Nov. 2011, pp. 281–294. 2,
10

[BEB12] BROCHU T., EDWARDS E., BRIDSON R.: Efficient geomet-
rically exact continuous collision detection. ACM Trans. Graph. (SIG-
GRAPH) 31, 4 (July 2012), 96:1–96:7. 2, 5

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Robust treatment of
collisions, contact and friction for cloth animation. ACM Trans. Graph.
(SIGGRAPH) 21, 3 (July 2002), 594–603. 2, 3, 5

[BG13] BELL N., GARLAND M.: CUSP: A C++ Templated Sparse Ma-
trix Library, http://cusplibrary.github.io/, 2013. 3

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simulation. In
Proceedings of the 25th annual conference on Computer graphics and
interactive techniques (New York, NY, USA, 1998), SIGGRAPH ’98,
ACM, pp. 43–54. 1, 4, 5

[CK02] CHOI K.-J., KO H.-S.: Stable but responsive cloth. ACM Trans.
Graph. (SIGGRAPH) 21, 3 (July 2002), 604–611. 1

[CLMMO14] CIRIO G., LOPEZ-MORENO J., MIRAUT D., OTADUY

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



M. Tang & H. Wang & L. Tang & R. Tong & D. Manocha / Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation

M. A.: Yarn-level simulation of woven cloth. ACM Trans. Graph. (SIG-
GRAPH Asia) 33, 6 (Nov. 2014), 207:1–207:11. 2, 9

[dASTH10] DE AGUIAR E., SIGAL L., TREUILLE A., HODGINS J. K.:
Stable spaces for real-time clothing. ACM Trans. Graph. (SIGGRAPH)
29 (July 2010), 106:1–106:9. 1, 10

[FYK10] FENG W.-W., YU Y., KIM B.-U.: A deformation transformer
for real-time cloth animation. ACM Trans. Graph. (SIGGRAPH) 29, 4
(July 2010), 108:1–108:9. 1, 10

[GKJ∗05] GOVINDARAJU N. K., KNOTT D., JAIN N., KABUL I., TAM-
STORF R., GAYLE R., LIN M. C., MANOCHA D.: Interactive collision
detection between deformable models using chromatic decomposition.
ACM Trans. Graph. (SIGGRAPH) 24, 3 (July 2005), 991–999. 2

[GLM05] GOVINDARAJU N. K., LIN M. C., MANOCHA D.: Quick-
CULLIDE: Fast inter- and intra-object collision culling using graphics
hardware. In IEEE Virtual Reality Conference 2005, VR 2005, Bonn,
Germany, March 12-16, 2005 (2005), pp. 59–66. 2

[HVS∗09] HARMON D., VOUGA E., SMITH B., TAMSTORF R., GRIN-
SPUN E.: Asynchronous Contact Mechanics. SIGGRAPH (ACM Trans-
actions on Graphics) 28, 3 (Aug 2009). 9

[HVTG08] HARMON D., VOUGA E., TAMSTORF R., GRINSPUN E.:
Robust treatment of simultaneous collisions. ACM Trans. Graph. (SIG-
GRAPH) 27, 3 (Aug. 2008), 23:1–23:4. 2, 6

[Kal09] KALINICH S.: Havok show OpenCL based Havok Cloth on ATI
GPUs, http://www.brightsideofnews.com/news/2009/3/27/ havok-show-
opencl-based-havok-cloth-on-ati-gpus.aspx, 2009. 9

[KGBS11] KAVAN L., GERSZEWSKI D., BARGTEIL A. W., SLOAN P.-
P.: Physics-inspired upsampling for cloth simulation in games. ACM
Trans. Graph. (SIGGRAPH) 30, 4 (Aug. 2011), 93:1–93:10. 1, 10

[KKN∗13] KIM D., KOH W., NARAIN R., FATAHALIAN K., TREUILLE
A., O’BRIEN J. F.: Near-exhaustive precomputation of secondary cloth
effects. ACM Trans. Graph (SIGGRAPH). 32, 4 (July 2013), 1–8. 1, 10

[LBOK13] LIU T., BARGTEIL A. W., O’BRIEN J. F., KAVAN L.: Fast
simulation of mass-spring systems. ACM Trans. Graph. (SIGGRAPH
Asia) 32, 6 (Nov. 2013), 209:1–7. 1

[LC98] LI T.-Y., CHEN J.-S.: Incremental 3D collision detection with
hierarchical data structures. In Proceedings of the ACM Symposium on
Virtual Reality Software and Technology (New York, NY, USA, 1998),
VRST ’98, ACM, pp. 139–144. 5

[LMM10] LAUTERBACH C., MO Q., MANOCHA D.: gProximity: Hier-
archical GPU-based operations for collision and distance queries. Com-
put. Graph. Forum 29, 2 (2010), 419–428. 2

[LQT∗15] LI C., QIAN J., TONG R., CHANG J., ZHANG J.: GPU based
real-time simulation of massive falling leaves. Computational Visual
Media (2015), 1–8. 10

