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Figure 1: A synthetic rendering of a 3D model reconstructed from video of a fountain. These are three static views of the same time instant.

Abstract

We present an image-based reconstruction framework to model real
water scenes captured by stereoscopic video. In contrast to many
image-based modeling techniques that rely on user interaction to
obtain high-quality 3D models, we instead apply automatically cal-
culated physically-based constraints to refine the initial model. The
combination of image-based reconstruction with physically-based
simulation allows us to model complex and dynamic objects such
as fluid. Using a depth map sequence as initial conditions, we use
a physically based approach that automatically fills in missing re-
gions, removes outliers, and refines the geometric shape so that the
final 3D model is consistent to both the input video data and the
laws of physics. Physically-guided modeling also makes interpola-
tion or extrapolation in the space-time domain possible, and even
allows the fusion of depth maps that were taken at different times
or viewpoints. We demonstrated the effectiveness of our framework
with a number of real scenes, all captured using only a single pair
of cameras.

CR Categories: I.3.5 [COMPUTER GRAPHICS]: Computa-
tional Geometry and Object Modeling—Physically based model-
ing; I.3.8 [COMPUTER GRAPHICS]: Three- Dimensional Graph-
ics and Realism—Animation

Keywords: image-based reconstruction, space-time model com-
pletion, physically-based fluid simulation

1 Introduction
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In recent years, modeling complex real world objects and scenes
using cameras has been an active research topic in both graphics
and vision. Exemplary work in this broad topic includes recon-
structing flower models [Quan et al. 2006], tree models [Tan et al.
2007], hairs [Wei et al. 2005], urban buildings [Sinha et al. 2008;
Xiao et al. 2008], human motion [Zitnick et al. 2004a; de Aguiar
et al. 2008], and cloth [White et al. 2007; Bradley et al. 2008]. The
typical approach is to use one or more cameras to capture differ-
ent views, from which the 3D shape information of the scene can
be estimated by matching feature points. User interaction is often
required to refine the initial 3D shape to create high-quality mod-
els. Missing from the list of objects that have been successfully re-
constructed from video is water. Water’s complex shape, frequent
occlusions, and generally non-Lambertian appearance cause even
the best matching methods to yield poor depth maps. Its dynamic
nature and complex topological changes over time make human re-
finement too tedious for most applications.

In computer graphics, a common technique to produce water ani-
mation is physically-based fluid simulation, which is based on sim-
ulating fluid dynamics from the initial state of a fluid scene. While
realistic water animation can be generated by various numerical
simulation approaches, these approaches can suffer from numer-
ical errors that accumulate over time, including volume loss and
loss of surface details. The computational cost is another issue in
physically based fluid simulation, since the governing partial differ-
ential equations are expensive to solve and the time steps need to
be sufficiently small to maintain stability and accuracy.

In this paper we present the idea of combining physically-based
simulation with image-based reconstruction to model dynamic wa-
ter from video. That is, we adapt physically-based methods as a
correction tool to refine the water surface that is initially gener-
ated from matching feature points. In order to enforce temporal
coherence, we develop a 3D flow estimation method to approxi-
mate the velocity flow between two reconstructed shapes in neigh-
boring frames. The surface optimization method then removes re-
dundant errors, applies physically based constraints such as volume
preservation and smoothness, and completes the shape sequence by
filling in missing fluid regions. In this way, the final dynamic wa-
ter model matches the fidelity of the real world and the results are
physically sound, even though fluid dynamics may not be strictly
enforced in certain cases. Since fluid dynamics is only used as a



constraint rather than the target function to derive the entire surface
sequence, this process is efficient and should be easy to accelerate
using graphics hardware.

Incorporating the physical properties of fluid provides strong con-
straints on the possible water surface shape. This means the quality
and coverage requirement for the initial 3D shape is significantly re-
duced. This allows us to generate plausible 3D water surface mod-
els even when observed by just one stereo camera, that is, when
more than 50% of the surface is occluded. A single-depth-view so-
lution is much easier to set up and use than the typical requirement
of a surrounding array of cameras.

To help with spatial feature matching, we add white paint to the wa-
ter to avoid refraction, and we use a light projector to place a fixed
random texture pattern onto the moving fluid surfaces. The equip-
ment used for our capturing system is shown in Figure 3. Note that
our surface optimization scheme is not tied to any particular depth
acquisition method, nor does it require appearance-based feature
tracking over time, and this makes the use of active range sensing
methods possible. Our choice of using a stereo camera in this sys-
tem is due to two considerations. First, since this technique can be
potentially used with any capturing device, it is interesting to test its
performance in a tough case when less surface information is pro-
vided. Second, one part of our ultimate goal of this line of research
is to reconstruct large, outdoor fluid phenomena, in which case a
hand-held stereo camera is much more practical than a surrounding
multi-camera system.

We view this new approach for creating fluid models as an alter-
native to creating fluid animation through direct simulation. As
with other camera-based data capture methods, our approach has
the benefit of capturing the nuances and details of fluids that may
be difficult to achieve using simulation alone. With an explicit
3D model, the captured water can be re-rendered seamlessly with
other graphics models. Though not demonstrated in this paper, our
framework should allow artists to design and modify a coarse initial
shape in order to create stylized animations. Therefore we believe
that our method may have applications in feature-film special ef-
fects and in video game content creation.

