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Abstract

We propose a new framework for solving General Shallow Wave Equations (GSWE) in order to efficiently simu-
late water flows on solid surfaces under shallow wave assumptions. Within this framework, we develop implicit
schemes for solving the external forces applied to water, including gravity and surface tension. We also present a
two-way coupling method to model interactions between fluid and floating rigid objects. Water flows in this system
can be simulated not only on planar surfaces by using regular grids, but also on curved surfaces directly without
surface parametrization. The experiments show that our system is fast, stable, physically sound, and straight-
forward to implement on both CPUs and GPUs. It is capable of simulating a variety of water effects including:
shallow waves, water drops, rivulets, capillary events and fluid/floating rigid body coupling. Because the system
is fast, we can also achieve real-time water drop control and shape design.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Physically based modeling;

1. Introduction

Water is crucial to human life. People see, use and drink
water everyday, thus it is not surprising that water simula-
tion plays an important role in computer graphics. Incom-
pressible fluid dynamics in general can be described by the
Navier-Stokes equations. Due to the complexity of the 3D
Navier-Stokes equations, water behavior varies significantly
under different circumstances. Researchers have invented
and adopted many numerical methods to generate various re-
alistic water effects by solving the Navier-Stokes equations.
While most previous research has been focused on simulat-
ing the high-speed dynamics of large bodies of water, our
main interest in this paper is to provide a fast and accurate
technique for graphics applications to simulate small-scale
fluid dynamics and its interaction with solid surfaces, such
as toy boats floating in the bathtub and water drops stream-
ing down a glass.

Compared with other representations such as particles, tetra-
hedral meshes or grid structures, we believe that a height
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field is more suitable to represent small-scale water in low-
speed fluid animations. A height-field-based system is eas-
ier to implement and its computational space increases only
quadratically with spatial resolution. Also, restricting the
Navier-Stokes equations to 2D makes it possible to apply
implicit numerical schemes, which usually means more sta-
bility and higher efficiency. However, previous height-field-
based techniques only supported a limited range of effects.
In particular, surface tension was neglected, which dimin-
ished the accuracy of small-scale liquid simulations.

In order to remove these limitations, our first contribution is
a general height-field-based system (Section 3) that solves
the new General Shallow Wave Equations (GSWE) that are
extensions of the traditional shallow wave equations. Our
system builds height columns along surface normals rather
than in the absolute gravity direction, as the left picture in
Fig. 1 shows. External forces in our system include grav-
ity (Section 4) and surface tension (Section 5), and they are
solved by implicit schemes which are significantly more sta-
ble and efficient than explicit schemes. We further incorpo-
rate a two-way liquid/rigid body coupling method in Sec-
tion 6 for floating and drifting effects. Finally in Section 7,
we demonstrate how our system can be optimized to run in
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real time on both CPUs and GPUs, which allows users to
control and design fluid shapes interactively.

This system is most suitable for simulating low-speed fluid
dynamics of small-scale 3D water flows on surfaces, which
is expensive to generate with particle systems or grid sys-
tems. It provides an efficient way to predict the behavior
of high speed dynamics before applying more accurate but
time-consuming techniques. While each different system is
capable of efficiently generating some specific effects, a
comprehensive system that combines height fields with par-
ticles or grids as in [OH95, IGLF06] should be able to cap-
ture more aspects of water animations in the future. We be-
lieve that the work presented in this paper will be an impor-
tant sub-component of such a system.