[LWM11] LI H., WAN Y., MA G.: A CPU-GPU hybrid computing
framework for real-time clothing animation. In Cloud Computing and In-
telligence Systems (CCIS), 2011 IEEE International Conference on (Sept
2011), pp. 391–396. 2

[LYO∗10] LEE Y., YOON S.-E., OH S., KIM D., CHOI S.: Multi-
resolution cloth simulation. Comp. Graph. Forum (Pacific Graphics) 29,
7 (2010), 2225–2232. 1

[MCKM15] MÜLLER M., CHENTANEZ N., KIM T.-Y., MACKLIN M.:
Air meshes for robust collision handling. ACM Trans. Graph. 34, 4 (July
2015), 133:1–133:9. 9

[NKT15] NI X., KALE L., TAMSTORF R.: Scalable asynchronous con-
tact mechanics using Charm++. In IEEE Parallel and Distributed Pro-
cessing Symposium (IPDPS) (May 2015), pp. 677–686. 2, 9

[NSO12] NARAIN R., SAMII A., O’BRIEN J. F.: Adaptive anisotropic
remeshing for cloth simulation. ACM Trans. Graph. (SIGGRAPH Asia)
31, 6 (Nov. 2012), 152:1–152:10. 1, 2, 7, 8, 9, 10

[NVI15] NVIDIA: cuSparse: The NVIDIA CUDA Sparse Matrix li-
brary, https://developer.nvidia.com/cusparse, 2015. 3, 10

[OTSG09] OTADUY M. A., TAMSTORF R., STEINEMANN D., GROSS
M.: Implicit contact handling for deformable objects. Computer Graph-
ics Forum 28, 2 (2009), 559–568. 2, 3, 10

[PKS10] PABST S., KOCH A., STRASSER W.: Fast and scalable
CPU/GPU collision detection for rigid and deformable surfaces. Comp.
Graph. Forum 29, 5 (2010), 1605–1612. 2

[Pro95] PROVOT X.: Deformation constraints in a mass-spring model
to describe rigid cloth behavior. In Proc. of Graphics Interface (1995),
pp. 147–154. 1, 2

[SKBK13] SCHMITT N., KNUTH M., BENDER J., KUIJPER A.: Mul-
tilevel cloth simulation using GPU surface sampling. In Proceedings of
VRIPHYS (2013), pp. 1–10. 2

[SSIF09] SELLE A., SU J., IRVING G., FEDKIW R.: Robust high-
resolution cloth using parallelism, history-based collisions, and accurate
friction. IEEE Trans. Vis. Comp. Graph. 15, 2 (Mar. 2009), 339–350. 2,
5, 9

[TMLT11] TANG M., MANOCHA D., LIN J., TONG R.: Collision-
Streams: Fast GPU-based collision detection for deformable models. In
Proceedings of I3D (2011), pp. 63–70. 2, 3, 5, 6, 9

[TTN∗13] TANG M., TONG R., NARAIN R., MENG C., MANOCHA D.:
A GPU-based streaming algorithm for high-resolution cloth simulation.
Comp. Graph. Forum (Pacific Graphics) 32, 7 (2013), 21–30. 2, 3, 7, 9,
10

[TTWM14] TANG M., TONG R., WANG Z., MANOCHA D.: Fast and
exact continuous collision detection with Bernstein sign classification.
ACM Trans. Graph. (SIGGRAPH Asia) 33 (November 2014), 186:1–
186:8. 2, 5, 7

[Wan14] WANG H.: Defending continuous collision detection against er-
rors. ACM Trans. Graph. (SIGGRAPH) 33, 4 (July 2014), 122:1–122:10.
2, 5

[WBS∗13] WEBER D., BENDER J., SCHNOES M., STORK A., FELL-
NER D.: Efficient GPU data structures and methods to solve sparse lin-
ear systems in dynamics applications. Comp. Graph. Forum 32, 1 (2013),
16–26. 2, 3, 10

[WHRO10] WANG H., HECHT F., RAMAMOORTHI R., O’BRIEN J.:
Example-based wrinkle synthesis for clothing animation. ACM Trans.
Graph. (SIGGRAPH) 29, 4 (July 2010), 107:1–107:8. 1

[WRO11] WANG H., RAMAMOORTHI R., O’BRIEN J. F.: Data-driven
elastic models for cloth: Modeling and measurement. ACM Trans.
Graph. (SIGGRAPH) 30, 4 (July 2011), 71:1–11. 2

[WTTM15] WANG Z., TANG M., TONG R., MANOCHA D.: TightCCD:
Efficient and robust continuous collision detection using tight error
bounds. Computer Graphics Forum 34 (September 2015), 289–298. 5

[ZBO13] ZURDO J. S., BRITO J. P., OTADUY M. A.: Animating wrin-
kles by example on non-skinned cloth. IEEE Trans. Vis. Comp. Graph.
19, 1 (2013), 149–158. 1, 10

[Zel06] ZELLER C.: Practical Cloth Simulation on Modern GPU. Shader
X4: Advanced Rendering with DirectX and OpenGL. Charles River Me-
dia, 2006. 9

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.