2 Related Work

In graphics, Hawkins et al. [2005] demonstrated how to reconstruct
smoke animation using a specialized capture system that included
a laser and a high-speed camera. Morris and Kutulaskos [2007]
and Hullin et al. [2008] successfully reconstructed static transpar-
ent objects such as a vase or a glass by tracing light transport under
structured scanning. A time-varying height-field surface can also
be reconstructed by searching refractive disparity as proposed by
Morris and Kutulakos [2005] when the light is refracted only once.
Water thickness can be measured when water is dyed with fluores-
cent chemical as shown by Ihrke et al. [2005], in which case the liq-
uid surface is calculated as a minimum solution of a photo consis-
tency based error measure using the Euler-Lagrangian formulation.
Atcheson et al. [2008] used Schlieren tomography to capture fluids
with time-varying refraction index values, such as heated smoke. In
general, these techniques require specific capture devices for cer-
tain fluid effects and they consider the fluid shape in each frame
independently as a static reconstruction problem.

Bhat et al. [2004] studied how to synthesize new fluid videos by
tracing textured 2D particles over existing video sequences accord-
ing to temporal continuity. This is an image editing approach,
and no 3D model is created. Given surrounding reliable scanned
data without redundant errors, Sharf et al. [2008] successfully used
incompressible flow to complete shape animations with spatial-
temporal coherence, assuming that the surface moves less than one

grid cell in each time step. Although fluid animation also satisfies
incompressibility with spatial-temporal coherence, the problem we
address in this paper is more challenging since the input is captured
from a single stereo camera, so our initial water surface contains
outliers and substantially more missing parts than from a surround-
ing setup. Furthermore the water surface can move significantly
more than one grid cell due to the capture rate and grid resolution.

Foster and Metaxas [1996] studied how to generate fluid animation
as an application of computational fluid dynamics. Shortly after
this, the stable fluid method introduced by Stam [1999] used the
semi-Lagrangian method to handle fluid velocity advection. In a
series of papers, Enright, Fedkiw and Foster [2001; 2002] used the
level set method and particles to evolve liquid surfaces for more
complex liquid motions. Besides volumetric representation, water
animation can also be simulated using particle systems or tetrahe-
dral meshes. When using fluid dynamics, numerical errors includ-
ing volume loss and detail loss can be a problem in physically based
fluid simulation. Another problem in this area is how to reach styl-
ized fluid shapes at specified time instants. McNamara et al. [2004]
and Fattal and Lischinski [2004] studied how to constrain fluid sim-
ulation by creating artificial control forces. In our problem, we con-
sider instead how to improve reconstructed models by physically-
based constraints.

Researchers in other domains have used various techniques to cap-
ture the behavior of fluids. The fluid imaging community regularly
makes use of the Particle Imaging Velocimetry (PIV) method to
capture flow fields from the real world by tracking macroscopic par-
ticles mixed in the fluid. This method creates fluid velocity values
in the interior of bodies of water, but the approach cannot be used
to reconstruct the geometry of the water’s surface due to the diffi-
culty in maintaining the distribution of those particles in the fluid.
More details of the PIV method can be found in [Grant 1997].

To obtain a complete space+time model from dynamic scenes, a
camera array system is usually deployed to capture objects from
different views (e.g., [Kanade et al. 1999; Simon et al. 2000; Zit-
nick et al. 2004b]). Recently using a sparse camera array becomes
an active research topic (e.g., [Wand et al. 2007; Mitra et al. 2007;
Sharf et al. 2008]. We push this trend to the limit by using only
one pair of cameras with a narrow baseline. We show that by in-
corporating physically-based constraints, the amount of input data
needed for complete 4D modeling can be dramatically reduced.

3 Overview

Given a video sequence captured by a synchronized, calibrated
stereo camera system, the goal of our hybrid water modeling tech-
nique is to efficiently reconstruct realistic 3D fluid animations with
physical soundness. Our framework consists of two stages as shown
in Figure 2. Let {It} and {Jt} be video sequences captured by
stereo camera at time t ∈ [0, T ]. In the first stage, an initial shape
sequence Ψ = {ψi} is assembled by reconstructing each frame in-
dependently using depth from stereo. Ψ is then optimized in the
second stage to generate a shape sequence Φ = {φi} that satisfies
spatial-temporal coherence.

Spatial coherence means that Φ should be similar to the captured
data input Ψ. Temporal coherence means that Φ should satisfy the
behavior of fluids as much as possible. Mathematically, this is inter-
preted as the minimum solution to the following energy functional:

E(Φ) =

T∑
t=0

(Ed(φt, ψt) + Es(φt)) +

T−1∑
t=0

En(φt, φt+1) (1)

Here Ed(φt, ψt) calculates the similarity between φt and ψt, and
En(φt, φt+1) measures how closely Φ satisfies the physically-
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Figure 2: The entire fluid modeling system pipeline.
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Figure 3: The capturing setup.

based constraints in local. Besides spatial-temporal coherence, a
smoothness term Es is also introduced to provide surface smooth-
ness, which is a common observation in real fluid scenes due to sur-
face tension. In our method, each energy in Equation 1 is treated as
an independent sub-problem and solved separately multiple times
to obtain a final water animation that reaches a minimum of the sum
of all energies (as illustrated in Figure 2). Our experiment indicates
that five iterations are sufficient for most optimization cases.

We choose implicit signed distance functions to represent the 3D
fluid geometry for two reasons. First, signed distance functions
are neutral to frequent topological changes that occur in the evolu-
tion of fluids. Second, the 3D flow estimation method can easily
take advantage of this representation for comparing similarity be-
tween iso-surfaces, as discussed in Section 6.1. Our signed distance
functions are discretely defined on a regular grid for data structure
simplicity.