2. Related Work

Water animation is notoriously difficult and time-consuming
to produce because solving the 3D Navier-Stokes equations
requires a huge computational domain. The computational
space increases cubically in 3D when water is represented
either by particle systems [Mon92, MCGO03] or 3D grid sys-
tems [FM96, Sta99, FF01, EMFO02], not to mention the extra
computational cost required by the CFL condition. As ex-
pected, a natural solution to improve simulation performance
is to reduce the computational space. Instead of using com-
pletely uniform grids in 3D, Losasso et al [LGF04], Houston
et al. [HNB*06] and Nielsen and Museth [NMO6] proposed
to use non-uniform grids such as octree structures or cells
with various lengths. Feldman et al. [FOKO05], Klingner et
al. [KFCOO06] and Elcott et al. [ETK*07] considered solv-
ing fluid dynamics on unstructured tetrahedral meshes rather
than grid structures. Treuille et al. [TLP06] used Princi-
pal Component Analysis (PCA) to further reduce a static
computational space. However, it is difficult to extend this
method to free surface water animations.

Since the computational space of a height-field-based sys-
tem increases only quadratically with the spatial resolu-
tion, height fields were introduced to the graphics com-
munity by the work of Kass and Miller [KM90] for rapid
fluid simulations. This technique was later augmented with
semi-Lagrangian velocity advection by Layton and van de
Panne [LvdP02]. Instead of using shallow wave equations,
Chen and da Vitoria Lobo [CdVLHM97] proposed to only
solve pressure projection in 2D while keeping other simu-
lation steps in 3D. Recently, Irving et al. [IGLF06] demon-
strated how to combine a height field representation with a
grid structure in order to simulate some non-height-field be-
haviors such as overturning and splashing.

In order to simulate 2D water flows on curved surfaces,
Stam [Sta03] proposed the use of quadrilateral meshes
from Catmull-Clark subdivision. Flow simulation directly
on manifold triangle meshes was demonstrated by Shi and
Yu [SYO04] and Elcott et al. [ETK*07] using discrete dif-

ferential geometry (DDG) operators. Kim et al. [KLLRO7]
further adopted the BFECC method to reduce numerical dis-
sipation in surface flows. Our method also simulates water
flows on meshes directly, and we allow surfaces with arbi-
trary topology.

Considerable research has been done recently on grid sys-
tems and particle systems to model coupling between wa-
ter and other objects, including rigid bodies, cloth and
thin shells and other fluids. For height-field-based sys-
tems, fluid/rigid body coupling methods were proposed by
O’Brien and Hodgins [OH95] and Chen and da Vitoria
Lobo [CAVLHMY97] to simulate waves caused by moving
objects.

Other topics related to our work include water drop sim-
ulation [FHP98, NHS02], water wave simulation [HNCO2,
MMSO04], fluid surface tension [HKO03, CM04, SSKOS5,
WMTO5], and fluid control [TMPS03, MTPS04, FLO04,
SYO05].

3. General Shallow Wave Equations

Our goal in this section is to extend traditional Shallow Wave
Equations (SWE) [KM90] to our new General Shallow Wave
Equations (GSWE). As their names imply, SWE and GSWE
are both based on the shallow wave assumptions: the wave
velocity is low and the wave height variation is small. The
original shallow water equations can be derived from the
Navier-Stokes equations according to the method of Saint-
Venant [UJ04]. However, the height field in SWE is built in
the absolute gravity direction and the only external force is
the gravity force in the horizontal direction. While a SWE
system can be greatly simplified because of these, it suffers
from the following limitations. Firstly, solid surfaces could
not be too steep otherwise water drops will not be properly
represented, as shown by the upper left picture in Fig. 1. Sec-
ondly, it is not clear how to incorporate arbitrary external
forces, such as surface tension forces and user control forces,
nor how to develop implicit schemes for arbitrary external
forces. Interaction between height-field-based water and the
environment is also difficult to model in a physically-based
manner.

