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Abstract

So far extending light field rendering to dynamic scenes has been
trivially treated as the rendering of static light fields stacked in time.
This type of approaches requires input video sequences in strict
synchronization and allows only discrete exploration in the tempo-
ral domain determined by the capture rate. In this paper we propose
a novel framework,space-time light field rendering, which allows
continuousexploration of a dynamic scene in both spatial and tem-
poral domain withunsynchronizedinput video sequences.

In order to synthesize novel views from any viewpoint at any time
instant, we develop a two-stage rendering algorithm. We first in-
terpolate in the temporal domain to generate globally synchronized
images using a robust spatial-temporal image registration algorithm
followed by edge-preserving image morphing. We then interpolate
those software-synchronized images in the spatial domain to syn-
thesize the final view. Our experimental results show that our ap-
proach is robust and capable of maintaining photo-realistic results.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms, Viewing algorithms; I.4.8 [Image
Processing and Computer Vision]: Scene Analysis—Time-varying
imagery

Keywords: image-based rendering, space-time light field, epipo-
lar constraints

1 Introduction

During the last few years, image-based modeling and render-
ing (IBMR) has become a popular alternative of synthesizing
photo-realistic images of real scenes, whose complexity and sub-
tleties are difficult to capture with traditional geometry based tech-
niques. Among the many IBMR approaches, light field rendering
(LFR) [Levoy and Hanrahan 1996; Gortler et al. 1996] is a rep-
resentative one, which uses many images captured from different
view points of the scene of interests, i.e., alight field. Given the
light field, the rendering process becomes a simple operation of re-
arranging the recorded pixel values. It can guarantee the rendering
quality for any type of scenes, without resorting to relatively diffi-
cult and often fragile depth reconstruction approaches.

So far, extending the success of light field rendering to dynamic
scenes has been limited tosynchronizedinput video sequences.
Each set of images taken at the same instant is treated as a separate
light field. Although a viewer can continuously change the view-
point in the spatial domain within each static light field, exploring
in the temporal domain is still discrete.
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Figure 1: The top picture shows the camera array we used to cap-
ture video sequences. The cameras are running at 30 fps without
inter-camera synchroization. The pictures in the left column are
synthesized using traditional light field rendering. The pictures in
the right column are synthesized using space-time light field ren-
dering.

In this paper we present the notion ofspace-time light field ren-
dering (ST-LFR) that allowscontinuousexploration of a dynamic
light field in both the spatial and temporal domain. A space-time
light field is defined as a collection of video sequences in which
each frame has a global time stamp but may or may not be syn-
chronized between sequences. The goal of ST-LFR is to synthesize
novel images given an arbitrary viewpoint at an arbitrary time in-
stantt. Traditional LFR is therefore a special case of ST-LFR with
a fixed t. One may think that, given a high-enough capture rate
(i.e., full NTSC rate at 30 frames per second), applying traditional
LFR to the set of images captured most closely tot could generate
reasonable results. Unfortunately, a back-the-envelop calculation
shows that this is usually not true. Typical body motions (approxi-
mately 0.6 m/s) at sitting distance can cause over a 10-pixel offset
per frame in a 30fps VGA sequence. As shown in Figure 1 left col-
umn, the misalignment caused by the subject’s casual hand motion
is quite evident in the synthesized image even when the temporal
offset is less than a half frame time, i.e, 1/60 second.

We decompose ST-LFR into two stages. First we interpolate orig-
inal video sequences in the temporal domain to synthesize images
for a given time instant. Given these virtually synchronized images,
we use the traditional LFR technique to render novel views in the



spatial domain. The major technical difficulty of ST-LFR is in the
first step: synthesizing ‘in-between’ frames within each sequence.
Towards this end, we made two primarycontributions. First we
developed a robust spatial-temporal image registration algorithm
using optical flow and epipolar constraints. The number of mis-
matches can be greatly reduced after enforcing both inter-sequence
and intra-sequence matching consistency. Our second contribution
is a novel temporal image interpolation algorithm that provides su-
perior results in the presence of inevitable mismatches. Our algo-
rithm, based on image morphing [Beier and Neely 1992], incorpo-
rates a varying weight term based on image gradient to preserve
edges.