4 Surface Initialization

We use a single pair of calibrated cameras for scene acquisition.
This consists of two synchronized high-speed greyscale Dragon-
fly Express cameras. The water is contained in a small round tub,
and the water is dyed with white paint, making it opaque to allow
light patterns to be projected onto its surface. A LCD projector is
positioned just behind the cameras, and it projects a fixed random
pattern to provide artificial spatial features on water. The projector
position is chosen to minimize shadows, since this would cause spa-
tial features to be lost. We typically capture the scene at a resolution
of 640×480 at 200fps.The equipment setup is shown in Figure 3.

4.1 Depth Extraction

Captured stereo sequences {It} and {Jt} are first rectified accord-
ing to epipolar geometry so that any 3D point will be projected onto
the same horizontal line in both It and Jt. The depth of pixel p on
It is determined from its feature correspondence p′ on Jt. Since

Figure 4: The first two images in the top row are captured images
from stereo camera after rectification. A random texture pattern is
projected on the water surface. The top right image is the noisy
depth result without belief propagation. The bottom row from left
to right shows troubled regions (gray) recognized by the two-pass
algorithm, the depth result before and after the two-pass algorithm.

It and Jt are rectified, p′ must be on the same horizonal line as p.
The problem of stereo matching is to find the disparity, which is
defined as the difference of horizontal coordinates between p and
p′. Stereo is a well studied problem in computer vision. We choose
the method in [Sun et al. 2003] which is based on belief propaga-
tion. In addition, we use a sub-pixel interpolation scheme proposed
in [Yang et al. 2007] to smooth the depth map and avoid aliasing
artifacts that are caused by disparity vector discretization.

Regions that are in shadow or occluded from one of the cameras
will produce depth errors due to missing correspondences. Those
regions are near depth boundaries and they usually belong to the
further (occluded) surfaces. Our solution is a two-pass algorithm.
In the first pass, a left/right check in [Egnal and Wildes 2002] is
carried out over depth maps from both cameras to identify regions
with inconsistent disparity values. Then in the second pass, the be-
lief propagation algorithm estimates the depth map as usual without
the pixels in troubled regions. After that, their depth values are as-
signed from already calculated regions through Laplacian smooth-
ing. Figure 4 shows the depth result of a fountain example.

4.2 Surface Initialization

The depth map created in Section 4.1 only covers part of the real
fluid surface, in fact, less than 50%. Since the optimization method
in Section 6 requires a roughly complete surface as input, we use a
heuristic method for creating an initial guess of the surface. All sur-



faces starting from this point on are represented as signed distance
functions on a regular volumetric grid.

Using Γt, the partial surface defined according to the depth map
at time t, an initial surface ψt can be created by the union of all
spheres centered at Γt with radius r:

ψt(~x) = min
y∈Γt

(‖~x− ~y‖ − r) (2)

This method is effective when the water behaves like a thin shell
or film, as our pouring example in Figure 12. It is not sufficient
when large water regions are missing due to occlusion, therefore,
simple heuristics are used in our experiments to approximate the
missing region. For instance, the splash example of Figure 14 is
nearly symmetric to a vertical plane z = z0. We first fill in the
water volume beneath the visible surface as a height field. Let ~y be
the lowest point in Γt on the same vertical line as a grid cell ~x:

~y = arg min ~yy (~y ∈ Γt, (~y − ~x) ‖ Y axis ) (3)

For any ~x whose ~y exists, its signed distance value is simply:

ψt(~x) = ~yy − ~xy (4)

If ~x doesn’t have ~y but its symmetric counterpart ~x′ = ~x+ (2z0 −
~xy)(0, 1, 0)T to the plane has a ~y′ defined, the signed distance can
then be copied from its counterpart as: ψt(~x) = ψt(~x

′). Finally,
the value for the rest undefined grid cells are blended from its four
horizontal neighbors to complete the surface ψt. An example is
shown in Figure 5.

Space-Time Merging When a water scene exhibits temporal
repetitiveness rather than spatial repetitiveness, similar ideas can
be applied to reconstruct the initial shape ψt using video sequences
captured at different time from different viewpoint. For example, a
single pair of cameras is unable to simultaneously capture both the
downstream (front) and the upstream (back) in our fountain case
in Figure 6 due to occlusions. Our solution is to capture each of
these streams in turn, e.g., first capture the upstream view, than
move the camera around to capture the downstream view. While
each surface immediately generated from video cannot cover the
whole fluid surface, they can be stitched together assuming that the
temporal repetition gives a similar dynamic appearance over time.
First the relative camera pose of each view can be found using static
points (fiducials) in the scene. From the pose information, differ-
ent sequences can be aligned. Note that this alignment does not
require high-accuracy, even slightly moving points can be used as
fiducials. If original sequences are sufficiently long, we choose two
optimal sub-sequences from the original input such that the over-
all difference between them are minimized after spatial alignment.
The shape difference is measured as the sum-of-squared difference
between two signed distance functions. Although the resulting sur-
face ψt may not correspond exactly to a real water scene, our exper-
iment shows that this approach produces visually plausible results.

5 Surface Smoothing and Spatial Coherence

Real fluid surfaces are smooth in space due to the effect of surface
tension, especially for water at small scales. To provide similar
results in our method, we use a surface smoothing scheme each
time the surface sequence is updated.

Mean curvature flow can provide a surface smoothing effect, and
this can be achieved using the following level set formulation:

φs = κ · |∇φ| (5)

z

z=z0

Figure 5: The initialization result for the splash example. From
left to right and top to bottom are the partial surface Γt from the
depth map, surface after initialization, surface after initialization
and smoothing, and the final reconstructed surface respectively.