The height field in GSWE is constructed along surface nor-
mals rather than in the absolute gravity direction as Fig. 1
shows. In order to avoid self-intersection of water columns
when the surface is fully detailed with small bumps, we use
averaged surface normals from a low-resolution surface and
represent the difference between the original surface and the
low-resolution surface as a terrain height field b(x) in the lo-
cal background. The water height field is then defined as a
function A(x,7) of the surface position x and time ¢. Horizon-
tal water velocity is #(x,7), and vertical velocity is implicitly
given as dh/dr. Since our system allows arbitrary external
forces, we first separate a 3D force fm into a 1D pressure
component P,y and a 2D acceleration component d,,; as the
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Figure 1: Left: The height field is built along surface nor-
mals rather than in the absolute gravity direction. Right:
External forces are separated into pressure and acceleration
components.

right picture in Fig. 1 shows. Although these two compo-
nents act on the water based on different mechanisms, they
both take effect by changing the water’s horizontal velocity
u. The pressure component, including air pressure, surface
tension pressure and vertical gravity pressure, squeezes wa-
ter and causes horizontal movement due to pressure differ-
ence. On the other hand, the acceleration component, includ-
ing user control force and horizontal gravity acceleration,
acts on the horizontal velocity immediately. By restricting
the 3D Navier-Stokes equations to 2D surfaces, we can for-
mulate the non-viscid General Shallow Wave Equations as
follows:

iy = —(ii- V)i — VPaxt | + Gient 1
h+V-(h—b)i=0 )

in which p is the water density. Eq. 1 updates the horizontal
velocity due to both P,y and d,y;. Eq. 2 updates the height
field and maintains the incompressibility implicitly. Eq. 2
can be reorganized into:

h+h—b)V-ii+i-Vh=0 3)

Since we are targeting at slow water, we ignore the velocity
term (i - V)i in Eq. 1. According to the method of charac-
teristics, we first solve the height field advection due to the
velocity using an explicit solver:

h~+u-Vh=0 4)

The rest of Eq. 1 and 3 are then simplified by differentiating
Eq. 3 with respect to ¢ and Eq. 1 with respect to the spatial
dimensions, and then eliminating cross-derivatives:

9%h  dAPuy

o2 p
When external forces vary slowly through time such as user
control forces, we treat them as if they are temporally invari-

ant so that Eq. 5 can be safely solved by explicit methods
at each time step. However, two common natural forces, the

*dv‘(ﬁexf) (5)
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gravity force and the surface tension force, are quite sensi-
tive to height field changes as time evolves. If we still use
explicit solvers in this case, the system would require sig-
nificantly smaller time steps according to the CFL condition
in order to avoid instability. Therefore, we develop implicit
schemes for both of these forces in Sections 4 and 5 respec-
tively. They are combined and solved together in a single
matrix system:

(Ag+As+I-I)i =b—b, (6)

in which /' is the unknown height field at time t, and the
previous height fields /=1, A=2, ... attime t — 1,1 —2,... are
already known. Matrices Ag and Ay are formulated from im-
plicit schemes for gravity and surface tension respectively.
L. and b, are the coupling matrix and vector, which will be
discussed in Section 6. b is the prospective height field aug-
mented with artificial viscosity effects by a factor 7:

b=n""+(1—7)(H " —n"?) @

After the height field has been solved, we update the velocity

field using Eq. 1 and apply the surface friction by a damping

factor % .

d goes larger, the friction effect becomes more obvious.

When d is zero, there is no friction and when

3.1. Spatial Discretization

Because the height field is built along solid surface normals,
spatial discretization in our system depends on solid surfaces
rather than absolute 3D space. We discretize flat surfaces
into regular grids and then use finite differencing schemes
to formulate the GSWE matrix system.

For curved surfaces, we uniformly discretize them by a par-
ticle repulsion algorithm, instead of relying on parameter-
izing them into quadrilateral grids. We then build a height
column at each particle as Fig. 2 shows. During each repul-
sion step, we search for the six closest particles and these
particles become the neighborhood U; = {X;,,Xj,, ..., Xi, }
of each particle X;. We use six neighbors because this is the
average number of neighbors once such a relaxation system
converges. We find this approach produces similar results to
other methods such as repulsion of all points within a fixed
radius. Next, we sort the neighbors in counter-clockwise or-
der. The repulsion force applied on X; is then calculated as:

