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PREFACE

‘Determinism is the philosophical proposition that every event, includ-

ing human cognition and behaviour, decision and action, is causally de-

termined by an unbroken chain of prior occurrences...’

- Peter Van Inwagen, in An Essay on Free Will

The world is as precise as a clock. When I was learning physics for the first time as

a kid, I was fascinated by how accurately this world can be predicted by all kinds

of physical laws. If you know how fast you throw an apple and where it leaves your

hand, you can predict whether it will hit Isaac Newton’s head. If you shine a laser pen

towards mirrors and lenses, the optics provides you the whole light path so that you

may defeat the entire Roman fleet, as Archimedes did. I could not stop imagining

that one day everything can be predicted in this world, given all of physical laws.

Obviously I was not the first one with this wild idea. Actually, philosophers already

had a name for it: determinism. Soon I learned that quantum mechanics is another

phenomenon existing in this world, even although I still blindly refuse to accept it

just like Albert Einstein did. Luckily this is a thesis for a degree in computer science,

not in physics.

Thus I turned myself to another question: given a supercomputer that can dupli-

cate everything into a virtual world, can we really distinguish the virtual world from

the real world? I was not surprised at all when I saw the movie The Matrix raising

the same question that I had. Maybe there is no answer to this question, but at least,

computer scientists can make such a scenario real.

Moving the real world into the virtual world is not so straightforward as writing

down a collection of physical laws. They are far too simplified to cover all of the
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aspects in real world mechanics. The real world is also greatly beyond our imagination

in terms of its detail and complexity. Even a pebble has an irregular shape, texture

details, and complicated light transport properties. Last but not least, an infinitely

powerful supercomputer only exists in scientific fictions. Computational and storage

resource of a real-world computer always restricts our choices when simulating the

real world. All of these issues come together to make this problem challenging, yet

fascinating to me.

This dissertation attempts to handle one particular phenomenon in the real world:

liquid. I will first present several physically based algorithms to simulate small-scale

liquid animation realistically and efficiently. A novel liquid surface modeling approach

will then be proposed to combine water appearance observed in the real world to-

gether with a fluid dynamics model, that is, combining image based reconstruction

techniques with physically based simulation techniques. This approach avoids most

existing difficulties in conventional fluid modeling methods, and provides a promis-

ing prospective for future research in the area of modeling natural phenomena in

computer graphics.
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SUMMARY

Generating natural phenomena in a virtual world has a number of practical

applications. Thanks to the rich and complicated details in the real world, the goal of

realistically and efficiently reproducing natural phenomena in a digital world is well

known as an open problem for graphics researchers.

In this dissertation, three different issues in modeling liquid animations have been

addressed. First, a virtual surface method and its 3D numerical solution is proposed

to account for surface tension effects and their interactions with solid surfaces in

physically based fluid simulation. This allows us to generate various surface tension

behaviors in small scale liquid, such as water drops, bubbles, water streamlets and

capillary action.

The second issue that is addressed is how to make small scale fluid simulation

more efficient. The solution proposed in this dissertation is a general shallow wave

equation model, extended from the original shallow wave equations. By simplifying

3D incompressible fluid dynamics into a 2D problem under the shallow wave assump-

tion, small scale liquid can be stably and efficiently simulated over arbitrarily curved

surfaces, using implicit numerical schemes.

The third contribution is a novel hybrid framework for animating liquid that com-

bines image based reconstruction techniques with physically based fluid simulation.

While image based reconstruction cannot correctly generate fluid animations alone

frame by frame due to depth reconstruction noise and errors, physically based sim-

ulation is used as a refinement tool to enforce incompressible fluid dynamics over

the initial reconstruction by propagating shape information back and forth in space

and time. In this way, water animations can be realistically and faithfully generated
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from images without error accumulation or stability issues as in physically based sim-

ulation. The whole process is also more efficient than physically based simulation,

because physics is only used to achieve temporal coherence rather than to generate

the whole animation.
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CHAPTER I

INTRODUCTION

1.1 Background

Generating natural phenomena in a virtual world has a number of practical applica-

tions: digital visual effects in computer games and movies, simulation and training

systems such as virtual surgery, visualization of engineering and architecture designs,

and visualization for scientific research. Due to the rich and complicated details in

the real world, the goal of realistically and efficiently reproducing natural phenomena

in a digital world is well known as an open problem. In this dissertation, I present

novel algorithms to efficiently and realistically model one particular phenomenon in

the real world: liquid. Proposed algorithms include pure physically based simulation

algorithms and a hybrid modeling method that combines image based reconstruction

techniques with physically based simulation. Here we will briefly examine two groups

of state-of-the-art techniques for modeling natural phenomena: physically based sim-

ulation and image/video based reconstruction.

Physically based simulation techniques attempt to simulate phenomena in a digital

world by following physical laws. For example, clouds in the sky can be created pro-

cedurally from gas simulation, and a burning furnace can be modeled by simulating

the combustion process. Existing simulation techniques are able to produce a number

of natural phenomenon animations, including rigid objects [5], hair [86], cloth [11],

viscoelastic objects [117], fire [74], smoke [26] and water [96, 30, 24]. Because these

techniques try to faithfully follow physical laws frame by frame, visually plausible

results can be generated without a sudden violation of physics. However, they suffer

1



from error accumulation, including volume loss and detail loss. In addition, their re-

sults usually appear to be less realistic because all of the details in the real world may

not be completely reproduced by simulation. Most simulation techniques require in-

tense computational resources, especially for solving complicated object collisions and

fluid dynamics. Researchers have invented various methods to accelerate physically

based simulation, for example, using parallel processing units in graphics hardware.

Nevertheless, physically based simulation that is both efficient and detailed is difficult

to achieve.

The intuition behind image based reconstruction techniques is to replicate obser-

vations of the real world in a virtual world. The observation is usually done using

multiple cameras that capture image sequences over time at specified locations in the

real world. Captured images are then used to construct virtual geometric models.

In contrast to data acquisition techniques that use optical or laser range scanners,

a multi-camera system is easier and more affordable to configure even for outdoor

data capture tasks. Using this basic idea, image based techniques have been success-

fully developed to capture a number of natural phenomena, including flowers [81],

trees [101], hair [113], and cloth [114, 9]. Since the input comes directly from the real

world, these techniques are realistic in details and comparably more efficient than

simulation approaches. Unfortunately, image based methods are limited in several

respects. First, occlusion is difficult to handle since the method needs to fill in what

has not been observed. Second, most image based reconstruction methods are limited

to certain cases: some of them assume that there exists dense and detailed texture

over the object surface; some can only handle Lambertian surfaces, or surfaces with

known BRDFs; and some rely on shape priors for the reconstruction process. Last

but not least, maintaining temporal coherence and physical correctness is extremely

challenging when reconstructing animation from image sequences.
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An ideal algorithm to generate natural phenomena should have the following prop-

erties:

Efficiency : The algorithm should be sufficiently fast so that users can view and

interact with the virtual environment in real time (> 15 fps).

Fidelity : Its result should be as realistic as the real world, following all of the

physical laws.

Generality : The algorithm should be flexible enough to handle a wide variety of

cases. For example, an ideal liquid animation simulator should be able to simulate

all kinds of liquid behaviors, from large ocean waves to capillary action, with various

visco-plastic properties.

Coupling : It should be easy to combine the simulation method with those of other

natural phenomena. For example, a liquid simulator should also handle interactions

with other material, such as rigid objects, elastic objects, thin shell objects or other

types of fluid.

It is my belief that modeling natural phenomena will be an increasingly important

research problem in computer graphics, and future research will be guided by these

four key properties listed above.

1.2 The Problem

The specific problem that I am investigating in this dissertation is how to model

liquid animation for graphics applications.

In recent years, considerable progress has been made in physically based fluid

simulations [96, 30, 24] by adapting simulation techniques from computational fluid

dynamics. These techniques are computationally expensive, typically involving hours

or days of computing time in order to guarantee stability and accuracy in the results.

Moreover, they are still lacking in realistic details compared with real liquid, and they

are difficult to control and to interact with [64, 25].
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Figure 1: Water examples generated by the virtual surface method.

Solely using image based reconstruction techniques for liquid animation is difficult

due to liquid’s complex nature. Liquid can be both reflective and refractive, with

few texture details. Liquid surface topology also changes dramatically even in a

simple scenario, thus making it impossible to rely on any topological assumptions.

As far as we know, no existing image based reconstruction algorithms are capable of

reconstructing general liquid animation. Recent approaches proposed by Morris and

Kutulakos [70] and Hullin et al. [45] successfully reconstructed transparent objects

such as vases and glass by tracing the light transport using structured scanning,

but they are not suitable for reconstructing complex time-varying liquid scenes that

exhibit frequent occlusions.

In this dissertation, I will address three related problems in modeling liquid ani-

mation. First, I will study how to make conventional physically based fluid simulation

even more realistic by incorporating surface tension effects and their interactions with

solid surfaces. This approach results in important behavior in small scale liquid ani-

mation such as water drops, bubbles, water streamlets and capillary action. The key

idea of this proposed algorithm is the use of a virtual surface at the contact front

where water, air and solid meet. The virtual surface is an auxiliary surface used to

find correct surface tension forces at the contact front. It is defined to form a specific

angle with the solid surface, called the contact angle, in order to reflect different solid
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Figure 2: Water drops simulated by the general shallow wave equation model.

hydrophobicity properties. For example, the virtual surface for a hydrophobic solid

is defined by a large contact angle, so that the strong surface tension force will push

the water drop into a round shape. On the other hand, the virtual surface for a hy-

drophilic solid is defined by a small contact angle, so the water drop will be flattened

since the weak surface tension force cannot compete against gravity. Even for the

same material, the advancing contact angle at the contact front where water moves

forward is usually larger than the receding contact angle when water moves backward,

causing water streamlets to leave long tails behind themselves. Two such examples

are shown in Figure 1.