Figure 6: While each surface reconstructed solely in the front view
(left) or back view (middle) cannot cover the whole surface, a rea-
sonable initial surface can be generated by assembling two views
together, even if they are captured at different time.

in which s → ∞, standing for a steady solution. κ is the surface
mean curvature.The mean curvature flow tries to minimize the sur-
face area by making mean curvature uniform over the whole sur-
face, so that the tendency is for the surface to evolve towards a
spherical shape. Using such a level-set mean curvature evolution is
straightforward to implement, but it performs excessive smoothing
and does not take into account fidelity to the original geometry (our
spatial constraints). In fact, although the surface tension effect is
similar to the mean curvature flow over time, temporal surface ten-
sion distribution on a time-varying surface is not the steady state of
the mean curvature flow. Instead, we choose the smoothing scheme
proposed by Schneider and Kobbelt [2001] under the following tar-
get PDE:

∆Bκ(~x) = 0 (6)

∆B is the Laplacian-Beltrami operator. Assuming that κ along the
surface normal over iso-surfaces is locally linear, ∆B can be ap-
proximated by a Laplacian operator in 3D, and the solution is an
evolution equation in fourth order:

φs = ∆κ · |∇φ| (7)

Intuitively, this will produce a fluid surface with C2 continuous
mean curvature, leading to aC2 surface tension field on the surface.
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Figure 7: The velocity field estimation scheme for physically based
fluid simulation (top) and the 3D flow estimation method (bottom).

This fourth-order equation is better at preserving spatial constraints,
and it also preserves volumes according to the divergence theorem.
Equation 7 is solved over time iteratively using a first-order forward
Euler method. Instead of calculating ∆κ directly using a four-order
scheme, we first calculate κ for each grid cell close to the surface
boundary, then calculate ∆κ, both by central differencing:

∆κ = ∇ · ∇κ = κxx + κyy + κzz (8)

In practice, we combine the surface smoothing step together with a
fidelity term (penalizing differences from the input geometry):

φs = α(ψ − φ) + ∆κ · |∇φ| (9)

α is a coefficient balance between fidelity and smoothing strength,
ranging from 0 to 0.1. For the data sets we have processed, only 5
to 10 iteration steps are needed to produce good smoothing results.

6 Surface Optimization

In this section we discuss our approach for enforcing temporal co-
herence, which corresponds to En in Equation 1. We first introduce
a 3D temporal flow estimation method in Section 6.1. We then
discuss our optimization method that generates surface sequences
by interpolating shapes in neighboring frames. This optimization
method cannot be applied on input sequence Ψ directly due to lo-
cal minimum caused by two types of errors: false-positives, when
certain surface components fail to find their temporal partners in
adjacent frames since the component does not exist in the real
fluid scene; and false-negatives, when real fluid regions are missed,
preventing other frames from finding temporal correspondences.
Therefore, two extra steps will be used to address those issues in
Section 6.2 and 6.4, respectively.

6.1 3D Temporal Flow Estimation

Given a fluid surface φt at time t and a velocity field ~vt−1,t from the
previous time-step, physically based fluid simulation first finds the
new velocity flow ~vt,t+1 by solving the fluid dynamics equations,
then generates φt+1 by tracing φt along ~vt,t+1. Different from
fluid simulation, both φt and φt+1 are assumed to be given as input
to our problem, and the goal in this section instead is to find the
corresponding velocity field ~vt,t+1 that is most likely to cause the
evolution between the two surfaces.

The dynamic behavior of water can be described by incompressible
viscous fluid dynamics according to the Navier-Stokes equations.
Most fluid simulation methods in graphics use operator splitting
to calculate the separate terms of the Navier-Stokes equations. In
such cases, the fluid solver first applies external forces on vt−1,t,
then advects the velocity flow by itself, damps the velocity flow us-
ing viscosity diffusion, and finally projects it back to a divergence-
free space to maintain incompressibility. Figure 7 top shows these
steps. The resulting velocity flow ~vt,t+1 not only evolves from
φt to φt+1, but also satisfies the following properties: 1) tempo-
ral continuity due to velocity advection, 2) spatial continuity due to
viscosity diffusion, and 3) incompressibility due to pressure projec-
tion. Similarly, our flow estimation method will also consider these
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Figure 8: Three different correspondence methods. For each point
~x in water (φt(~x) < 0), the left scheme matches ~x with any point
~x′ in water φt+1(~x

′). The middle scheme matches ~x with ~x′ so that
their signed distance values are the same φt(~x) = φt+1(~x

′). The
right scheme looks for ~x′ so that their neighborhoods are similar.

properties, as shown in Figure 7 bottom. Our method first enforces
the shape evolution constraint by finding 3D correspondences be-
tween φt and φt+1. This initial step also implicitly includes ex-
ternal forces and temporal continuity constraints. We then smooth
~vt,t+1 in the spatial domain and finally enforces incompressibil-
ity, similar to the viscosity diffusion and pressure projection steps
in fluid simulation. This flow estimation problem is related to the
classic optical flow problem in computer vision, in which both 2D
correspondence constraints and smoothness constraints are satis-
fied. Our problem is different, however, in that it is defined in
space+time and more constraints in addition to spatial smoothness
need to be satisfied.