F(Xi) =a¥lwi;j(Xj—X;)
J

wij= cot Q; + cot Bi,j

®

The force magnitude factor a is usually between 0.01 and
0.2 in our experiments. w; ; is a non-zero weight factor only
when X; € Uj as in [GSD05], and ¢; ; and Bi,; are two angles
facing toward the same edge (X;,X;) as Fig. 2 shows. The
advantage of calculating repulsion forces using Eq. 8 instead
of polynomials in [Tur91] or Gaussian falloffs in [Hec97]
is to facilitate the surface tension scheme, as will be dis-
cussed later in Section 5. In order to make w; ; symmetric,
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Figure 3: BUNNY: The left picture illustrates spatial discretization and the cell connectivity on the bunny model. Colored cells
are water cells and black cells are boundary cells. The right picture shows a water drop changes its path after the bunny model

was rotated 90°.

Solid Surface Solid Surface
Figure 2: Particles and their height columns are constructed
on a solid surface.

we add X; into Xj’s neighborhood once we know Xj € Uj,
even though X; may not be necessarily in Uj. After the
repulsion process has converged, we construct the particle
connectivity from the nearest neighbors and then we cal-
culate the differential geometry operators directly from the
neighborhood according to [GSDOS]. In this way, we do
not need to reconstruct manifold triangle meshes as required
in [SY04,ETK*07].

3.2. Boundary Conditions

When simulating large bodies of water with no dry areas,
we use either Dirichlet boundary conditions or Neumann
boundary conditions for different wave reflection effects on
the boundary.

When simulating water drops that are sparsely distributed
on surfaces, we do not define the height field in dry regions
in order to save memory and computational cost. But un-
like undefined regions for large bodies of water, these dry
regions are dynamic and need to be updated as long as
the water flows. Naively, we can recognize dry regions as
cells with non-positive heights. However, in order to avoid
grid artifacts, we also define boundary cells with negative
heights immediately next to water cells so that a more ac-
curate boundary can be estimated through interpolation. The
left picture in Fig. 3 illustrates boundary cells in black on
the bunny model. Boundary cells only exchange water with
neighboring water cells when we solve GSWE in defined re-
gions, including both boundary cells and water cells. We ap-

ply the boundary conditions between boundary cells and wa-
ter cells, where the actual boundary is specified: Neumann
conditions prevent water from entering that boundary, while
Dirichlet conditions allow water to move freely.

After the height field has been updated, we remove boundary
cells from defined regions if they are no longer next to water
cells. When a boundary cell becomes a water cell, its neigh-
borhood may contain new boundary cells as well. Boundary
oscillation may be caused by a surface discontinuity if new
boundary cells are not initialized with proper height values.
Similar to the fast marching algorithm [Set99, OF02], our
method initializes new boundary cells with C! continuity,
which is sufficient in most cases.

4. Implicit Gravity Scheme

Since the height field is built along surface normals rather
than in the gravity direction, we separate the gravity into two
components (vertical and horizontal) as in Section 3:

Py(X;) = pgihi
dg(Xi) =& —giN;
in which g; is the vertical gravity acceleration at X;: g; =
—g-N;. We can calculate d, directly after mesh resampling
because each g; at Xj is a temporal invariant. On the other
hand, P, depends on the height field and requires an implicit
scheme for greater stability.

(C)]

Our implicit gravity scheme is extended from [KM90] by
applying a different gravity acceleration g; at each position
X;. Given a 1D height field h = {hy,hy,...,h,} from X; to
Xy, by treating Py as Poy in Eq. 5 and differentiating A/ us-
ing finite differencing in the spatial domain, we obtain the
implicit matrix Ag as the coefficients for /' in the system
Eq. 6:

aii = g [(di+dig1) (8 + giv1) + (di+di1)(gi+ gim1)]
i1 = g1 = — ga (di + di1)(8i+ giv1)

(10)
Similarly, the matrix for curved surfaces by the differential

geometry scheme is:
aii = gy Lwij(di+d;)(8i+8)) an
J
aij=aj; = —gywi;(di+d;)(gi+g;)

(© Association for Computing Machinery, Inc. 2007.
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The particle surface area A is assumed to be uniform for all
particles, after the solid surface has been uniformly sampled
by the particle repulsion algorithm.