The second issue that my work addresses is how to make small scale liquid simu-

lation faster. My solution is a general shallow wave equation model, extended from

the original shallow wave equations. Like shallow wave equations, the general shallow

wave equation model is simplified from incompressible fluid dynamics under the shal-

low wave assumption. It can also handle simulation of water flowing on arbitrarily

curved surfaces. The surface tension effect and the virtual surface method have suc-

cessfully been incorporated into this general shallow wave model. The whole system

can then be efficiently solved using an implicit numerical solver and further acceler-

ated using graphics hardware’s parallel processing power. This system can efficiently

simulate various small scale liquid animations under the shallow wave assumption
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Figure 3: Water phenomena generated by a hybrid method.

in real time, providing the possibility to display, create and control liquid shapes

interactively, shown in Figure 2.

My third contribution is a new hybrid method for animating liquid by combining

image based reconstruction with physically based fluid simulation. Although image

based reconstruction techniques cannot correctly generate liquid animations alone

frame by frame, I believe that sufficient information exists in a series of frames by

propagating information back and forth in time using physically based simulation.

In other words, this approach is an image based reconstruction method that is con-

strained, guided and elaborated by physically based simulation. Similar ideas have

been seen in recent image based reconstruction techniques to model other natural

phenomena, such as trees [101], hair [113], and cloth [9].

The proposed hybrid reconstruction algorithm works as follows. A calibrated,

synchronized multi-camera system is first used to capture videos of moving water,

such as a water fountain, from several known locations. Silhouettes, salient point cor-

respondences and other spatial features are then extracted from images to constrain

the liquid surface reconstruction process. We assume that a perfectly reconstructed

result should be spatio-temporally coherent. Unfortunately, initial results from pure

image based reconstruction alone is usually far from satisfactory, due to occlusions,
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correspondence errors and other issues. We classify all errors into two groups: false

positives, when the reconstruction process creates a liquid region that does not ac-

tually exist in the real scene, and false negatives, in which real water is omitted in

the result. Physically based simulation is then introduced to refine the whole shape

sequence and to address false the problems of positives and false negatives, after

propagating shape information from neighboring frames. For example, if a water

drop suddenly appears in a single frame, it is likely to be false positive and it will be

removed as long as it is not observed elsewhere. The final result is expected to match

with the image input and to satisfy fluid dynamics as much as possible. The result

can also be considered as a 4D hyper-surface that is continuous in both space and

time, and can be rendered from any view point at any time instant in a new virtual

environment with different lighting conditions.

In general, the result from this hybrid method is more visually plausible than

that from image based reconstruction alone since it has been refined by physical laws.

Compared with physically based fluid simulation, the hybrid method is free from

stability and accuracy issues since physically based simulation is only used as an

additional constraint. The experiment shows that the new method can realistically

and efficiently generate liquid animations from video sequences, including pouring

water, splashing water and a small water fountain.

In order to avoid issues in complicated topological changes, I use the level set

method as the surface representation and shape evolution tool in most of the proposed

methods. Many other recent techniques in physically based fluid simulation also make

use of the level set method. Details about the level set method can be found in

Section 2.4.

The rest of this thesis is organized as follows. In Chapter 2, we will examine how

a typical fluid solver generates liquid animation. In Chapter 3, we will see how to

model surface tension effects with a virtual surface method in a basic fluid simulator
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for small scale liquid effects, as shown in Figure 1. Small scale liquid simulation, such

as the one in Figure 2, can be simplified using the general shallow wave equation and

accelerated by GPU’s parallel processing power, as discussed in Chapter 4. A hybrid

method for liquid animation will be introduced next in Chapter 5. Figure 3 shows

two examples from this new method. Finally, conclusions of all the proposed methods

will be given in Chapter 6.
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CHAPTER II

FLUID SIMULATION BY EULERIAN APPROACHES

Physically based fluid simulation is a broad area that has been well studied in com-

putational physics before it was introduced into the computer graphics community.

In this chapter, we will discuss the popular Eulerian approach for solving viscous in-

compressible fluid dynamics. In contract to Lagrangian approaches that track shape

elements directly, Eulerian approaches are a set of numerical methods that handle and

manipulate shapes implicitly on a fixed grid without shape parametrization. Most

liquid simulation techniques are comprised of two steps: first, update the velocity field

by solving viscous incompressible fluid dynamics, and then evolve the liquid surface

based on the given velocity field.

2.1 Viscous Incompressible Fluid Dynamics

The viscous incompressible flow of low-speed Newtonian fluid can be modeled by

the Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel

Stokes. They are derived by applying Newton’s second law to fluid motion, assuming

that the fluid stress is the sum of a diffusing viscous term and a pressure term:

~V ′ = −(~V · ∇)~V + ν∇(∇~V )/ρ−∇P/ρ+ ~F/ρ ,

∇ · ~V = 0 ,
(1)

in which ~V is the velocity field, ν is the viscosity coefficient, ρ is the liquid density, P

is the pressure field, and ~F is the external force. It describes the low-speed dynamics

of most liquid and gas that we observe in everyday life.

Here we will focus on conventional simulation techniques using Eulerian approaches

with volumetric representations. This representation is insensitive to topological
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Figure 4: The grid representation.

changes compared with mesh representations. It is also easier to delimitate sur-

face shapes, when compared with particle representations. In order to generate the

next frame in a liquid animation, a typical liquid simulator first updates the liquid

flow by the Navier-Stokes equations, and then evolves the liquid surface according

to the calculated flow over time. We will first study how to discretize the computa-

tional space in a cartesian grid in Section 2.2, then examine a numercial solver for the

Navier-Stokes equations by the method of characteristics in Section 2.3, and finally

discuss different surface tracking algorithms based on volumetric representations in

Section 2.4, including the level set method and the volume-of-fluid method.

2.2 Discretization

A 3D regular grid that uniformly discretizes the computational space is suitable for

finite difference methods. Continuous function is sampled at the center of each grid

cell as Figure 4 shows. During simulation, each grid cell is assigned with a signed

distance value for implicit surface representation and the pressure value for pressure

solving. In order to facilitate the pressure projection step, a staggered Marker-and-

Cell (MAC) formulation is used for the velocity field, in which velocity components

u, v and w (for coordinate axis x, y, and z respectively) are defined on cell faces

connecting two grid cells as shown in Figure 4.

The continuous Navier-Stokes equations can be discretized using a finite difference
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scheme over the regular grid. For example, the gradient of a function φ can be

calculated using central differencing scheme:

φx|x0,y0,z0
= (φ(x0 + h, y0, z0)− φ(x0 − h, y0, z0))/(2h)

φy|x0,y0,z0
= (φ(x0, y0 + h, z0)− φ(x0, y0 − h, z0))/(2h)

φz|x0,y0,z0
= (φ(x0, y0, z0 + h)− φ(x0, y0, z0 − h))/(2h)

(2)

in which h is the cell size. The Laplacian operator can be calculated as:

∆ φ|x0,y0,z0
= (φ(x+ h, y, z) + φ(x− h, y, z) + φ(x, y + h, z) + φ(x, y − h, z)

+φ(x, y, z + h) + φ(x, y, z − h)− 6φ(x, y, z))/h2
(3)

2.3 Solving the Liquid Flow

By dividing the Navier-Stokes equations into a set of sub-problems using the method

of characteristics , the liquid flow can be solved in four separate steps as shown in

Figure 5. The first step adds external forces to the initial velocity field ~V0, including

gravity and any user interaction forces. When an external force ~F is nearly constant

such as gravity, a first-order forward Euler method is sufficient:

~V ′ = ~F/ρ

~V1 = ~V0 + ∆t · ~F/ρ
(4)

The diffusion step, corresponding to the viscosity term, damps the velocity field

by diminishing velocity difference according to Equation 5:

~V ′ = ν∇(∇~V )/ρ = ν∇2~V /ρ (5)
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The first order forward Euler method can also be used if the viscosity coefficient ν is

small:

~V2 = ~V1 + ∆tν∇2~V1/ρ (6)

If ν is large, however, an implicit Euler method is preferred to avoid stability issues

by solving a sparse linear system with unknowns ~V2:

(I− ∆tν

ρ
∇2)~V2 = ~V1 (7)

in which I is the identity matrix.

The advection step means the velocity field should move forward with itself. A

semi-Lagrangian method proposed in [96] solves the advection by tracing particles

backward along the velocity field within a time interval ∆t to obtain the old velocity:

~V3(~x) = ~V2(p(~x,−∆t)) (8)

where p(~x,−∆t) is the location of the particle traced back along ~V2 from ~x within a

time interval ∆t.

The next step is used to maintain the fluid’s incompressibility by projecting ~V3

back into the divergence-free space, also called the projection method . A scalar pres-

sure field P is first introduced as an intermediate correction term:

∆P = ∇ · ~V3 (9)

then the velocity field is corrected by the pressure gradient:

~V4 = ~V3 −∇P (10)

where P does not depend on ∆t or ρ, assuming that ρ is constant. Equation 9 is a

Poisson equation, which can be discretized as:

p(x0 − h, y0, z0) + p(x0, y0 − h, z0) + p(x0, y0, z0 − h)

p(x0 + h, y0, z0) + p(x0, y0 + h, z0) + p(x0, y0, z0 + h)− 6p(x0, y0, z0) =

(u(x0 + h/2, y0, z0) + v(x0, y0 + h/2, z0) + w(x0, y0, z0 + h/2)

−u(x0 − h/2, y0, z0)− v(x0, y0 − h/2, z0)− w(x0, y0, z0 − h/2))h

(11)
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The pressure projection step is more computationally expensive than the other steps,

and is commonly found to be the bottleneck of a whole liquid solver. Details about

solving sparse linear systems including the Poisson equation can be found in many

numerical algorithms literatures, such as [80]. After the pressure projection step, the

velocity field becomes divergence-free and can be used to evolve the liquid surface.