Figure 1 shows the effectiveness of our approach. Though we have
not demonstrated, ST-LFR can also be easily extended to increase
video frame rates, visualize motion trajectory in 3D (i.e., integra-
tion in the temporal domain), or produce image-based motion blur
effects as in [Brostow and Essa 2001].

2 Related Work

Light field rendering techniques are formulated around theplenop-
tic function, which describes all of the radiant energy that can be
perceived by an observer at any point in space and time [Adel-
son and Bergen 1991]. Levoy and Hanrahan pointed out that the
plenoptic function can be simplified in the regions of space free of
occluders, since radiant energy does not change over free space.
The reduced function (the so-calledlight field) can be interpreted
as a function on the space of oriented light rays. The light field can
be directly recorded using multiple cameras. Once acquired, light
field rendering becomes a simple task of table–look–ups to retrieve
the recorded radiant values.

A major disadvantage of light field based techniques is the huge
amount of data required, therefore their application was tradition-
ally limited static scenes [Levoy and Hanrahan 1996; Gortler et al.
1996; Shum and He 1997; Ihm et al. 1998]. The acquisition of
dense, dynamic light fields becomes feasible only recently with
technological advancement. Most systems use a dense array ofsyn-
chronizedcameras to acquire dynamic scenes at discreet temporal
intervals [Naemura et al. ; Yang et al. 2002a; Wilburn et al. 2002;
Matusik and Pfister 2004]. Images at each time instant are collec-
tively treated as an independent light field. As a result, viewers
can explore continuously only in the spatial domain, but not in the
temporal domain. To create the impression of dynamic events, the
capture frame rate has to be sufficiently high, further increasing the
demand for data storage and processing. In addition, hardware cam-
era synchronization is a feature available only on high-end cameras,
which significantly increases the system cost. Without synchroniza-
tion,, misalignment problems will occur in fast motion scenarios,
as reported in one of the few light field systems built with low cost
commodity web cameras [Zhang and Chen 2004].

In the meantime, view synthesis from asparseset of cameras is
also an active research topic in computer vision. Many of these
techniques focus on the dense geometric reconstruction of the scene
(e.g. [Kanade et al. 1997; Matusik et al. 2000; Yang et al. 2002b;
Zitnick et al. 2004]). While some very impressive results have been
obtained, the problem of depth reconstruction remains open. In
addition, synchronized camera input is typically required. With un-
synchronized input, there are techniques to find the temporal offset
(typically at a resolution of one frame) [Caspi and Irani 2000; Caspi
and Irani 2001; Rao et al. 2003; Sand and Teller 2004], but they do
not address the problem of synthesizing the ‘in-between’ frames,
which is a critical part of ST-LFR.

Our work is also related to super-resolution techniques in computer

vision. While most approaches focus on increasing the spatial res-
olution (See [Borman and Stevenson 1998] for a comprehensive
review), a notable exception in [Shechtman et al. 2002] extends
the notion of super-resolution to the space-time domain. Their ap-
proach enables new visual capabilities of dynamic events such as
the removal of motion blur and temporal anti-aliasing. However,
they assume that all images have already been registered in the
space and time volume and the scene is approximately planar. Our
ST-LFR formulation does not require a priori image registration and
does allow arbitrary scene and motion types. On the other hand, we
do not attempt to increase the spatial resolution.

The key component of ST-LFR is image registration, which is
achieved through optical flow computation over both space and
time. Optical flow is a well-studied problem in computer vision.
Interested readers are referred to [Bergen et al. 1992] and [Barron
et al. 1994] for reviews and comparison of different optical flow
techniques. These flow techniques typically use only a single se-
quence of frames (two frames in most cases). In our case we have
many sequences taken simultaneously, therefore, we extend the op-
tical flow formulation in both the space and time domain by incor-
porating the powerful epipolar constraint.