5. Implicit Surface Tension Scheme

According to Laplace’s law, surface tension pressure Py, is
related to surface mean curvature K, which can be estimated
using the Laplace-Beltrami operator in [GSDO0S5]:

Psurf(Hi) =7-K;
Ki= 3 ‘zwi,j<Hj—Hi)‘ (12)
J
Hi = Xi +h,‘Ni

in which 7 is the surface tension coefficient, and H;j is the
water surface extended along surface normal Nj at X; as in
Fig. 2. We assume that N; is locally constant after the solid
surface has been densely sampled. We also assume that the
weight factor W; ; on water surfaces is close to the weight
factor w; ; on solid surfaces under the shallow wave assump-
tions. Since the repulsion force in Eq. 8 diminishes to zero
after sampling, Eq. 12 is simplified to:

K= 5 ( %Wi.j(Xj*Xi)+§.wi.j(thj*hiNi) 03

J J

The Laplace-Beltrami operator on a curved surface is a gen-
eralized version of the Laplacian on a flat surface. This oper-
ator is naturally normalized since the sum of all coefficients
for a particular node X; is zero from Eq.13.

One way to formulate an implicit scheme for surface tension
from Eq. 12 and 13 is to treat all &; and & as unknowns com-
pletely at the next time step. Let us just consider the flat sur-
face as an example. The Laplacian of the height field gives
surface tension pressure, which needs to be processed by the
Laplacian again according to Eq. 5. By central differencing,
the matrix Ag for flat surfaces will have cell kernels that take
the form:

1
2 -8 2
1 -8 20 -8 1 (14)
2 -8 2
1

as coefficients. We omit the more complicated matrix for-
mula for curved surfaces here. Although this complete im-
plicit scheme is numerically stable, its matrix is not straight-
forward, symmetric or sparse like that of the gravity scheme,
because the kernel spans more than the 1-ring neighborhood.
Fortunately we notice from Eq. 14 that cells beyond the 1-
ring neighborhood have much less influence than those in the
1-ring neighborhood. Therefore, we propose another incom-
plete implicit scheme by only treating height columns within
the I-ring neighborhood as unknowns after applying Py, in

(© Association for Computing Machinery, Inc. 2007.

Eq. 12 into the system Eq. 5. This gives us a symmetric and

sparse matrix Ag as:
ajj= 4i,%%w%j(di+dj) s
ajj=— —4;;‘2 W%f (d,' -+ dj)

Height columns beyond the 1-ring neighborhood will be
considered as knowns by taking values from the current time
step. They formulate a vector by, which is added to vector b:

by (i) = 78’]/42 B! +2zw3j(di+dj)(h;*1 hgl)}
J
B =Y wij(di+d;) (K =K
J
K~ =Xwi (7 =0
J

(16)
We implemented and tested both implicit schemes, and we
did not notice any significant benefits from using the com-
plete scheme. Since the incomplete scheme is more efficient,
we choose the incomplete surface tension scheme for all of
the following experiments if we do not explicitly say other-
wise.