Correspondence Search A conservative approach to the shape
evolution constraint is to find ~vt,t+1(~x) for each water grid cell
~x (φt(~x) < 0) such that φt+1(~x + ∆t · ~vt,t+1(~x)) < 0. Intu-
itively, this means each water cell at time t should be mapped to a
water cell at time t + 1. Unfortunately, there are many ambigui-
ties if this method is used, as illustrated in Figure 8 left. Instead,
we can search for correspondence with the same signed distance
value φt+1(~x + ∆t · ~vt,t+1(~x)) = φt(~x), and this successfully
limits the ambiguities to being only on iso-surfaces, as shown in
Figure 8 middle. To further reduce ambiguities, our method uses a
local 3 × 3 × 3 grid neighborhood N~x centered at ~x to represent
the shape feature. We ask that the estimated velocity takes ~x and its
neighbors to closely matched signed distance values:

~vt,t+1(~x) = arg min
∑

~y∈N~x

w(~y) (φt+1(~y
′)− φt(~y))

2

~y ′ = ~y + ~vt,t+1(~x)∆t
(10)

w(~y) is a weight function for the neighborhood, typically a Gaus-
sian falloff. Finally, the opposite direction from φt to φt−1 is also
included to reflect external forces and velocity advection between
velocity flows at different time:

~vt,t+1(~x) = arg minD(~x,~v) = arg min∑
~y∈N~x

w(~y)
(
(φt+1(~y

′)− φt(~y))
2

+ (φt−1(~y
′′)− φt(~y))

2
)

~y ′′ = ~y − ~vt,t+1(~x)∆t+ ~a(~x)∆t2

(11)
in which ~a(~x) is the external acceleration at ~x. ~y ′ and ~y ′′ are ~x’s
correspondence location in φt+1 and φt−1 respectively. By differ-
entiating D(~x,~v) with respect to ~vt,t+1(~x), we obtain:

∑
~y∈N

w(~y)

(
+ (φt+1(~y

′)− φt(~y))∇φt+1(~y
′)

− (φt−1(~y
′′)− φt(~y))∇φt−1(~y

′′)

)
= 0 (12)

∇φ is always close to 1 by the definition of a signed distance
function, therefore, Equation 12 can be solved iteratively using the



Newton-Ralphson method. ~v(~x) can be initialized with zeros, sev-
eral candidate seeds from heuristics, or user estimation if available.
For each iteration, a new velocity flow ~vnew(~x) is calculated from
the old one ~vold(~x):∑

~y∈N

w(~y)

(
+ (φt+1(~y

′
new)− φt(~y))∇φt+1(~y

′
old)

− (φt−1(~y
′′
new)− φt(~y))∇φt−1(~y

′′
old)

)
= 0

(13)
~y′new, ~y

′′
new and ~y′old, ~y

′′
old are ~y’s correspondences calculated us-

ing new and old velocity flows respectively. We further linearize
φt+1(~y

′
new) and φt−1(~y

′′
new) as:

φt+1(~y
′
new) ≈ φt+1(~y

′
old) +∇φT

t+1(~y
′
old)(~vnew − ~vold)∆t

φt−1(~y
′′
new) ≈ φt−1(~y

′′
old)−∇φT

t+1(~y
′′
old)(~vnew − ~vold)∆t

(14)
Combining Equation 13 with 14 gives us a linear system with
~vnew(~x) as unknowns. Iterations are terminated if maximum it-
eration number is reached or if ~vnew − ~vold drops below certain
threshold (0.05 of a grid cell size in our experiments). We also
limit |~vnew − ~vold| by an upper bound for smoother convergence.
We also limit the search space within a range around the initial
guess to prevent large velocity changes in case the problem is ill-
conditioned. This solution is similar to the classic Kanade-Lucas-
Tomasi (KLT) feature tracker [Shi and Tomasi 1994] with transla-
tion motions only, except that our problem is defined in 3D and the
search procedure considers both forward and backward directions.

When two separate water regions merge or split, this estimation
scheme may not work for all grid cells. For instance, a grid cell
may not find its actual correspondence according to the neighbor-
hood similarity in Equation 11, when it represents a water drop
dripping into a still water surface. Similar to the aperture problem
in KLT, this scheme also fails to work when the fluid shape barely
changes, i.e., a static flow. Fortunately, both problems can be solved
using smoothness and incompressibility constraints by propagating
correctly estimated flows into ill-defined regions, as will be dis-
cussed next. Figure 9 shows a frame in a water splash example and
its estimated velocity field using this algorithm.

If the correspondence search in one direction goes beyond the
spatial-temporal boundary, we assume that everything is possible
outside of the 4D space-time grid, and the corresponding error in
Equation 11 and correction in 13 are simply ignored.

Error Measure D(~x,~v) in Equation 11 is used as an error mea-
sure to determine whether ~x’s correspondence exists in the neigh-
boring frame. If D is below some tolerance ε at time t, we catego-
rize ~x at time t as Type-I , which means it has correspondences in
both φt−1 and φt+1. Otherwise, the method will try to locate cor-
respondences only in φt−1 or φt+1, with half of the tolerance ε/2.
We do this by removing the error and correction contribution from
the other neighboring frame in Equation 11 and 13. Grid cells will
be type-II if correspondence exists in φt+1, or type-III , if cor-
respondence exists in φt−1. The rest of grid cells will be type-O,
which means no correspondence is found in either φt−1 or φt+1.

Spatial Smoothing The spatial smoothing step here mimics the
viscosity effect, similar to using an explicit solver by discretizing
the Laplacian operator for viscosity effects:

~vt,t+1(~x) =
∑

s(~y)~vt,t+1(~y) (15)

~y is a water grid cell within an immediate grid neighborhood of ~x,
including ~x and its six neighbors. Typically, s(~y) defines the spatial
smoothing kernel covering ~p and its six immediate neighbors as:

s(~y) = 1− 6β (~y = ~x), s(~y) = β (otherwise) (16)

Figure 9: One frame in a water splash example and its estimated
velocity field visualizated as a vector diagram.