3 Algorithm Overview

The problem we address is to synthesize images from an arbitrary
viewpoint at an arbitrary time instant, given a set of time-stamped
video sequences captured from known positions, i.e., aspace-time
light field. Assuming that the video sequences are not synchro-
nized, our approach to space-time light field rendering (ST-LFR) is
divided into three major steps as shown in Figure 2:

1. Image registration

2. Synchronized image generation (temporal interpolation)

3. Light field rendering (spatial interpolation)

In the first step (Section 4), we use a robust spatial-temporal optical
flow algorithm to establish feature correspondences among succes-
sive frames for each camera’s sequence. In the second step (Sec-
tion 5), new globally synchronized images are synthesized using a
novel edge-guided image morphing method. Synchronized video
sequences are eventually used as input to synthesize images in the
spatial domain using the traditional LFR technique (Section 6).

4 Image Registration

Our algorithm starts with computing the temporal optical flow be-
tween two successive frames for each camera. The spatial opti-
cal flow between different camera sequences is also computed to
remove outliers. We will first present our algorithm with a two-
camera setup, then show how it can be extended to handle multiple
camera inputs. Figure 3 illustrates the two-camera registration pro-
cess.

4.1 Spatial-Temporal Flow Computation

Let Ii,t andIi,t+∆ti be two successive frames captured from camera
Ci at timet andt +∆ti respectively, andI j,t ′ be captured from cam-
eraCj at timet ′, the temporal flow is defined fromIi,t to Ii,t+∆ti and
the spatial flow is fromIi,t to I j,t ′ . CameraCi andCj ’s frame time
steps (∆ti and∆t j ) are not necessarily equivalent.
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Figure 2: The structure of our space-time light field rendering algorithm.

We first select corners with large eigenvalues onIi,t as feature
points using Harris corner detector [Harris and Stephens 1988].
We enforce a minimum distance between any two feature points
to prevent them from gathering in a small high gradient region.
We then calculate the sparse optical flow using tracking func-
tions in OpenCV [Bouguet 1999], which is based on the clas-
sic Kanade-Lucas-Tomasi(KLT) feature tracker [Lucas and Kanade
1981; Tomasi and Kanade 1991].

We choose not to calculate a dense, per-pixel flow since there
are certain areas such as occlusion boundaries and textureless re-
gions where flow computation is known to be problematic. Our
sparse flow formulation, which includes salient features important
for view synthesis, is not only more robust, but also more computa-
tionally efficient.

Figure 3: The registration process of the two-camera case.

4.2 Flow Correction by Epipolar Constraint

Since image interpolation quality depends heavily on the accuracy
of feature point correspondences, we use theepipolar constraintto
detect temporal point correspondence errors.

Given two images captured at the same instant from two different
cameras, the epipolar constraint states that if a pointp = [u,v,1]T
(expressed in homogeneous coordinates) from one camera and a
point q = [u′,v′,1]T from another camera correspond to the same

stationary 3D pointm in the physical world, they must satisfy the
following equation:

qTFp = 0 (1)

whereF is the fundamental matrix encoding the epipolar geometry
between the two images [Faugeras 1993]. In fact,Fp defines the
epipolar line in the second image, thus Eq. 1 means that the pointq
must pass through the epipolar lineFp, and vice versa.

We incorporate the epipolar constraint to verify the temporal flow
from Ii,t to Ii,t+∆ti using the spatial flow fromIi,t to I j,t ′ . Let m(t)
be a moving 3D point at timet andpi(t) be m(t)’s projection in
Ci . Given two 2D image points in different cameras,pi(t1) and
pj (t2), we claim that they satisfy the epipolar constraint ift1 = t2
and pi(t1)Fij pj (t2) = 0 whereFij is the fundamental matrix be-
tween cameraCi andCj . We first estimate the image pointpi(t ′)
using our unsynchronized imagesIi,t andIi,t+∆ti . Assuming locally
linear motion,pi(t ′) can be estimated as:

pi(t ′) = (t +∆ti − t ′) ·pi(t)+(t ′− t) ·pi(t +∆ti). (2)

If pi(t)’s spatial and temporal correspondences are both correct,
pi(t ′) andpj (t ′) should satisfy the epipolar constraint. We use this
criterion to validate the spatial-temporal flow computation. Figure 4
shows that a correct correspondence (blue) satisfies the epipolar
constraint, while a wrong temporal correspondences (red) causes
an error inpi(t ′), which leads to a wrong epipolar line thatpj (t ′)
fails to meet with.