5.1. Drops: Surface Tension and Contact Angles

There are two important factors that contribute to the shape
and motion of water drops: surface tension forces at the
air/water interface, and the effect of the hydrophilicity of the
surface on which drops are forming. To account for surface
tension forces at the air/water interface, we apply surface
tension pressures to both the water cells and the boundary
cells as discussed in Section 3.2. To account for hydrophilic-
ity, we use the virtual surface method proposed in [WMTO05]
to produce water drops with various contact conditions. Such
contact conditions allow us to simulate hydrophobic sur-
faces on which drops will bead up, and hydrophilic surfaces
on which drops are flattened. Although the actual boundary
(also called the contact front) is between boundary cells and
water cells, our experiments showed that it is safe to sim-
ply assume boundary cells as exact contact fronts and apply
boundary surface tension pressures only to them. The 1D
case is shown in Fig. 4a. Since surface tension is estimated
as weighted difference as in Eq.13, the virtual surface is in-
terpreted as height difference between boundary cell 4, and
virtual surface cell h,:

Ahy, = hy, — h, = Axtan 6, 17

in which 6, is the contact angle. For the 2D regular grid, we
incorporate an angular factor & to count for the fact that the
boundary normal is not aligned with the grid axis:

Ah, = otAxtan 6,
o= Npx + Ny, wi+wr+w,+wy =1
L Wi+ wr)Npy + (Wy +wg)Npy,  otherwise
(18)
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Figure 4: lllustrations of the virtual surface method. Part (a)
gives the virtual surface in the 1D case. Part (b) shows the
contact line normal Ny, and two assumed principal compo-
nents K, and K. Part (c) shows water drop shapes without
(top) and with (bottom) the angular factor o.

in which w;, w,, w, and wy are 1 if left, right, up or down
neighbor cells are in defined regions, otherwise 0. Ny, and
Ny, are the boundary’s surface normal coordinates as shown
in Fig. 4b. Fig. 4c shows that a water drop can correctly
bead up into a circle by using the angular factor, otherwise
it might become a diamond shape. On curved surfaces, since
the connectivity between height columns could be arbitrary,
instead of finding a proper angular factor, we sum the bound-
ary mean curvature from two assumed principal components
K, and K as Fig. 4b shows. The depth component k;, in the
normal plane modulates how steep the surface is, which can
be estimated similarly to the 1D case. The angular compo-
nent K in the horizontal plane measures the contact line cur-
vature as:

Pi, hi —hy >0and hjy; —hy >0
=cY { YR p— > 0and by —hy <O
i %, hifhb<0andhi+lfhh>0
19
in which o is a scalar factor to modulate x;’s magnitude, and
¢; is the angle between two neighboring edges as in Fig.2.
We maintain a wetness map from water paths and choose the
contact angle based on the surface wetness.

6. Two-Way Fluid/Rigid Body Coupling

In order to make our system complete for wave effects,
we also incorporate a simple two-way fluid/rigid body cou-
pling algorithm based on the method proposed by O’Brien
and Hodgins [OH95]. This algorithm is separated into three
steps. In Step 1, we recognize those height columns in which
solid objects contact with water. For planar cases, this can be
accelerated by using the depth buffer in graphics hardware.
In Step 2, we solve the dynamics system (Eq. 5) as before
except for those constrained columns recognized in Step 1.
They are supplied with the coupling matrix I, and vector b,
asin [OHO95]:

Le(i,i) =1

beli) = s, 20)

Al
3

Figure 5: BOATS: Floating boats interact with water waves.

to count for the impact effects of the rigid object. Finally,
in Step 3, the state of the rigid object is updated according
to standard rigid body dynamics. The water pressure to the
rigid object is calculated when calculating the rigid object
impact during Step 2.

This coupling approach assumes the rigid object to be small
and floating on the water, so it cannot handle completely im-
mersed objects so far. We also assume that the contact region
between the rigid object and water is nearly convex due to
the height field representation limit.

7. Interactive Fluid Control

Since our system has little restriction on external forces, we
can interactively control fluid shapes by specifying various
external control forces. We provide two techniques to imple-
ment such external control forces fzxt.

The first method uses external pressures calculated from dis-
tance maps to a target fluid shape. For example, the pres-
sure field in the SCA example (Fig. 10) uses the Euclidean
distance. To put it another way, if we express the control
pressure field as a terrain height field, control shapes are ter-
rain valleys and the water flows from peaks to valleys as ex-
pected. Because distance maps are C! continuous in most
places, those control forces are smooth and continuous in
most places as well. As expected, this method is compar-
atively stable and robust. It is faster when the target shape
is static, since reconstructing the distance map (by a fast
marching algorithm in our practice) can be expensive.