2.4 Surface Evolution

Given the updated velocity field, we will discuss two common methods for evolving the

water surfacesurface evolution when it is represented by a volumetric data structure:

the level set method and the variational approach.

2.4.1 The level set method

In the level set method, a surface is defined as the zero level set of an implicit signed

distance function, or called the level set function. The level set function measures the

Euclidean distance from each grid cell to the liquid surface. A positive distance means

the grid cell is outside of the surface; otherwise, the cell is inside. The liquid surface

motion from the velocity field is then governed by the following partial differential

equation [88, 78]:

φt = −~V · ∇φ (12)

called the level set equation, which is an example of the Hamilton-Jacobi equation.

Finite difference schemes can be used to estimate all the derivatives, including upwind

differencing,

φx|x0,y0,z0
=

 (φ(x0 + h, y0, z0)− φ(x0, y0, z0))/h; u(x0, y0, z0) < 0

(φ(x0, y0, z0)− φ(x0 − h, y0, z0))/h; u(x0, y0, z0) ≥ 0
(13)

and Hamilton-Jacobi weighted ENO (HJ WENO) [77, 50], a preferable method in

most of our experiments for better accuracy and volume preservation.

After surface motion, φmay no longer be a valid distance function even in the most

continuous case, so the function needs to be re-initialized back to a signed distance
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field. This can be formulated as a partial differential equation evolving over time till

a steady state is reached:

φt + |∇φ| = 1 (14)

At the steady state, φt = 0 so the equation becomes |∇φ| = 1. Since the interface

should always be maintained, this equation will be solved separately for regions out-

side of the surface and regions inside of the surface, with boundary conditions at the

interface. In practice, a fast algorithm can approximate this solution by propagating

distance values from the surface in the surface normal direction only once, popularly

referred to as the fast marching method [87, 106].

The first-order forward Euler method can be used to calculate the temporal inte-

gral for Equation 12. Higher-order explicit schemes, such as Runge-Kutta methods,

can also be used in order to achieve more accuracy.

2.4.2 The particle level set method

Volume loss is a well known problem existing in the level set method, due to numerical

dissipation in finite difference schemes. As a remedy, a hybrid method was proposed

by Enright et al. [24] that uses particles together with a level set method.

In this method, volumeless particles are initialized around the interface and traced

along the velocity field. They are then used to correct the signed distance function

by enforcing its original distance to the interface. By doing this, the particle level set

method can take benefits from an Eulerian method, while reduce volume loss thanks

to a Lagrangian method. When the surface is under severe stretching or tearing, some

surface regions may not have sufficient particles for good surface correction. In this

case, particles will be reseeded to make sure each grid cell around the surface has at

least a certain number of particles, 64 particles in [24] and 32 in our experiments.
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2.4.3 The variational approach

each grid cell stores a density value ρ in a variational approach of Mullen et al. [71],

evolving all of the iso-surfaces using an external velocity field by exchanging mass

among grid cells. The density value ρ is limited in [0, 1], with the surface defined as

the iso-surface ρ = 0.5. The advection equation for the density field is defined as:

∂ρ

∂t
+∇ · (ρ~V ) = 0 (15)

By weakly assuming continuity in each grid cell Ci and applying the divergence the-

orem, we obtain:

∂

∂t

∫
Ci

ρdV +

∫
∂Ci

(ρ~V · ~n)dA = 0 (16)

The first part of Equation 16 is an integral over the grid cell volume and the second

part is an integral over the grid cell boundary. By spatial discretization, Equation 16

can be intuitively expressed as exchanging volumes between neighboring grid cells:

dρi
dt

= − 1

h3

∑
j∈N(Ci)

fi→j (17)

where N(Ci) is the neighborhood of the grid cell Ci and fi→j is the flux from grid

cell Ci to Cj. The flux can be computed using an upwind piecewise-constant (PWC)

approximation:

fi→j =

 ui→jρi, ui→j > 0

ui→jρj, ui→j ≤ 0
(18)

or any higher order upwinding schemes such as WENO-5 [51].

Compared with the level set method, the variational method does not have the

volume loss problem since the mass is always preserved among grid cells. However,

the density field becomes more and more diffused as time evolves, because velocity

and density values are propagated further from the interface. A sharpening step is

usually necessary to make the interface reasonably sharp by redistributing the density

field. A mass re-injection step may further be used to explicitly maintain the volume

after the sharpening step [71].
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CHAPTER III

WATER DROPS ON SURFACES

3.1 Introduction

Surface tension and its effects on the interface between solids and water plays an

important role in small scale fluid, such phenomena include water drops beading and

flowing on a glass window, capillary action, and small water rivulets.

Real liquid that come into contact with a solid object forms a characteristic angle

with the surface of the object known as the contact angle [19]. The contact angle for

so-called hydrophobic surfaces causes water to bead up, while a hydrophilic surface

allows a drop of water to spread out. We will use the term affinity to describe the

hydrophobicity or hydrophilicity of a surface. The affinity between water and a surface

affects not only the behavior of a static drop of water, but also greatly influences the

motion of a moving drop. The fluid-solid interaction can also be seen to affect the

behavior of drop merging and splitting and the motion of water rivulets.

The contribution of this chapter is the virtual surface method, which allows us

to simulate small-scale behaviors of fluids with contact angle effects. Given a stable

contact angle, this method estimates the appropriate surface tension at the contact

line between the solid surface and liquid surface. It then implicitly constructs a virtual

surface penetrating into the solid surface, replacing the original liquid-solid surface

by the virtual surface, and estimates surface tension forces using this newly created

surface. Unlike some other models that are focused on modeling axisymmetric water

drops, this method can handle arbitrary 3D liquid shapes by using implicit signed

distance functions to represent all surfaces. When the solid surface is sufficiently

smooth, our virtual surface method accurately approximates the true surface tensions.
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Water (or any other liquid) is effectively defined here by its viscosity and its surface

tension against the air. The dominant factor that distinguishes the water motion

between drops of the same size is the affinity between water and the solid material,

and this can be quantified by the stable contact angle between the liquid-air and

liquid-surface interfaces. In addition to the behavior for drops near equilibrium, we

also treat the cases where the water is moving. We use a simple dynamic contact

angle model for capillary solid coupling in terms of three contact angles: the receding

contact angle, the wet advancing contact angle and the dry advancing contact angle.

Our results indicate this model is sufficient for simulating many small-scale fluid

motions.

Our fluid solver represents and updates the liquid surface using the particle level

set method. Compared with other approaches such as molecular particle dynamics or

adaptive Lagrangian meshing, the level set distance function can efficiently simulate

a drop’s internal fluid dynamics and can easily handle drop breakup and merging.

Since the liquid volume only occupies a small portion of the whole domain in most

small-scale liquid simulations, we use a sparse, piecewise representation of the grid in

the fluid solver to save both computation time and memory.

3.2 Related Work

Previous work related to this problem can be found from three different areas: syn-

thesizing water drop motion in graphics, computational fluid dynamics and its appli-

cation in liquid simulations, and research on surface tension in physics.

In graphics, most previous water drop systems provide various ways to model

water drops efficiently but remain incapable of capturing some of the physical drop

motions that we observe in the real world. Dorsey et al. [20] used a particle system to

synthesize drops and their effects on weathering appearance textures for large solid

models, assuming that each drop’s deformation is too small to be noticeable. Kaneda
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et al. [54, 55, 53] used a particle system to simulate water drops flowing on a flat

surface. Flowing water drops are modeled in Fournier et al. [32] by a mass-spring

system with surface tension and volume conservation constraints. Though the mass-

spring system allowed various efficient simulations, it has difficulty in handling the

drop separating and merging processes, especially when many drops interact in a large

scene. Yu et al. [120] successfully modeled static droplet shapes on flat surfaces using

a metaball representation, and Tong et al. [102] later presented a volume-preserving

approach to model water flows using metaballs, but neither considered the surface

tension effects on the moving interface. Generally speaking, the above methods do

not consider interaction between the fluid dynamics internal to the water drops and

the surface tension at the liquid interfaces, making it relatively difficult to simulate

a wide range of drop deformation and motion realistically and accurately.

Computational fluid dynamics has been successfully and practically applied to

simulate fluid animation in graphics since Foster and Metaxas [31]. Shortly after that,

the stable fluid method was introduced by Stam [96], in which the semi-Lagrangian

method is used to handle liquid velocity advection. In a series of papers, Enright,

Fedkiw and Foster [30, 24] used the level set method to evolve liquid surfaces so that

more complex liquid motions can be simulated. They further showed how to combine

the level set method with particles (the so-called particle level set method) to reduce

volume loss and increase the surface accuracy. For a large viscosity, the time step must

be extremely small according to the CFL condition when one solves the viscosity term

using explicit schemes. Stam [96] showed the viscosity term can be solved with larger

time steps using the implicit Euler method, assuming a uniform viscosity distribution.

Recently Losasso et al. [62] demonstrated the use of an octree structure for surface

evolution instead of a regular grid so that more surface details can be maintained.

Surface tensions in [62] are used as first order Dirichlet pressure boundary conditions

on air boundary cells by estimating mean curvatures from the surface’s signed distance
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function. A second order pressure boundary condition scheme was presented in [23].