β is specified by user according to their expectation of velocity
spatial smoothness. It should be noted that although this method
looks similar to the explicit viscosity solver in physically based
fluid solver, it only provides similar effect as viscosity diffusion
and it is not based on actually fluid dynamics since only a static
velocity field is involved.

To generate large viscosity effect, some fluid simulation algo-
rithms [Stam 1999; Carlson et al. 2002] formulate viscosity dif-
fusion implicitly as a sparse linear system. Our method chooses
to simply apply the smoothing process multiple times to produce a
visually plausible velocity flow.

Pressure Projection While the velocity is defined at each grid
cell for the convenience of estimation and optimization, it is not
straightforward to couple velocity with pressure, which is also de-
fined at the grid cell. Our simple solution is to first interpolate the
velocity flow to a staggered grid formulation by averaging, then ap-
ply pressure projection, and convert the velocity back to the grid
cell center. Details about the pressure projection in a staggered
Mark-and-Cell (MAC) grid can be found in [Stam 1999]. We use
Dirichlet boundary condition with zero outer pressure when water
bodies are completely within the space-time grid. Water bodies ex-
panding beyond the space-time grid are ignored in this step since
their volumes outside of the grid are unknown.

After the pressure projection step, error scores are recalculated and
grid cells are re-categorized. This category information will be used
to determine whether missing correspondence is caused by false-
positives or false-negatives.

6.2 False-Positive Removal

Since both false-positives and false-negatives can cause missing
correspondences in neighboring frames, the first task is to deter-
mine the cause of a missing correspondence. We do this by count-
ing how many consecutive frames a water region appears in, as-
suming that real water should at least exists in several consecutive
frames. For example, when a water region only appears in frame
t, or frame t and t + 1, it is less likely to be a water component in
the real scene. However, if it exists in more frames, missing cor-
respondences are more likely to be caused by false-negatives, so
the component should not be removed. This assumption fails in
certain cases, for example, a water drop intermittently missing in a



Figure 10: Forward/backward tags for a water drop that sequen-
tially appears from frame 2 to 6.

sequence will be treated as a false-positive even though it is more
likely to be in the real scene. Fortunately, our experiment shows
that such cases are rare and both false-positives and false-negatives
are usually distributed continuously over time, so this assumption
can be safely held.

To count how many times a water region appears in previous and
successive frames, two count tags are assigned to each water grid
cell: a forward tag T f

t and a backward tag T b
t . Here we will explain

how to set up T f
t by tracing particle from each grid cell. Backward

tags are calculated in a similar fashion, except in the opposite direc-
tion. All T f

t are initialized to be zero, and then processed forward
from frame 0 to frame T . In each frame, every type-I water grid
cell ~x first increases its T f

t by 1, and propagates its value to all eight
cells adjacent to ~x′ = ~x+ ~vt,t+1(~x)∆t in frame t+ 1:

T f
t+1(~y) = max(T f

t (~x), T f
t+1(~y)), ~y ≈ ~x′ (17)

Figure 10 shows a single water drop example with both tags calcu-
lated. T f

t + T b
t + 1 is the number that a water grid cell appears in

previous and successive frames, and T f
t + T b

t + 2 is the number in
two ends. For each water grid cell ~x at time t, if T f

t + T b
t is below

some threshold k, it is considered as false-positive and will be re-
moved by setting φt(~x) to infinity. Theoretically, the trajectory of
a free-falling water region existing in three consecutive frames can
be sufficiently predicted, assuming that the acceleration is constant.
In practice we choose k from 3 to 7, in order to remove more false-
positives and keep more confidence in remaining water regions.

The ambiguity in velocity estimation may prevent false-positives
from be removed as shown in Figure 11 top. To solve this issue,
we compare ~vt,t+1(~x) with ~vt+1,t+2(~x

′), and if their difference is
above certain threshold θ, ~x′ will be considered to involve velocity
ambiguity, tagged as negative, and will lose its ability to propagate.
One may ask whether a temporal smoothing step can be introduced
into the velocity estimation method instead so water region in frame
4 can choose the right velocity flow through exchanging velocity
with its neighbors. Unfortunately it is impossible to know which
velocity is correct until the false-negatives and false-positives are
recognized, and we have to defer such decisions until the false-
positive removal step.

The pseudo code for computing forward tags is described in Algo-
rithm 1. The pouring example in Figure 12 shows redundant water
regions are removed as false-positives by this algorithm.

6.3 Optimization for Temporal Coherence

After the false positives have been removed, we can increase the
quality of between-frame coherence using the estimated flow ve-
locity. Let ~x be a type-I grid cell with both correspondences in the
space-time grid. P−(φt−1, ~x,~vt−1,t) and P+(φt+1, ~x,~vt,t+1) are
two functions that predict ~x’s signed distance value according to
neighboring frames φt−1 and φt+1 respectively, and the solution is
to iteratively refine φt by interpolating its predicted values:

φt(~x) = γ(P−(φt−1, ~x,~vt−1,t) + P+(φt+1, ~x,~vt,t+1))
+(1− 2γ)φt(~x)

(18)

Figure 11: When two water drops (in blue) sequentially appear
from frame 2 to 6 and an incorrect water drop (in red) suddenly
appears in frame 5, their particular positions cause an ambiguity in
the velocity flow at frame 4. Without the velocity consistency check
at the top diagram, T f

4 will be erroneously propagated to the red
water drop, preventing it from being removed. After the consistency
check, this can be addressed as shown in the bottom diagram.