We calculatepi(t ′)’s epipolar line onI j,t ′ using the fundamen-
tal matrix computed from cameras’ world position and projection
matrices. Due to various error sources such as camera noise,
inaccuracy in camera calibration or feature localization, we de-
fine a band of certainty along the epipolar line. For every triplet
(pi(t ′),pj (t′),m(t ′)), if the distance frompj (t ′) to pi(t ′)’s epipolar
line is greater than a certain tolerance threshold, either the tempo-
ral or the spatial flow for this triplet is assumed to be wrong. This
feature will be discarded. In our experiment, we use three pixels as
the distance threshold.

It should be noted that our correction scheme for unsynchronized
input is only valid when the motion is roughly linear in the pro-
jective space. Many real world movements, such as rotation, do
not satisfy this requirement. Fortunately, when cameras have a suf-
ficiently high rate with respect to the 3D motion, such a locally
temporal linearization is generally acceptable [Zhang et al. 2003].
Our experimental results also support this assumption. In Figure 4,
correct feature correspondences satisfy the epipolar constraint well
even though the magazine was rotating fast. Figure 4 also demon-
strates the amount of pixel offset casual motion could introduce:
in two successive frames captured at 30fps, many feature points



(a) pi(t) on imageIi,t (b) pi(t +∆ti) on imageIi,t+∆ti

(c) pj (t ′) andpi(t ′)’s epipolar lines
on imageI j,t′

Figure 4: Feature points and epipolar line constraints.

moved more than 20 pixels—a substantial amount that cannot be
ignored in view synthesis.

Figure 5: The optical flow before (left image) and after (right im-
age) applying the epipolar constraint. Correspondence errors on the
top of the magazine are detected and removed.

4.3 Multi-camera Flow Correction

In a multi-camera system, we can use more than one reference cam-
era or multiple frames to justify a particular temporal flow using the
epipolar constraint. Since the spatial flow itself can contain errors,
there exists a trade-off between accurate temporal correspondences
and the number of false-negatives, i.e., correct temporal correspon-
dences are removed because of erroneous spatial correspondences.
Therefore, we need a selection scheme to choose the ‘best’ frame(s)
to compare. Intuitively, closer cameras are relatively good candi-
dates because of less occlusions.

Another factor to consider is the ambiguity along the epipolar line,
i.e., the correspondence error along the direction of the epipolar

line cannot be detected. Many light-field acquisition systems put
cameras on a regular grid, in which the epipolar lines for cameras in
the same row or column are almost aligned with each other. In this
case, using more reference cameras does not necessarily improve
error detection.

Given a reference camera, we prefer to choose reference frames
captured close to timet + ∆ti . Those frames can fully reveal the
temporal flow error since the error only exists inpi(t)’s temporal
correspondencepi(t + ∆ti). pi(t) is always assumed to be the cor-
rect image location of some 3D pointm(t).

We use a selection functionWj to determine whether cameraCj
should be used to testCi ’s temporal flow fromIi,t to Ii,t+∆ti :

Wj = Closeness(i, j)+d min
t ′:I j,t′∈Cj sequence

∣∣t ′− (t +∆ti)
∣∣ (3)

and the reference frameI j,t ′ from Cj is selected as:

t ′ = argmin
t ′:I j,t′∈Cj sequence

∣∣t ′− (t +∆ti)
∣∣ (4)

whered is a constant to balance the influence from the camera spa-
tial closeness and the capture time difference. If the multi-camera
system is constructed regularly as a camera array, the closeness can
be simply evaluated according to the array indices. We choose a
single best camera along the row and the column respectively to
provide both horizontal and vertical epipolar constraints. If all cam-
eras have an identical frame rate, the same camera will always be
selected using Eq. 3.