In physics, chemistry and material science, researchers have performed numerous

experiments to understand the liquid-solid interfacial tension and developed various

simulation techniques for treating the liquid-solid interactions. Korlie [59] simulated

a liquid drop on a flat solid surface using quasi-molecular particles. Feng et al. [29]

studied the drop impact and flattening process using Lagrangian meshing with the

finite element method. Bussman et al. [12] developed a volume tracking algorithm

for the volume-of-fluid method, and they successfully simulated single drop splashing

and impact on curved shapes in their later work, treating the contact angle as an

immediate boundary condition. Healy [40] used the 2D level set method and enforced

the contact angle by modifying the liquid-air surface immediately to simulate an

axisymmetric drop impact on a flat surface. Zhao et al. [123] demonstrated drop

falling and depositing effect using a variational level set evolution equation obtained

by minimizing the surface tension energy. Sussman et al. [100] first proposed the

virtual surface idea in 2D for flat solid surfaces to constrain contact angles under

the level set framework. Renardy et al. [82] later implemented the same idea for the

volume-of-fluid method, and their algorithm was also limited to flat solid surfaces

in 2D. To our knowledge, there are no previously published methods to model 3D

interfacial tensions for arbitrarily curved solid surfaces.

3.3 Physical Background

Surface tension (interfacial tension) is an important factor in small-scale liquid simu-

lations. It is caused by unbalanced molecular cohesive forces in the interfacial region

where two phases meet (liquid-air, liquid-solid or solid-air). There are two ways to

analyze the surface tension’s influence on the liquid motion. One is to use the surface
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Figure 6: The top row shows the photographs of water drops in different shapes
by treating the surface with different material. From left to right are: hydrophilic,
normal and hydrophobic. The bottom row shows simulated stable drops sitting on
the ground with different stable contact angles θs. Due to gravity, the actual angle
between the drop surface and the ground is slightly different from θs.

tension force imposed onto the liquid surface directly in the incompressible Navier-

Stokes equations (Equation 19),

~V ′ = −(~V · ∇)~V + ν∇(∇~V )/ρ−∇P/ρ+ (~F − γκ · ~N)/ρ ,

∇ · ~V = 0 ,
(19)

where ~V is the velocity field, ν is the viscosity coefficient, ρ is the liquid density, κ is the

surface mean curvature, ~N is the liquid surface normal vector, ~F is the external force

and γ is the surface tension coefficient. Surface tension can be similarly represented

in terms of the pressure difference across the surface, according to Laplace’s law,

∆Psurf = γ · κ (20)

where ∆Psurf is the pressure difference across the liquid surface. Both representations

describe surface tension as being linearly dependent with respect to the surface mean

curvature κ.

There are three different interfaces upon which surface tensions act on the contact

front where a liquid surface meets a solid object: liquid-air, liquid-solid, and solid-air.
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Figure 7: A photograph of a water drop in equilibrium and the illustration of its
contact front.

According to Young’s relation (Figure 7) [19], if the contact line at the intersection of

these three interfaces reaches equilibrium with no external forces, the surface tensions

will satisfy:

γsa − (γla cos θs + γls) = 0 (21)

where θs(0 < θs < π) is the stable contact angle, and γls, γsa and γ = γla are interfacial

tension coefficients for the liquid-solid, solid-air and liquid-air surfaces, respectively.

Since it is difficult to measure surface tension directly, the stable contact angle is

a common term used to quantify the affinity between a liquid and solid material.

When θs is small (say, close to zero), the solid surface is said to be hydrophilic, and

the liquid surface tends to spread flat. The solid surface is called hydrophobic if θs

is large (close to π), and the liquid tends to bead up on the surface. The top row

in Figure 6 shows the photographs of water drops in different shapes due to different

solid surface property.

When external body forces act on the liquid, the actual equilibrium contact angle

between the solid surface and liquid surface may slightly differ from θs. For example,

the observed stable contact angle can be smaller than θs when a drop sits on a table,

as the curvature at the contact line becomes slightly positive to hold the pressure due

to gravity.

The characteristics of the liquid motion depend greatly on the liquid scale. Water

moving in a large tank will behave in an entirely different manner than a water

droplet that is flowing on a table. A number of different dimensionless numbers are
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Table 1: Some symbols used in this chapter.

Symbols Definition
γ The surface tension
κ The mean curvature ∇(∇φ/|∇φ|)
φ The signed distance function to some surface
Ωs The solid surface
Ωl The liquid surface with φl, or simply φ
Ωla The liquid air surface with φla
Ωls The liquid solid surface with φls
Ωv The virtual surface with φv
Ωnew The new surface with φnew

commonly used to characterize the relative scales of different forces. For instance, the

Bond number is defined as the ratio between typical gravitational and surface tension

forces, the Weber number describes the ratio between inertial and surface tension

forces, and the Capillary number describes the ratio of viscous and surface tension

forces. For our purposes here, it is sufficient to note that the capillary length of the

liquid-air interface for water under gravitational acceleration is
√
γ/(ρg) ≈ 4 mm.

At scales orders of magnitude larger than this, surface tension effects are difficult to

discern; but flows on the scales of a few capillary lengths (centimeters) typically have

important surface tension and contact angle effects.

3.4 Virtual Surface Extrapolation

Our virtual surface approach makes use of the signed distance field φ that represents

the liquid-air interface in order to simulate contact angle effects. The virtual surface

can accurately capture the effects of each surface tension force on the contact line

through a series of steps. The virtual surface is extended into the solid at the desired

stable contact angle that would balance the surface tension forces on the contact line

as in Young’s relation (Equation 21). If the actual surface is not at the desired contact

angle, the resulting kink has a non-zero curvature. The appearance of this curvature
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in the pressure boundary condition of the projection step yields the desired forces.

Our method modifies the original liquid surface Ωl around each contact front

cell independently so that the curvatures calculated from the modified surface Ωnew

correctly take all interfacial tensions into account. The full liquid surface Ωl is the

union of the liquid-air surface Ωla and liquid-solid surface Ωls, with the full surface

defined implicitly in the distance field φ. By modifying φ, we replace Ωls by a virtual

surface Ωv. We then estimate the mean curvature on this new surface and use the

curvature as the surface tension pressure (Equation 20). Without the virtual surface

method, estimating the surface tension is the same as using a stable contact angle π,

which would greatly limit the range of phenomena that could be simulated.

L(t)
L’(t)

Ns(t)

Ns(t)×L’(t)θs

R(t)

LiquidAir

Solid

Ωs

Ωla

Nl(t)

L(t)’s normal plane

Figure 8: The solid surface and liquid air surface

We will now define the virtual surface. Let L(t) be the curved contact line between

the solid surface Ωs and the liquid surface Ωl (Figure 8). Let Ns(t) be the surface

normal of the solid and let Nl(t) be the liquid surface normal on L(t). The value t is

a unit arc length parameter (|L′(t)| = 1), and t is chosen so that as t increases, the

position L(t) rotates counter-clockwise around the normal Ns(t). By definition, Ns(t)

and Nl(t) define a plane that is normal to the contact line L(t). The angle between

Ns(t) and Nl(t) defines the contact angle between Ωs and Ωl. Our virtual surface

begins along L(t) and extends down into the solid at a specific angle dictated by the
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(a) Stable front: θc = θs
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Solid
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Ωla

κn>0θc

Ωvπ - θs

Ωs

(b) Receding front: θc < θs

Air

Solid

Liquid

Ωla

κn<0
θc

Ωvπ - θs

Ωs

(c) Advancing front: θc > θs

Figure 9: The contact front in 2D.

solid-fluid affinity. Specifically, the virtual surface V (s, t) is defined to be

V (s, t) = L(t) + sR(t) (for s > 0) ,

R(t) = − sin θs ·Ns(t)− cos θs · (Ns(t)× L′(t)) .
(22)

For a given t0, V (s, t0) is geometrically a ray with an origin at L(t0) and that points

in the direction R(t0), and this ray has an angle of π
2
+ θs with Ns(t) in L(t)’s normal

plane.

Let us examine the virtual surface in L(t)’s normal plane (Figure 9a). If the

current angle θc equals the stable contact angle θs, then the contact line should be

stable in the normal plane by definition. This is justified in the virtual surface method

because the curvature κn in the normal plane is zero when Ns and Nl coincide. When

θc is not equal to θs, using the mean curvature calculated by the virtual surface

method provides a new way to estimate dynamic surface tensions on the contact line.

Figure 9b shows the receding case ( θc < θs) and Figure 9c shows the advancing case

(θc > θs).

The input φl (or simply φ) to the virtual surface method is the original distance

function of the liquid surface Ωl, including Ωla and Ωls. For open surfaces, such as

Ωla and Ωls, we define Ω in a region if for any point P , its closest point is not on Ω’s

boundary. We then define the full closed liquid surface through φ as the minimum

defined value of φla (the distance to Ωla) and φls (the distance to Ωls). This signed

distance will then be modified to create a new distance function φnew in which Ωls

is replaced by the virtual surface Ωv. All surfaces are represented by signed distance
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functions with no explicit formulations here.

In the remainder of this section, we first show how the virtual surface method

works on contact front cells (φ = 0) in 2D and 3D for a flat solid surface. We then

describe how the method is naturally extended to general boundary cells and curved

solid surfaces. We also assume the stable contact angle θs is unique in this section.

In Section 3.5, we will discuss how to choose the contact angle according to different

situations, including moving fluid surfaces and pre-wetted solid surfaces.

3.4.1 Modifying Surfaces in 2D

In 2D, the contact front is a single point, and the virtual surface is simply a ray

extending from this contact point into the solid. We create the virtual surface by

modifying the distance field values of φ to accurately reflect the distance between

locations inside the solid and the closest point on the virtual surface. We then merge

the virtual surface with the liquid-air surface, which is obtained from the original

liquid surface.