Algorithm 1 The pseudo code for calculating forward tags.
for t = 0 to T do
T f

t = 0;
end for
for t = 0 to T do

for each fluid cell ~x do
if φt(~x) < band width and type(~x, t) = I then

if T f
t (~x) < 0 then
T f

t (~x) = 0;
end if
T f

t (~x)+ = 1;
next = T f

t (~x);
~x′ = ~x+ ~vt,t+1(~x)∆t;
if |~vt,t+1(~x)− ~vi+1,i+2(~x

′)| > θ then
next = −next;

end if
T f

t+1(~y) = max(next, T f
t+1(d~x′xe ,

⌈
~x′y

⌉
, d~x′ze));

· · · · · ·
T f

t+1(~y) = max(next, T f
t+1(b~x′xc ,

⌊
~x′y

⌋
, b~x′zc));

end if
end for

end for

in which γ is a relaxation coefficient between 0 and 0.5. Since the
optimization step at time t only involves three frames φt, φt−1 and
φt+1 as in Equation 18, and the flow estimation process of ~vt,t+1

already considers three frames in both directions, we replace ~vt−1,t

by ~vt,t+1 − ~a∆t for better local temporal consistency,

φt(~x) = γ(P−(φt−1, ~x,~vt,t+1 − ~a∆t)
+P+(φt+1, ~x,~vt,t+1)) + (1− 2γ)φt(~x)

(19)

~a is user-specified external acceleration, if applicable. In fact, us-
ing ~vt−1,t in Equation 18 would allow φt−2 to have unnecessary
influence over the optimization of φt, which should be avoided.

To implement a prediction function, one may think of evolving
φt−1 and φt+1 to time t using the given velocity flow using by
the level set method. This implementation is limited by the CFL
condition, and must be done in multiple sub-steps when the fluid
surface moves much more than one grid cell in distance. To avoid
the computational cost incurred in subdividing time steps, a simple
alternative is to use the signed distance value of ~x’s correspondence



in both frames:

P+(φt+1, ~x,~vt,t+1) = φt+1(~x+ ~vt,t+1∆t) (20)

similar to a simplified one-step semi-Lagrangian method. Unfortu-
nately, this method suffers from volume lose because the required
resampling process gradually smears out the surface sequence in
each iteration. Instead, we use a non-interpolating semi-Lagrangian
method described in [Staniforth and Côté 1991] by combining it
with the level set method, under the assumption that the velocity
flow is locally uniform due to viscosity effects. This method first
separates a displacement vector ~vt,t+1(~x)∆t into a rounded-up in-
teger component ~oi and the remaining floating component ~of . The
surface motion in the integral displacement is to shift signed dis-
tances in ~x’s local neighborhood to ~x + ~oi. The remaining surface
motion corresponding to ~of is less than half of a grid cell in any
axis, so the level set method can be safely used without stability
issues. This method is described as follows:

P+ = φt+1(~x+ ~oi)− (−~of )∇φt+1(~x+ ~oi)
~o = ~vt,t+1∆t

~oi = Round(~o); ~of = ~o− ~oi

(21)

When the surface motion is originally less than half of a grid cell
(~oi = 0), the method is simply reduced to the level set method.
This hybrid method can successfully reduce volume loss to less than
5% over more than 5 optimization iterations.

The above scheme is for type-I grid cells. If a grid cell ~x belongs
to type-II or III , or if one of ~x’s correspondence goes beyond
the space-time grid, it is impossible to predict from both directions.
Instead, we only consider one direction and the following equation
calculates the update using only the previous prediction:

φt(~x) = γP−(φt−1, ~x,~vt−1,t) + (1− γ)φt(~x) (22)

6.4 False-Negative Completion

The final step in the system pipeline is to resolve false negatives by
adding missing water regions back. Type-II and III grid cells can
be safely assumed to be caused by false-negatives at this time. We
first propagate their velocities to the frame with no correspondence
by linear resampling. We then apply the one-way prediction tool
provided in Equation 22 to grid cells with newly updated veloci-
ties to recover missing water regions. The false-negative comple-
tion process is executed more than once to allow water regions to
propagate over multiple frames. After this, the whole optimization
procedure may be performed again to remove any temporal-spatial
incoherence caused by false-negative completion.

7 Results and Discussion

In this section we present results from several different real-world
fluid examples. (Please watch the accompanying video to see an-
imations for each of these results.) The scene in the pouring ex-
ample shown in Figure 12 is made of free-falling streams poured
out of a coffee cup. The animation is reconstructed at a resolu-
tion of 176 × 120 × 120 for 155 frames. The splash example in
Figure 14 shows the scene of a bottle lid dropping into an open wa-
ter area. The resolution of the 3D volume grid in this example is
158 × 120 × 163 and includes 138 frames. Since it is difficult to
discriminate the lid from the water surface, we modeled the lid as
part of the fluid surface as well. External acceleration and incom-
pressibility are ignored for the large water body in the pool because
it expands beyond the spatial grid and the pressure projection step
cannot be easily achieved for it. The fountain example in Figure
1 (on the first page) was reconstructed from two video sequences

Table 1: Common variables and their values in our experiment.
Name Definition Value
α a balancing coefficient between fidelity 0.1

and shape smoothness in Equation 9
β a parameter used in the velocity smoothing 1/7

kernel in Equation 16
γ a relaxation coefficient for temporal 0.3

coherence by interpolation in Equation 18
ε a tolerance bound in Error Measure, [64, 256]

in Section 6.1
k a threshold to determine false positives by [3, 7]

tag values in Section 6.2
θ a threshold to avoid velocity inconsistency 0.2

when calculating tags in Section 6.2

Figure 12: The pouring example: The top row shows the result
without using any surface optimization. The bottom row show the
result after applying our algorithm.

captured at different times from different viewpoints, containing
the upstream and the downstream views of a small water fountain
by placing stereo camera in front and back respectively. The reso-
lution is 110× 150× 140 and the result has 120 frames.