5 Edge-Guided Temporal Interpolation

After image registration, we obtain a set of matching feature points
between consecutive frames. We next interpolate frames temporally
to generate synchronized video sequences. One possible approach
is to simply triangulate the whole image and blend two images us-
ing texture mapping. However, the result is unpredictable since it
depends heavily on the local triangulation of feature points. Even a
single feature mismatch can affect a large region on the image.

Our temporal interpolation scheme, which is based on the image
morphing method ([Beier and Neely 1992]), incorporates varying
weights based on image gradient. In essence, we form lines for im-
age morphing by examine feature points pairwise. The lines that
are aligned with image edges gain extra weights to preserve edge
straightness – an important visual cue. Our method can synthesize
smooth and visually appealing images even in the presence of miss-
ing or wrong feature matches.

5.1 Edge detection and matching

We first examine feature point correspondences pairwise to find po-
tential feature edges. LetEi,t be an edge segment connected by
two feature points in imageIi,t , andEi,t+∆ti be the corresponding
edge in imageIi,t+∆ti . We choose corresponding samples onEi,t
andEi,t+∆ti from the image gradient map, and calculate a measure
of fitnessc(x,y) for each sample at(x,y):

c(x,y) = |∇I(x,y)|+α

∣∣∣∣arctan

(
∇I(x,y)y

∇I(x,y)x

)
−ψ⊥

∣∣∣∣ (5)

where ∇I(x,y) is the gradient vector (subscript for image index
dropped for simplicity), andψ⊥ is the angle between the edge nor-
mal (perpendicular to the edge) and the horizontal.



The first term in Eq. 5 is the gradient magnitude and the second
term indicates how the gradient vector matches the edge direction.
α is a parameter to balance the influence from two terms. A typical
value for α is from 5 to 10, assuming that image intensities are
in [0, 255] and the angles are measured in radians. If all fitness
measures are greater than some threshold, it meansEi,t andEi,t+∆ti
stay on a strong gradient region and the gradient direction matches
with the edge normal. Thus,Ei,t andEi,t+∆ti may represent a real
edge in the 3D world and they should be added into the feature edge
set. Figure 6 shows a gradient magnitude map and detected feature
edges.

Figure 6: Real feature edges. Left: the gradient magnitude map.
Right: feature edges (blue) detected by testing feature points pair-
wise.

Edge Length Constraint When the object deformation and mo-
tion is relatively slow, we assume that the feature edge length is
roughly a constant between two successive frames. This assump-
tion is used as a constraint to detect improper feature edge corre-
spondences.

Wrong point correspondence is likely to cause the length change
between corresponding edges because it is inconsistent with cor-
rect point correspondence in the temporal flow. For instance, in
Figure 5, the dashed blue arrows show the intersection boundaries
between the magazine and the wall. They do not represent real
3D points, neither do they follow the magazine motion. Remov-
ing edges ended with such feature points can avoid distortions dur-
ing temporal interpolation. Similarly, we do not consider segments
connected between one static point (i.e., a point that does not move
in two temporal frames) and one dynamic point due to the segment
length change.

To avoid unnecessary edge tests, we assume that maximum edge
length is bounded by a constantLmax. For each feature pointP0,
edge tests can then be limited only to those feature points in a circle
centered atP0 with radiusLmax. A k-d tree structure is constructed
to find feature point neighborhoods quickly. IfLmax is relatively
small compared with the frame resolution, the computational cost
will be greatly reduced from O(n2) to O(m·n), wheren is the total
number of feature points andm is the maximum number of feature
points clustered in any circle with radiusLmax.

5.2 Forming feature edge set

Usually the number of feature edges found so far is not enough to
cover the whole image range. To avoid possible distortions in areas
lacking detected features, we use constrained Delaunay triangula-
tion [Chew 1987] to triangulate the whole image range and add new
triangle edges into the feature edge set asvirtual edges. Real feature
edges detected using the technique in the previous section are used

as triangulation constraints. Feature points and four image corners
are used as triangle vertices. Note that we break intersecting feature
edges since no intersection is allowed among edge constraints for
triangulation. Figure 7 shows the triangulation result.