For a given contact point, we locally modify the liquid surface in a small stencil

of grid cells of φ, and these updated values will later be used to estimate curvatures.

Our first-order curvature estimation scheme only requires the stencil size to be three

nodes in each dimension. Our method can be easily extended, however, to handle

larger stencil boxes when higher order curvatures are demanded.

Let C be a 3× 3 stencil box centered at the contact front as shown in Figure 10.

Without loss of generality, we assume the center C0,0 is at the contact front (φ(0, 0) =

0), C−1,0 is in water (φ(−1, 0) < 0) and C1,0 is in air (φ(1, 0) > 0). In order to

compute the new distance function φnew, the first step is to calculate the virtual

surface’s distance function φv from each node on the Y=0 and Y=-1 planes inside of

the solid. Let ψ be the distance to the contact point from each node on the Y=0

plane, then by definition we know ψ(0, 0) = 0, ψ(−1, 0) = −h and ψ(1, 0) = h where
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Y=1

Y=0

Y=-1

Liquid

Ωla

Ωs

Ωv

Air

Solid

θc
θs

Figure 10: The 2D stencil box. The empty dots are water nodes, and the solid
dots are air nodes. The Y=0 plane is the solid surface and the Y direction is the
solid surface normal. The solid line is the liquid-air surface and the dashed line is the
virtual surface.

h is the node size. For nodes on the Y=0 plane, φv is:

φv(x, 0) =

 ψ(x, 0) sin θs x cos θs > 0

x
|x|h otherwise

(23)

For nodes on Y=-1 plane, φv is:

φv(x,−1) =

 [ψ(x, 0)− h cos θs] sin θs x cos θs + sin θs > 0

x
|x|(ψ

2(x, 0) + h2)1/2 otherwise
(24)

Given the virtual surface’s distance function φv defined above for all nodes Y≤ 0,

we combine φv with the liquid-air distance function φla defined for all nodes Y≥ 0 to

form a new distance function φnew. We first determine φnew for Ωnew’s boundary nodes

on each side, then estimate φnew for the rest of the nodes using the fast marching

algorithm from the boundary nodes. For φv’s boundary nodes on the Y=-1 plane, |φv|

is less than h, which means Ωv is definitely closer than Ωla. Therefore, for those nodes,

the virtual surface’s boundary nodes on the Y=-1 plane are also the new surface’s

boundary nodes, and φnew = φv. Similarly, the liquid surface’s boundary nodes on

the Y=1 plane are also the new surface’s boundary nodes: φnew = φla = φl, since the

liquid-solid surface is beneath the solid surface Ωs : Y=0. We finally determine the

new surface’s boundary nodes on the Y=0 plane. C0,0 is definitely a boundary node
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Figure 11: 2D capillary action. Solid surfaces are all hydrophilic.

for the new surface, with φnew = 0 by definition. For other two nodes, if they are air

boundary nodes, we determine their values as:

φnew =

 φla

φv

=

 φl |φla| < |φv|

φv otherwise
(25)

We can determine the values at air boundary nodes because the liquid-solid surface

is a thin surface beneath the solid plane, so φla is still equal to φl for air-side nodes.

Meanwhile, water boundary nodes are so close to the liquid-solid surface that their

φl may in fact be equal to φls.

φv and φl can be further used to fix any numerical errors that occur when esti-

mating the new distances by the fast marching method. If a node is on the Y=0 or

the Y=-1 plane, we bound its value φnew by φv. If an air node is on the Y=0 or the

Y=1 plane, we bound its value φnew by φl. Again, we do not consider φl for any water

nodes for the same reason described before: φl may not be equal to φla, but equal to

φls. Figure 11 shows a simulation of 2D capillary action using the 2D virtual surface

method. The small contact angle causes a column of water to be drawn up into the

thin tube. Also note the bending of the lower water surface.

3.4.2 Modifying Surfaces in 3D

The virtual surface method in 3D is similar to that in 2D: first calculate the dis-

tance function φv to the virtual surface, then merge it with the liquid-air surface by
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calculating φnew on the new surface’s boundary nodes. The stencil box C is now a

3× 3× 3 cube that is centered on the contact line (φl(0, 0, 0) = 0), and the Y -axis is

the constant solid normal direction.

The major difference for 3D is that the contact front in 3D is a curve on the

solid surface plane, which causes new difficulty in determining the virtual surface’s

distance function φv. Fortunately we can show that if the contact line is sufficiently

smooth and if the stable contact angle θs is not extreme (small | cos θs|), this 3D

virtual surface’s shortest distance problem can be reduced to the 2D φv’s shortest

distance problem in L(t)’s normal plane. The solution to this 2D case has already

been given in Equation 23 and 24. We include the proof to a supporting claim in

Appendix A for interested readers. According to the 2D solution, it is not necessary

to know the exact position of the closest point L(t0) on L(t). We do, however, need

to know the shortest distance ψ from any node on the Y=0 plane to the contact line

L(t). Here we will show how to recover ψ from the original liquid surface’s distance

function φl.

Figure 12: Two possible cases in estimating the distance ψ to the contact line.

Let Cx1,0,z1 and Cx2,0,z2 be two neighboring boundary nodes of the liquid surface

such that φl(x1, 0, z1) < 0 and φl(x2, 0, z2) > 0. Also let Cx1,1,z1 and Cx2,1,z2 be two

nodes above them on the Y=1 plane. There are two possible cases for estimating ψ
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according to different liquid contact fronts (Figure 12). In the left case, when the

current angle θc > π/2, assuming that the liquid surface is sufficiently smooth, then

ψ(x1,0,z1)
ψ(x2,0,z2)

= φl(x1,0,z1)
φl(x2,0,z2)

, and therefore,

ψ(x1, 0, z1) = φl(x1,0,z1)
|φl(x1,0,z1)−φl(x2,0,z2)|

h

ψ(x2, 0, z2) = φl(x2,0,z2)
|φl(x1,0,z1)−φl(x2,0,z2)|

h
(26)

in which h is the node size. In the right case, when θc < π/2, we have ψ(x1, 0, z1) =

φl(x2, 0, z2)− h and ψ(x2, 0, z2) = φl(x2, 0, z2). We classify the boundary pair to be

the left case if φl(x2, 0, z2) > φl(x2, 1, z2); otherwise the right case applies.

For each boundary pair, ψ is calculated as given above. If one node is included in

more than one boundary pair, the distance is chosen to be the one with the smallest

absolute value. After determining ψ for all boundary nodes, we use the 2D fast

marching method to estimate ψ for the rest of the nodes on the Y=0 plane.

Once we have calculated the virtual surface distance function φv, we determine

the new surface’s boundary nodes in a similar manner to the 2D case. Boundary

nodes on the Y=± 1 planes can be immediately determined by the virtual surface

and liquid surface’s boundary nodes. For air boundary nodes on the Y=0 plane, the

new distance is chosen using Equation 25. The water boundary nodes are ignored for

the same reason as before. After that, φnew for non-boundary nodes are estimated

using the 3D fast marching method, and they are further corrected using the known

shortest distances to the virtual surface and to the liquid surface respectively, again

similar to the 2D case. Figure 6 shows the shapes of drops with different stable

contact angles simulated using a physically based fluid solver.

3.4.3 Virtual Surfaces on Curved Solid Shapes

So far we have described how to modify the surface near the contact front so that

the surface tension can be estimated on a flat solid surface. It results in maintaining

a characteristic stable contact angle. We will now discuss contact angles on curved
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solid surfaces.

For each air boundary cell in a level set grid, surface tension is calculated as

the boundary condition for the pressure projection step. Since those air boundary

cells may not be exactly on the contact front, we cannot apply the virtual surface

modification directly. One straightforward way to resolve this would be to first find the

closest contact point to the air boundary cell, then use the surface tension estimated

at this position as a Dirichlet boundary condition. Unfortunately, it is quite difficult

to form a second order or higher boundary condition scheme for those closest points

if they are not aligned with grid cells at all. Further, finding the closest contact point

depends heavily on estimating the surface’s signed distance gradient correctly, which

is relatively unstable especially on highly curved surfaces.

Instead, we use a simple first order boundary condition scheme in our method. We

choose the stencil box to be centered at the air boundary cell and the stencil node size

to be the same as the grid cell size. We determine the stencil box’s coordinate systems

by surface normals: The stencil’s Y axis is the solid normal direction Y = Ns and the

stencil’s X axis is the orthogonalized liquid normal direction X = Nl − (Ns ·Nf )Ns.

Then we sample the liquid distance function for each stencil node using trilinear

interpolation, and subtract φ(0, 0, 0) from each stencil node’s distance value. The

actual liquid surface represented by the stencil box is the liquid surface’s iso-contour

where the distance equals φl(0, 0, 0). We modify this iso-surface represented in the

stencil box and estimate the surface tension for that air boundary cell even if it is not

immediately on the contact front. We then calculate the surface mean curvature for

the center node C0,0,0 in the stencil box by Equation 27 from [78]:

κ = (φ2
xφyy − 2φxφyφxy + φ2

yφxx + φ2
xφzz − 2φxφzφxz + φ2

zφxx

+φ2
yφzz − 2φyφzφyz + φ2

zφyy)/|∇φ|3
(27)

where the first and second derivatives of φ are estimated using second order finite

difference formulae.
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Since the stencil’s X direction is the orthogonalized liquid normal direction and

we have φl(0, 0, 0) = 0, node C0,−1,0 should be inside of the liquid surface iso-contour.