Instead of constructing a pressure field, the second method
modifies the fluid velocity directly by external accelerations.
We create these accelerations from cursor motions, similar to
some digital painting tools. We also clamp the magnitude of
these synthetic accelerations in order to prevent instability
caused by arbitrary user inputs. Fig. 6 is a screenshot cap-
tured from our interactive shape design system. This method
is straightforward and efficient.

(© Association for Computing Machinery, Inc. 2007.
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Name Type Resolution  Gravity  Surface Tension  Viscosity Simulation Speed
g (m/s%) Y (N/m) T (frames per sec)
BUNNY Curved Surface 160,000 9.8 0.073 0.5 CPU: 11.0
GLASS Curved Surface 160,000 9.8 0.073 0.5 CPU: 4.1
POOL Regular Grid 400 x 400 9.8 0.073 0.3 CPU: 4.3
WINDOW Regular Grid 400 x 400 9.8 0.073 0.3 GPU: 9.2, CPU: 11.0
SPHERES Coupling 400 x 400 9.8 0 0 GPU: 1.2, CPU: 0.4
DRIFT Coupling 1,200 x 250 9.8 0 0 GPU: 2.0, CPU: 0.8
BOATS Coupling 400 x 400 9.8 0 0 GPU: 3.3,CPU: 1.3
INTERACTIVE  Accel. Control 400 x 400 0 0.073 0.3 CPU: 20
SCA Pressure Control 400 x 400 9.8 0.073 0.3 GPU: 4.2, CPU: 3.0

Table 1: Simulation statistics. When available, we list simulation speeds for both CPU and GPU solvers (rightmost column).
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Figure 6: INTERACTIVE: Fluid control by external accel-
erations due to the motion of a user’s cursor.

8. Matrix Solver and Data Structures

We take advantage of the surface mesh connectivity to store
the sparse GSWE matrices. Diagonal elements are stored at
vertices, and off-diagonal elements are stored at mesh edges
between each vertex and its 1-ring neighbors. We use di-
rectional edges when the matrix is not symmetric. We also
create hyper edges that form connections between vertices
and their 2-ring neighborhoods in order to store the matrix
required by the complete surface tension scheme.

To solve the symmetric positive definite matrix system de-
fined by the implicit gravity scheme and the incomplete
surface tension scheme, we use the preconditioned conju-
gate gradient method with either a Jacobi preconditioner
or a modified incomplete Cholesky decomposition pre-
conditioner. We also implemented the preconditioned Bi-
Conjugate Gradient Stabilized method (Bi-CGSTAB) with
modified incomplete LU decomposition to test the complete
surface tension scheme.

The 2D regular grid matrix solver is implemented on both
CPUs and GPUs (with a Jacobi preconditioner), in order to

(© Association for Computing Machinery, Inc. 2007.

improve the performance as Table 1 shows. Details about
GPU implementation can be found in [BFGS03]. The exten-
sion to a GPU matrix solver for curved surfaces should be
straightforward, but remains as future work.

9. Results and Discussion

(Please check the accompanying video for more results.)
Our system was implemented using all the techniques de-
scribed in the previous sections. We tested a variety of ap-
plications using this system on a Dell”™ XPS 700 PC with
Intel Core2Extreme 2.92Ghz CPU and Dual Geforce 7950
graphics card. Test statistics are listed in Table 1. We use
real-world units and parameters, including the water den-
sity p, which is 1.0 x 103kg/m> at 3.98°C. The frame rate
for each example is measured in the worst case with maxi-
mum simulation burden. Table 1 shows that the GPU matrix
solver runs faster on large bodies of water, such as the cou-
pling examples. On the other hand, the CPU solver can better
take advantage of sparse water, like the examples with water
drops.