Figure 7: The edge map constructed after constrained Delaunay
triangulation.

Figure 8: Three feature pointsP0, P1 and P2 are selected on the
same dark boundary, forming three edgesE0, E1 andE2. We only
keep the longest oneE2, which represents the whole edge in the
real world.

Sometimes, more than two feature points may be selected on a thick
and high-gradient band, so that more than one feature edges may be
generated (as shown in Figure 8) even though the band represents
the same edge in the world space. This is problematic since those
extra feature edges will repetitively apply more influence weight
than they should during the next image morphing step. We detect
those cases by testing whether two real feature edges are nearly
parallel and close. When detected, we only keep the longer one.

5.3 Morphing

We extend the image morphing method [Beier and Neely 1992] to
interpolate two frames temporally. We allow real edges to have
more influence weight than virtual edges since they are believed
to be more accurate. In [Beier and Neely 1992], edge weights are
calculated using the edge length and the point-edge distance:

weight0 =
(

lengthp

(a+dist)

)b

(6)

wherea,b andp are constants to change the line influence.

We calculate the weight for virtual feature edge using the formula
above. The weight for real edge is boosted as:

weight= weight0 · (1+
c(x,y)−c(x,y)min

c(x,y)max−c(x,y)min

)e (7)



where c(x,y) is the edge samples’ average fitness value (Sec-
tion 5.1).c(x,y)min andc(x,y)max are the minimum and maximum
c(x,y) of all real feature edges, respectively.e is a parameter to
scale the boosting effect exponentially. In practicee is chosen from
1.2 to 2.

We temporally interpolate two frames using both the forward tem-
poral flow from Ii,t to Ii,t+∆ti and backward temporal flow from
Ii,t+∆ti to Ii,t . The final pixel is calculated by linear interpolation:

Pt ′ = Pf orward · (t +∆ti − t ′)+Pbackward· (t ′− t) (8)

wherePf orward only uses frameIi,t andPbackward only uses frame
Ii,t+∆ti . This is because we have more confidence withIi,t ’s features
in the forward flow andIi,t+∆ti ’s features in the backward flow. They
are picked immediately from images using feature detection.

Figure 9 shows the results without and with virtual edges. Figure 10
shows the results using different interpolation schemes. Since some
features are missing on the top of the magazine, the interpolation
quality improves when real feature edges get extra weights accord-
ing to Eq. 7.

Figure 9: Interpolation result without (top image) and with (bottom
image) virtual feature edges.

6 View Synthesis (Spatial Interpolation)

Once we generate synchronized images for a given time constant,
we can use traditional light field rendering techniques to synthesize
views from novel viewpoint. To this end, we adopted the unstruc-
tured lumigraph rendering (ULR) technique [Buehler et al. 2001],

(a) image morphing without epipo-
lar test

(b) texture mapping with epipolar
test

(c) image morphing with epipolar
test, but without extra edge weights

(d) image morphing with both
epipolar test and extra edge weights

Figure 10: The interpolated result using different schemes.

which can utilize graphics texture hardware to blend appropriate
pixels together from nearest cameras in order to compose the de-
sired image.

ULR requires an approximation of the scene (a geometric proxy)
as an input. In our current implementation, the geometric proxy
is a 3D plane that can be interactively controlled by the user. Its
placement determines which region of the scene is in focus. It is
also possible to use the spatial flow information to reconstruct a
better proxy. However we chose not to do so in our experiments to
better demonstrate the advantage of ST-LFR over traditional LFR
(proxy computation is not a part of ULR).