However, this may not be true in some cases, such as when the liquid normal directions

have not been accurately estimated. In that case, we bound φl(0,−1, 0) to be always

less than some maximum value ε = −10−6 so that the virtual surface construction will

not fail in case of missing the contact line when no nodes on the Y=0 plane satisfies

φl < 0.

Although the distance to the virtual surface that is calculated by this method

is not exact, the value is still a good approximation to the actual shortest distance,

given a sufficiently smooth solid surface or a small stencil size. Our experiments show

that the virtual surface method can estimate surface tensions robustly and accurately.

3.5 Dynamic Contact Angle Model

In the real world, a unique stable contact angle is not sufficient to model fluid drop

movements on solid surfaces. For instance, the phenomenon called contact angle

hysteresis [84], where a tiny drop is suspended on a vertical plane, cannot be modeled

with a single stable contact angle. This phenomenon requires a dynamic contact angle

model, and can indeed be captured using only two stable contact angles: a receding

(minimum) stable contact angle θrs and an advancing (maximum) stable contact angle

θas . Any angle between θrs and θas can be a valid stable contact angle before the contact

front starts to move.

Because it is sufficient to capture the effect of hysteresis, we use a simple dynamic

model with two stable contact angles set by the contact front velocity in the liquid

surface’s normal direction. In the advancing case when the velocity is moving into

previously dry regions, we use the advancing contact angle θas ; otherwise, we use the

receding contact angle θrs. If the contact line is static (the velocity is below some

threshold), we first calculate both boundary pressures Pr and Pa using θrs and θas ,
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respectively. Since we assume θrs ≤ θas , Pr ≤ Pa and we then choose the actual

pressure to be:

P =


0, if Pr · Pa < 0

Pa, if Pa < 0

Pr, if Pr > 0

(28)

The actual values of the receding and advancing stable contact angles depend on the

properties of both the liquid and the solid. The contact angles can also depend on

the wetness of the solid surface. If the solid surface is already wet, liquid remaining

on the surface can help subsequent drops move more freely on the surface. For such

wettable solid surfaces, we maintain a wetting history map for the grid in order to

indicate which regions have already been wetted. We then use a wetted advancing

contact angle θas−w smaller than the dry advancing contact angle θas−d. We do not

discriminate between the wet and the dry cases for the receding contact angle since

the receding angle moves into a wetted region in both cases.

3.6 The Sparse Grid Representations

In order to simulate complex drop interactions, the grid domains that we use can

become significantly larger than those in other liquid simulations. A typical grid

domain in our experiments can contain 400 × 400 × 400 grid cells. Fortunately, the

liquid volume only occupies a small portion of the whole domain space. We use a

sparse grid representation in which the domain is first subdivided into 8× 8× 8 box

regions. If the region contains any liquid or if it is close to the liquid surface, we

activate this region and allocate memory for it. Otherwise, the region is inactive and

no computation time or memory is used for the region.
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Figure 13: The circled drop follows a previous drop’s path.

3.7 Applications and Results

We have integrated the virtual surface method into our fluid solver and we have

simulated several different small-scale liquid motion scenarios. Typically each sim-

ulation takes 5 to 8 days to simulate on one Pentium Xeon 2.8GHZ Workstation.

Even though our algorithm works efficiently, our simulations are still relatively time

consuming since the computational domain space is huge.

For the sake of completeness, we discuss the simulation parameters used for our

simulations. For simplicity, we take constant time steps updating velocities every

2 · 10−4 second. The liquid in each of our simulations here is taken to be water, as

defined by its physical properties: the surface tension between the water-air interface

is γ = 73 g/s2 (at room temperature) and the viscosity is ν = 0.01 cm2/s. We apply

no-slip conditions on the solid surface. The only external force used here is the

acceleration due to gravity g = 980 cm/s2. The typical drop size in our simulation is

from 2mm to 6mm. We use a second order Runge-Kutta scheme to trace particles for

both the semi-Lagrangian method in the velocity advection step and for the particle

level set method. Our Poisson solver uses the preconditioned conjugate gradient

method with a modified incomplete Cholesky decomposition preconditioner. Since
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the water drop’s velocity varies greatly and the volume loss is severe only on high-

velocity surfaces, in the particle level set method, we choose the particle number for

each grid cell according its velocity magnitude with a maximum of 32 particles per

cell. Using the particle level set method dramatically reduces volume loss during

simulations.

When the grid cell size is not sufficiently small, surface tension estimations for

small drops are less accurate and may cause instability in drop motions. Fortunately,

surface tensions on small drops can be ignored since their visual effects are hardly

noticeable. In our experiment, we did not use surface tension if the water drop only

contains 27 grid cells or less.

We have created several animated scenes based on our method of simulating fluid

with interfacial tension. The first simulation considers flat window panes with varying

surface properties, showing how the solid surface property and randomly added drops

can influence the water drop’s flowing paths as shown in Figure 14. In the beginning,

water drops are identically distributed on each pane. The left pane has θas = 90◦ and

θrs = 60◦. The middle pane is more hydrophilic in the wake of the falling drop, with

θas = 90◦ and θrs = 30◦. In addition, we use a maximum receding surface tension

bound to enhance the hysteresis effect. The right pane has similar contact angles as

the left pane except that it also uses the wetting history and θas−w = 60◦. Compared

with those on the left pane, the drops on the middle pane leave longer trails because

the receding contact angle is small and the receding surface tension is limited. On

the right pane, the solid surface becomes wet after water drops flow on it, so that a

water drop is likely to follow the previous drop’s path (Figure 13). These three panes’

affinities to water are similar to those of plastic, glass and marble, respectively.

The second and third simulations show a pipe and a bunny, with water dripping

onto these surfaces from a height of roughly 0.1 meter. The surface of the pipe is

represented analytically, and a distance field is used to represent the bunny. For
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these solid surfaces, θas = 90◦ and θrs = 60◦. The tube is tilted at an angle of

10◦ from horizontal. Notice the behavior of drops on the tube’s bottom and the

bunny’s ears. Surface tension holds a drop from leaving the solid surface until enough

water accumulates so that the drop becomes sufficiently large (Figure 15 and 16).

Often when the drop leaves the surface, tiny satellite drops are formed when the thin

connecting strand of water snaps.

The leaf in the fourth simulation is comprised of two planes spanning an angle of

120◦, and the leaf axis is tilted at an angle of 15◦. Figure 17 shows a sequence of a

drop hitting the leaf and merging with its neighbor. Notice that drops flatten when

they first hit the leaf, but then bead up due to the hydrophobic nature of the leaf.

Also note the manner in which separate water drops flow to the middle of the leaf

and join to form larger and longer rivulets (Figure19).

To generate the rendered images, we construct triangle meshes for the liquid sur-

face using the marching cubes algorithm. Images were synthesized using our rendering

program based on the physically-based ray tracer (pbrt) [79]. The environment maps

are high dynamic range images from Paul Debevec’s Light Probe Image Gallery. The

leaf texture image is from Mayang’s texture library (http://www.mayang.com/textures).

Figure 14: An example shows three window panels with different solid properties.
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Figure 15: Water drops on a pipe.

Figure 16: Water dripping off a bunny’s ear.

Figure 17: Drop impacts on a leaf. A flattened drop appears in the upper-right
image. Time advances left to right, then top to down.
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Figure 18: Drops on a leaf. These simulations show the formation of long rivulets.

Figure 19: Drops on a bunny. These simulations show the formation of long rivulets.
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CHAPTER IV

GENERAL SHALLOW WAVE EQUATIONS

4.1 Introduction

Due to the complexity of the 3D Navier-Stokes equations, water behavior varies sig-

nificantly under different circumstances. Researchers have invented many numerical

methods to generate various realistic liquid effects by solving the Navier-Stokes equa-

tions. After our previous work successfully simulated small scale fluid behaviors, our

main interest turned to making these simulations more efficient using a shallow wave

assumption. This allows us to efficiently simulate examples such as toy boats floating

in the bathtub and water drops streaming down a glass.

Compared with other representations such as particles, tetrahedral meshes or grid

structures, a height field is more suitable to represent liquid under the shallow wave

assumption. A height-field-based system is easier to implement and its computational

space increases only quadratically with spatial resolution. Also, restricting the Navier-

Stokes equations to 2D makes it possible to apply implicit numerical schemes, which

often means more stability and higher efficiency. However, previous height-field-based

techniques only supported a limited range of effects. In particular, surface tension

was neglected, which diminished the accuracy of small-scale liquid simulations.

In order to remove these limitations, our first contribution is a general height-

field-based system (Section 4.3) that solves the new General Shallow Wave Equations

(GSWE), which are extended from the traditional shallow wave equations. This sys-

tem builds height columns along surface normals rather than in the absolute gravity

direction, as the left picture in Figure 20 shows. Forces in our system include grav-

ity (Section 4.4) and surface tension (Section 4.5), and they are solved by implicit
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schemes that are significantly more stable and efficient than explicit schemes. We fur-

ther present a two-way liquid/rigid body coupling method in Section 4.6 for floating

and drifting effects. Finally in Section 4.7, we demonstrate how this system can be

optimized to run in real time on both CPUs and GPUs, which allows users to control

and design fluid shapes interactively.

This system is most suitable for simulating low-speed fluid dynamics of small-

scale incompressible 3D water flows on surfaces, which is expensive to generate with

particle systems or grid systems. It can also provide an efficient way to predict

other fluid behaviors before applying more accurate but time-consuming techniques.

While each different system is capable of efficiently generating some specific effects, a

comprehensive system that combines height fields with particles or grids as in [76, 49]

should be able to capture more aspects of water animations in the future. We believe

that the work presented in this chapter will be an important sub-component of such

a system.