Compared with particle systems or grid systems that usu-
ally require several minutes to generate a single frame under
similar resolution, most of our applications run at interactive
rates and some of them run in real time. Compared with pre-
vious height field systems, the general system has a slightly
higher computational cost for several reasons. Firstly, the
overhead to handle a general system is small but not negligi-
ble. Secondly, more iterations are needed to solve the matrix
system with a surface tension matrix Ag, especially when the
surface tension coefficient y is large. The two-way coupling
algorithm introduces more iterations too, since constrained
cells cause the whole matrix to be less diagonally dominant.
This is clearly shown in Table 1 from the SPHERES exam-
ple and the DRIFT example. Although SPHERES uses lower
resolution, the DRIFT example runs twice as fast since it in-
volves less constrained cells than SPHERES.

Interestingly, when gravity is in the same direction as the
surface normal, the gravity pressure component g; in Eq. 9
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becomes negative, which causes a less diagonally dominant
matrix. Eventually with sufficiently strong gravity, the ma-
trix is failed to be positive definite and its solution becomes
unpredictable. Since the influence of Ag on the matrix sys-
tem depends on the water depth, ideally we can remove re-
dundant water from the height field in order to keep the sys-
tem solvable. This scenario corresponds to water drops drip-
ping from the bottom of a solid surface, after the amount of
accumulated water goes above some threshold.

The WAVE example shown in Fig. 10 illustrates water waves
due to a raised column of water. Our result matches with dis-
persion relations in that waves under both gravity and sur-
face tension will disperse faster than waver under gravity
only. It should be noted that shallow wave assumption im-
plies that the wave length should be much larger than the
water depth, which means the system theoretically cannot
exactly represent Kelvin waves in deep ocean or capillary
waves with wave lengths < 1.7c¢m. Fortunately, we noticed
from our examples that when the water depth is close to the
wave length, shallow waves still provides a reasonable and
fast approximation to gravity-capillary waves for graphics
applications, like ripples on a small pool.

One limitation of our GSWE approach is that water columns
may intersect if the surface is concave. We eliminate high -
frequency curved regions by using averaged normals and the
background height field b(x), but this cannot entirely remove
all concavities. We have not come across problems from con-
cavities in our examples, but this issue will arise for some
geometric configurations.

We provided GPU rendering with single reflection and re-
fraction during online simulation for all of our applications.
Some examples were supported by offline GPU rendering
with multi-sampling to remove aliasing artifacts. We also
used an offline photorealistic ray tracer to produce high-
quality videos for some examples.

10. Conclusion and Future Work

We have presented a new physically based framework to ef-
ficiently simulate small-scale 3D water flows on solid sur-
faces under shallow wave assumptions. This framework is
governed by the General Shallow Wave Equations (GSWE)
and it is based on a height field representation. We have
developed several techniques within this framework includ-
ing an implicit gravity scheme, an implicit surface tension
scheme and two-way fluid/rigid body coupling. Our experi-
ments show that our system is fast, stable, straightforward to
implement on both CPUs and GPUs. The approach is flexi-
ble enough to produce multiple effects such as water waves,
rivulets, water drop effects, fluid/rigid body coupling and in-
teractive control and shape modeling.

Looking into the future, our short-term plan includes devel-
oping a GPU matrix solver for curved surfaces and incorpo-
rating our algorithm into an interactive media painting sys-

tem. In the long term, we would like to study how to combine
height field techniques with particle systems and grid sys-
tems so that non-height-field effects can be efficiently pro-
duced as well. Motion reduction of the height field provides
another possibility to explore in the future.
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Figure 8: SPHERES: Spheres cause waves and splashes in the height field. They have different volumes but identical mass.

T L EH TR

Figure 9: Several effects generated by our system. Examples are: WAVE, POOL, SCA and DRIFT, which demonstrate wave
dispersion, water drops on a glass, user-controlled fluid shapes, and fluid/rigid body interaction.
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