7 Results

We have implemented our space-time light field rendering frame-
work and tested with real data. In Figure 11 we show a graph-
ical representation of our entire space-time light field rendering
pipeline. To facilitate data capturing, we built a multi-camera sys-
tem using eight Point Grey dragonfly cameras [Point Grey Research
Inc. ]: three color ones and five grey-scale ones (see Figure 1 top).
The mixed use of different cameras is due to our resource limit.
These cameras are approximately 60 mm apart, limited by their
form factor. Based on the analysis from [Chai et al. 2000], the ef-
fective depth of field is about 400mm. Four workstations are used to
handle video stream capturing and one workstation is used to send
operation instructions. Each video workstation captures video se-
quences from two cameras and store them as jpeg files. The global
time stamp for each frame is available from Point Grey camera API.
The cameras are calibrated, and all images are rectified to remove
lens distortions.

Since our cameras are arranged along the horizontal, we only se-
lect one camera to use epipolar constraint according to Eq. 3. The



closeness is just the camera position difference. In this case, we
typically choosed to be 60 in Eq. 3.

Our first data set includes a person waving the hand as Figure 1
shows. Since the depth variation from the hands to the head is
slightly beyond the focus range (400mm), we can see some slight
horizontal ghosting effects in the synthesized image, which are en-
tirely different from vertical mismatches caused by the hand’s ver-
tical motion.

We emphasize the importance of virtual synchronization in Fig-
ure 12, in which the image is synthesized with a constant blending
weight (1/8) for all eight cameras. The scene contains a moving
magazine. Without virtual synchronization (left image), the text on
the magazine cover is illegible. This problem is rectified after we
registered feature points and generated virtually synchronized im-
age frames.

Our last data set is a moving open book. In Figure 13 we syn-
thesized several views using traditional LFR and ST-LFR. Results
from ST-LFR remain sharp from different viewpoints. The notice-
able change of intensity is due to the mixed use of color and grey-
scale cameras.

Figure 12: Synthesized results using a constant blending weight
(i.e., pixels from all frames are averaged together). Left: traditional
LFR with unsynchronized frames. Right: Space-time LFR.

Compared to the traditional light field rendering, our formulation
requires correspondence information. Finding correspondence is
an open problem in computer vision and it can be fragile in prac-
tice. While we have designed several robust techniques to handle
almost inevitable mismatches and experimental results have been
quite encouraging, we have not studied our techniques’ stability
over long sequences yet. On the other hand, the biggest problem in
matching–textureless regions [Baker et al. 2003]–is circumvented
in our formulation since we only compute a sparse flow field that is
sufficient to synthesize novel views.

Regarding speed, our current implementation is not real-time yet.
The average time for synthesizing one single frame takes a few
minutes, depending on the number of detected features. The main
bottleneck is the temporal interpolation step. To form the matching
edge set also requires a quite exhaustive search, even after some
acceleration structures are adopted.

8 Conclusion and Future Work

In this paper we extend the traditional light field rendering into the
temporal domain to accommodate dynamic scenes. Instead of cap-
turing the dynamic scene in strict synchronization and treating each
image set as an independent static light field, our notion of aspace-
time light fieldsimply assumes a collection of time-stamped video
sequences. These sequences may or may not be synchronized and
they can have different capture rates.

Figure 13: Synthesized results of the book sequence. Left: tradi-
tional LFR with unsynchronized frames. Right: Space-time LFR.

In order to be able to synthesize novel views from any viewpoint at
any time instant, we developed a two-stage rendering algorithm: (1)
temporal interpolation that registers successive frames with spatial-
temporal optical flow and generates synchronized frames using an
edge-guided image morphing algorithm that preserves important
edge features; and (2) spatial interpolation that uses unstructured lu-
migraph rendering to create the final view from a given viewpoint.
Experimental results have shown that our approach is robust and
capable of maintaining photo-realistic results comparable to tradi-
tional static light field rendering.

Looking into the future, we intend to combine the temporal and
spatial interpolation into a single step. By allowing blending over
the entire space-time light field space, we can produce novel vi-
sual effects, such as the visualization of motion trajectory in 3D or
motion blur. We also want to investigate more efficient interpola-
tion method so that we can render space-time light field in real-time
and online, without significantly affecting the image qualities. This
real-time capability, together with the use of inexpensive web cam-
eras, can contribute to a wider diffusion of light field techniques to
many interesting applications such as 3D video teleconferencing,
remote surveillance, and tele-medicine.
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