4.2 Related Work

Water animation is notoriously difficult and time-consuming to produce because solv-

ing the 3D Navier-Stokes equations requires a large computational domain. The

computational domain increases cubically in 3D when water is represented either by

particle systems [68, 72] or 3D volumetric systems [31, 96, 30, 24], not to mention

the extra computational cost required by the CFL condition. As expected, a natural

solution to improve simulation performance is to reduce the computational space.

Instead of using cartesian grids in 3D, Losasso et al [62], Houston et al. [44] and

Nielsen and Museth [75] proposed to use non-uniform grids such as octree structures

or cells with various lengths. Feldman et al.[27], Klingner et al. [58] and Elcott et

al. [22] considered solving fluid dynamics on unstructured tetrahedral meshes rather

than grid structures. Treuille et al. [103] used Principal Component Analysis (PCA)

39



to further reduce a static computational domain into a principal component space.

However, extending this method to handle free surface water animation is difficult.

Since the computational domain of a height-field-based system increases only

quadratically with the spatial resolution, height fields were expected to be a more

efficient representation after being introduced into the graphics community by the

work of Kass and Miller [56] for rapid fluid simulations. This technique was later aug-

mented with semi-Lagrangian velocity advection by Layton and van de Panne [60].

Instead of using shallow wave equations, Chen and da Vitoria Lobo [15] proposed

to only solve pressure projection in 2D while keeping other simulation steps in 3D.

Recently, Irving et al. [49] demonstrated how to combine a height field representation

with a grid structure in order to simulate some non-height-field behaviors such as

overturning and splashing.

In order to simulate 2D water flows on curved surfaces, Stam [97] proposed the use

of quadrilateral meshes from Catmull-Clark subdivision. Flow simulation directly on

manifold triangle meshes was demonstrated by Shi and Yu [91] and Elcott et al. [22]

using discrete differential geometry (DDG) operators. Kim et al. [57] further adopted

the BFECC method to reduce numerical dissipation in surface flows. Our method

also simulates water flows on meshes directly, and we allow surfaces with arbitrary

topology.

Considerable research has been done recently on grid systems and particle systems

to model coupling between water and other objects, including rigid bodies, cloth and

thin shells and other fluids. For height-field-based systems, one-way fluid/rigid body

coupling methods were proposed by O’Brien and Hodgins [76] and Chen and da Vito-

ria Lobo [15] to simulate waves caused by moving objects. To our knowledge, however,

two-way coupling algorithms for height fields have not yet been demonstrated.

Other topics related to this work include water drop simulation [32, 73], water

wave simulation [42, 65], fluid surface tension [43, 16, 95, 112], and fluid control [104,
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64, 25, 92].

4.3 General Shallow Wave Equations

Our goal in this section is to extend traditional Shallow Wave Equations (SWE) [56]

to our new General Shallow Wave Equations (GSWE). As their names imply, SWE

and GSWE are both based on the shallow wave assumption: the wave velocity is

low and the wave height variation is small. The original shallow water equations

can be derived from the Navier-Stokes equations according to the method of Saint-

Venant [109]. However, the height field in SWE is built in the absolute gravity

direction and the only external force is the gravity force in the horizontal direction.

While a SWE system can be greatly simplified because of these, it suffers from the

following limitations. Firstly, solid surfaces could not be too steep otherwise water

drops will not be properly represented, as shown by the upper left picture in Figure 20.

Secondly, it is not clear how to incorporate other forces, such as surface tension forces

and user control forces, nor how to develop implicit schemes for arbitrary forces.

Interaction between height-field-based water and the environment is also difficult to

model in a physically-based manner.

The height field in GSWE is constructed along surface normals rather than in

the absolute gravity direction as Figure 20 shows. In order to avoid self-intersection

among water columns when the surface is fully detailed with small bumps, we use

averaged surface normals from a low-resolution surface and represent the difference

between the original surface and the low-resolution surface as a terrain height field

b(x) in the local background. The water height field is then defined as a function

h(x, t) of the surface position x and time t. Horizontal water velocity is ~u(x, t), and

vertical velocity is implicitly given as ∂h/∂t. Since our system allows arbitrary ex-

ternal forces, we first separate a 3D force ~fext into a 1D pressure component Pext
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Figure 20: Left: The height field is built along surface normals rather than in the
absolute gravity direction. Right: External forces are separated into pressure and
acceleration components.

and a 2D acceleration component ~aext as the right picture in Figure 20 shows. Al-

though these two components act on the water based on different mechanisms, they

both take effect by changing the water’s horizontal velocity ~u. The pressure compo-

nent, including air pressure, surface tension pressure and vertical gravity pressure,

squeezes water and causes horizontal movement due to pressure difference. On the

other hand, the acceleration component, including user control force and horizontal

gravity acceleration, acts on the horizontal velocity immediately. By restricting the

3D Navier-Stokes equations to 2D surfaces, we can formulate the non-viscid General

Shallow Wave Equations as follows:

~ut = −(~u · ∇)~u−∇Pext/ρ+ ~aext (29)

ht +∇ · (h− b)~u = 0 (30)

in which ρ is the water density. Equation 29 updates the horizontal velocity due to

both Pext and ~aext. Equation 30 updates the height field and maintains the incom-

pressibility implicitly. Equation 30 can be reorganized into:

ht + (h− b)∇ · ~u+ ~u · ∇h = 0 (31)
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Since we are targeting at slow water, it is safe to ignore the velocity advection term

(~u · ∇)~u in Equation 29. According to method of characteristics, we separate the

dynamics and update the height field twice, once according to the horizontal velocity

field and once according to the height field itself (in the vertical direction only). The

height field advection by the velocity field is first solved using an explicit solver:

ht + ~u · ∇h = 0 (32)

The rest of Equation 29 and 31 are simplified by differentiating Equation 31 with

respect to t and differentiating Equation 29 with respect to the spatial dimension.

We then eliminate cross-derivatives:

∂2h

∂t2
=
d∆Pext
ρ

− d∇ · (~aext) (33)

When forces vary slowly through time such as user control forces, we treat them as if

they are temporally invariant so that Equation 33 can be solved by explicit methods at

each time step. However, two common natural forces, the gravity force and the surface

tension force, are quite sensitive to height field changes as time evolves. If we insist

on using explicit solvers in these cases, the system would require significantly smaller

time steps according to the CFL condition in order to avoid instability. Therefore, we

develop implicit schemes for both of these forces in Sections 4.4 and 4.5 respectively.

They are combined and solved together in a single matrix system:

(Ag + As + I− Ic)h
t = b− bc (34)

in which ht is the unknown height field at time t, given all known height fields

ht−1, ht−2, ... previously calculated at time t − 1, t − 2, ..., respectively. Matrices Ag

and As are formulated from implicit schemes for gravity and surface tension force. Ic

and bc are the coupling matrix and vector, which will be discussed in Section 4.6. b

is a prospective height field augmented with artificial viscosity effects by a factor τ :

b = ht−1 + (1− τ)(ht−1 − ht−2) (35)
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After the height field has been solved, we finally update the velocity field using Equa-

tion 29 and apply some artificial surface friction by a damping factor h(x)/(h(x)+d) .

When d is zero, there is no friction and when d goes larger, the friction effect becomes

more obvious.

4.3.1 Spatial Discretization

Because the height field is built along solid surface normals, spatial discretization in

our system depends on solid surfaces rather than absolute 3D space. Flat surfaces can

be easily discretized into regular grids and then applied with finite difference schemes

to formulate the GSWE matrix system.

For curved surfaces, we discretize the surface by a set of particles, instead of

parameterizing the surface into quadrilateral grids. A particle repulsion algorithm

is used over particles to approximate uniform distribution on the surface. A height

column will then be built at each particle as Figure 21 shows.

In each iteration of the particle repulsion algorithm, six closest particles are found

for each particle Xi and they become Xi’s neighborhood Ui = {Xi1 ,Xi2 , ...,Xi6}. We

use six neighbors because this is the average number of neighbors once the repulsion

algorithm converges. We find that this approach produces similar results as other

methods, such as repulsion of all points within a fixed radius. Next, we arrange all

the neighbors in counter-clockwise order. The repulsion force applied on Xi is then

calculated as:

f(Xi) = a
∑
j

wi,j(Xj − Xi)

wi,j = cotαi,j + cot βi,j

(36)

The force magnitude factor a is usually between 0.01 and 0.2 in our experiments.

wi,j is a non-zero weight factor only when Xj ∈ Ui as in [34], and αi,j and βi,j are

two angles facing toward the same edge (Xi,Xj) as Figure 21 shows. The advantage

of calculating repulsion forces using Equation 36 instead of polynomials in [107] or

Gaussian falloffs in [41] is to facilitate the surface tension scheme, as will be discussed
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Figure 21: Particles and their height columns are constructed on a solid surface.

later in Section 4.5. In order to make wi,j symmetric, we add Xi into Xj’s neighbor-

hood once we know Xj ∈ Ui, even though Xi may not be necessarily in Uj. After

h = 0

h =
0.16

AA AA

Figure 22: BUNNY: The left picture illustrates spatial discretization and the cell
connectivity on the bunny model. Colored cells are water cells and black cells are
boundary cells. The right picture shows a water drop changes its path after the bunny
model was rotated 90◦.

the repulsion process has converged, we construct the particle connectivity from the

nearest neighbors and then we calculate the differential geometry operators directly

from the neighborhood according to [34]. In this way, we do not need to reconstruct

manifold triangle meshes as required in [91, 22].

4.3.2 Boundary Conditions

When simulating a large body of water with no dry areas, either Dirichlet boundary

conditions or Neumann boundary conditions can be used on the boundary for different

wave reflection effects.

When simulating water drops that are sparsely distributed on surfaces, we do not

define the height field in dry regions in order to save memory and computational cost.