All examples are calculated on an Intel Quad-Core 9550 worksta-
tion with 8G memory. The initial reconstruction and smoothing
process in the first part of our algorithm took 10-30 mins typically.
Velocity estimation took 20-40 mins and the rest of the surface opti-
mization algorithm took 20-30 mins. Five surface optimization iter-
ations are usually sufficient to generate acceptable results. Overall,
each frame takes 2 to 3 mins to process on average. Compared with
physically-based fluid simulation, this method is not limited to any
CFL condition and the surface motion in each time step ranges be-
tween 4 to 8 grid cell sizes on average. At the same resolution, a
physically-based simulation would have to use smaller time steps to
maintain stability and accuracy, causing significantly higher com-
putational cost than this method, especially for rapid water motion.

Memory becomes an issue in our experiments since loading the
whole 3D volume sequence with the velocity field and other data
structure would require at least 6GB of memory. One possible solu-



tion would be to create a dynamic grid data structure that allocates
memory only to grid cells close to the water surfaces. Here we
choose to keep a simple grid data structure and use a large amount
of virtual memory instead. Each iteration procedure requires at
least one full memory swap to disk for each frame and contributes
about 10% to 20% of the computational time.

Figure 13: The middle shape is interpolated from the left shape
and the right shape according to the estimated velocity field. In this
way, water drops break up continuously from the stream.

Space-Time Interpolation and Extrapolation The estimated
velocity flow can be used to increase the temporal resolution of
a sequence or to complete missing frames in case of data capture
failure. Figure 13 shows that the shape in the middle frame is suc-
cessfully interpolated from the left shape and the right shape. In ad-
dition, our algorithm can be considered as a feature-based morphing
method even without requiring shape alignment as pre-processing.
When treating regions beyond the space-time grid as missing re-
gions in the false-negative completion method in Section 6.4, our
algorithm can also automatically extrapolate shapes in those regions
in a spatial-temporal fashion as shown in Figure 15.

Discussion Our experiments show that our results can faithfully
inherit the nuances and details of the fluids from regular video in-
put. Our optimization algorithm converges in less than five itera-
tions, therefore, it is safe from error accumulation over time. For
example, volume changes are barely noticeable in most cases even
though volume preservation is not strictly enforced in our algo-
rithm. Since the problem is under-constrained and the temporal
coherence assumption may not necessarily be true when the flow is
under strong acceleration, a sudden splash wave for example, the
generated result may not be identical to the real water scenes. On
the other hand, the solution is a local-minimum that well satisfies
spatial-temporal coherence, and provides a convincing and visually
plausible result for graphics applications.

Our current framework depends on depth from stereo and heuristic
surface initialization algorithms to provide a good initial estimate
for the surface optimization process. To improve the stereo depth
results, our existing capturing system uses dyed water and a pro-
jected pattern for data acquisition. Therefore it is still not possible
to capture water outside a studio setting, though we have dramati-
cally reduced the hardware requirement to a single pair of cameras
and a fixed projection pattern. Video-based acquisition can provide
information only for visible surfaces, we have to use heuristics to
estimate the volume. When occlusion is severe, the estimated vol-
ume may not be correct. In the fountain example, the water flow
appears to be too thin when viewed from a side angle. Using mul-
tiple cameras can ameliorate this problem, but does not fully solve
it. Under the single-stereo-camera paradigm, user interaction may
be the only way to address this problem.

Figure 15: Water regions beyond the spatial grid (in red) can be
easily generated by spatial-temporal extrapolation. We begin with
data only in the small vertical region shown at the left, and we
create a final sequence with a larger vertical component (right).

8 Conclusion and Future Work

We have presented a hybrid framework to efficiently reconstruct re-
alistic water animation from real water scenes by using video-based
reconstruction techniques together with physically-based surface
optimization. Using depth maps from stereo vision, the novelties of
our framework include a surface initialization algorithm to create
a rough initial guess of the surface sequence, a 3D flow estimation
method to define temporal coherence, and a surface optimization
method to remove false-positives, enforce temporal coherence and
complete false-negatives.

Looking towards the future, a more robust acquisition system and
algorithms that do not require the dying of water is our first priority.
Solving this will make it practical to capture the complex shapes
and interactions of real water in our everyday environment, not just
in a laboratory. Since our method does not require feature tracking
in video, we are optimistic that some active sensing methods may
be developed. In addition, we are also interested in finding a more
memory efficient data structure for the grid representation and in
creating a GPU implementation of our algorithm for acceleration.
We speculate that there may be a way to more closely combine
the physically-based optimization and video-based reconstruction.
We are planning to explore other interesting fluid effects, including
viscoelastic fluid and gas animation. Providing more flexible tools
based on this algorithm is also an interesting topic that we plan to
study in the future, and this will help artists to design specific water
animation effects via editing the end visual images directly, rather
than setting up initial conditions and various force controls.

More broadly, we believe this combination of reconstruction with
simulation can be extended to model many dynamic real-world ob-
jects with the promise of significantly reducing the amount of cap-
tured samples. Ultimately we hope that the acquisition of 4D mod-
els can be as simple as sweeping a camera around – something
currently limited to static scenes only. Adding simulation into the
pipeline is, in our view, a very promising direction.
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Figure 14: The splash example.
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