These dry regions dynamically change over time and need to be updated as long as
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water flows. Naively, any cell with non-positive height value should be treated as in

the dry region. In practice, we exempt boundary cells (even if they have non-positive

values) immediately neighboring to water cells from the dry region so that an accurate

contact front can be continuously interpolated. The left picture in Figure 22 illustrates

boundary cells in black on the bunny model. Boundary cells only exchange water with

neighboring water cells when we solve GSWE. We apply boundary conditions between

boundary cells and water cells, where the actual boundary is specified. Neumann

conditions can prevent water from moving forward, while Dirichlet conditions allow

water to move freely.

After the height field has been updated, we undefine boundary cells if they are no

longer next to water cells. If a boundary cell becomes a water cell, its neighboring

cells may become boundary cells and they will be updated. Boundary oscillation

may occur if new boundary cells are not initialized properly with right height values.

Similar to the fast marching algorithm [88, 78], our method initializes new boundary

cells with C1 continuity, which is sufficient in most cases as our experiment shows.

4.4 Implicit Gravity Scheme

Since the height field is built along surface normals rather than in the gravity di-

rection, we separate the gravity into two components (vertical and horizontal) as

discussed in Section 4.3:

Pg(Xi) = ρgihi

~ag(Xi) = ~g − giNi

(37)

in which gi is the vertical gravity acceleration at Xi: gi = −~g · Ni. We calculate ~ag

once the solid surface and Xi’s location is fixed, because gi at Xi is constant over time.

On the other hand, Pg depends on the height field and requires an implicit scheme

for more stability.

This implicit gravity scheme is extended from [56] by applying different gravity

acceleration gi at each position Xi. For a 1D height field h = {h1, h2, ..., hn} from X1
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to Xn, treating Pg as Pext in Equation 33 and differentiating hti using finite difference

schemes in the spatial domain gives an implicit matrix Ag for solving the matrix

system (Equation 34):

ai,i = 1
4∆x2 [(di + di+1)(gi + gi+1) + (di + di−1)(gi + gi−1)]

ai,i+1 = ai+1,i = − 1
4∆x2 (di + di+1)(gi + gi+1)

(38)

Similarly, the matrix for curved surfaces by the differential geometry scheme is:

ai,i = 1
8A

∑
j

wi,j(di + dj)(gi + gj)

ai,j = aj,i = − 1
8A
wi,j(di + dj)(gi + gj)

(39)

The particle surface area A is assumed to be uniform for all particles, after the solid

surface has been uniformly sampled by the particle repulsion algorithm.

4.5 Implicit Surface Tension Scheme

According to Laplace’s law, surface tension pressure Psurf is related to surface mean

curvature κ, which can be estimated using the Laplace-Beltrami operator in [34]:

Psurf (Hi) = γ · κi

κi = 1
2A

∣∣∣∣∣∑j ŵi,j(Hj − Hi)

∣∣∣∣∣
Hi = Xi + hiNi

(40)

in which γ is the surface tension coefficient, and Hi is the water surface extended along

surface normal Ni at Xi as Figure 21 shows. We assume that Ni is locally constant

after the solid surface has been densely sampled. We also assume that the weight

factor ŵi,j on water surfaces is close to the weight factor wi,j on solid surfaces under

the shallow wave assumption. Since the repulsion force in Equation 36 goes to zero

after sampling, Equation 40 is simplified to:

κi = 1
2A

(

∣∣∣∣∣∑j wi,j(Xj − Xi)+
∑
j

wi,j(hjNj − hiNi)

∣∣∣∣∣
= |Ni|

2A

∑
j

wi,j(hj − hi) = 1
2A

∑
j

wi,j(hj − hi)

(41)
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The Laplace-Beltrami operator on a curved surface is a generalized version of the

Laplacian on a flat surface. This operator is naturally normalized since the sum of

all coefficients for a particular node Xi is zero from Equation 41.

One way to formulate an implicit scheme for surface tension from Equation 40

and 41 is to discretize h as unknowns completely. For flat surfaces, the Laplacian of

the height field gives surface tension pressure, which is again processed by a Laplacian

operator in Equation 33. The matrix As for flat surfaces will then have a cell kernel

that takes the form: 

1

2 −8 2

1 −8 20 −8 1

2 −8 2

1


(42)

The more complicated matrix formula for curved surfaces is skipped here. Although

these complete implicit schemes are numerically stable, these matrices are compli-

cated, asymmetric and dense, because a Laplacian-of-Laplacian operator spans be-

yond the 1-ring neighborhood. Fortunately we notice from Equation 42 that cells

beyond the 1-ring neighborhood have much less influence than those in the 1-ring

neighborhood. Therefore, we propose an incomplete implicit scheme by only formu-

lating implicit correlations within the 1-ring neighborhood after taking Psurf ’s effect

(Equation 40) into account (Equation 33):

ai,i = γ
4ρA2

∑
j

w2
i,j

(di + dj)

ai,j = − γ
4ρA2w

2
i,j

(di + dj)

(43)
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and redundant correlations bs will be added to vector b as:

bs(i) = − γ
8ρA2

{
Bt−1
i + 2

∑
j

w2
i,j

(di + dj)(h
t−1
j − ht−1

i )

}
Bt−1
i =

∑
j

wi,j(di + dj)(K
t−1
j −Kt−1

i )

Kt−1
i =

∑
j

wi,j(h
t−1
j − ht−1

i )

(44)

We implemented and tested both implicit schemes, and we did not notice any signif-

icant benefits from using the complete scheme. Since the incomplete scheme is more

straightforward and efficient, we choose the incomplete surface tension scheme for all

of the following experiments if we do not explicitly say otherwise.

4.5.1 Drops: Surface Tension and Contact Angles

There are two important factors that contribute to the shape and motion of water

drops: surface tension forces at the air/water interface, and the effect of the hy-

drophilicity of the surface on which drops are forming. To account for surface tension

forces at the air/water interface, we apply surface tension pressures to both the water

cells and the boundary cells as discussed in Section 4.3.2. To account for hydrophilic-

ity, we use the virtual surface method proposed in the previous chapter to produce

water drops with various contact conditions. Such contact conditions allow us to

simulate hydrophobic surfaces on which drops will bead up, and hydrophilic surfaces

on which drops are flattened. Although the actual boundary (also called the contact

front) is between boundary cells and water cells, our experiments showed that it is

safe to simply assume boundary cells as exact contact fronts and apply boundary

surface tension pressures only to them. Since surface tension is estimated as weighted

difference as in Equation 41, the virtual surface is interpreted as height difference

between boundary cell hb and virtual surface cell hv as Figure 23a shows:

∆hv = hb − hv = ∆x tan θc (45)
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Figure 23: Illustrations of the virtual surface method. Part (a) gives the virtual
surface in the 1D case. Part (b) shows the contact line normal Nb and two assumed
principal components κn and κs. Part (c) shows water drop shapes without (top) and
with (bottom) the angular factor α.

in which θc is the contact angle. For the 2D regular grid, we incorporate an angular

factor α to count for the fact that the boundary normal is not aligned with the grid

axis:

∆hv = α∆x tan θc

α =

 Nbx +Nby, wl + wr + wu + wd = 1

(wl + wr)Nbx + (wu + wd)Nby, otherwise

(46)

in which wl, wr, wu and wd are 1 if left, right, up or down neighbor cells are in defined

regions, otherwise 0. Nbx and Nby are the boundary’s surface normal coordinates as

shown in Figure 23b. Figure 23c shows that a water drop can correctly bead up into

a circle by using the angular factor, otherwise it might become a diamond shape. On

curved surfaces, since the connectivity between height columns could be arbitrary,

instead of finding a proper angular factor, we sum the boundary mean curvature

from two assumed principal components κn and κs as Figure 23b shows. The depth

component κn in the normal plane modulates how steep the surface is, which can be

estimated similarly to the 1D case. The angular component κs in the horizontal plane
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(a) BOATS: Floating boats interact with wa-
ter waves.

(b) INTERACTIVE: Fluid control by exter-
nal accelerations from a user’s cursor.

Figure 24: Examples.

measures the contact line curvature as:

κs = σ
∑
i


ϕi, hi − hb > 0 and hi+1 − hb > 0

(hi−hb)ϕi

hi−hi+1
, hi − hb > 0 and hi+1 − hb < 0

(hi+1−hb)ϕi

hi+1−hi
, hi − hb < 0 and hi+1 − hb > 0

(47)

in which σ is a scalar factor to modulate κs’s magnitude, and ϕi is the angle between

two neighboring edges as shown in Figure 21. We maintain a wetting history map

from water paths and choose the contact angle based on the surface wetness.

4.6 Two-Way Fluid/Rigid Body Coupling

In this section, we describe our approach to coupling of fluid and rigid bodies. Our

approach is straightforward, and it may be similar to methods that are incorporated

in some games. Because we have not seen this method described in the literature,

we include a complete description here. We assume the rigid object in our two-

way water/rigid body coupling algorithm is small and floating on water, and our

method cannot handle completely immersed objects so far. The coupling algorithm

is separated into two steps: in Step 1, the height field is updated due to the effects of

the rigid object; and in Step 2, the state of the rigid object is updated based on the

effects of water pressure. Because the water surface is represented by a height field,
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we assume that the bottom of each rigid object can also be approximated by a height

field.

When a rigid object first contacts the height field in some cells, those cells no longer

move freely. Instead, they strictly follow the rigid object by squeezing extra water

into free neighboring cells. Therefore, we need to first recognize these constrained

cells in Step 1. Given the height field ht−1, ht−2 at time t− 1 and t− 2 respectively,

and the height map of the rigid object’s bottom st at time t, we can immediately

recognize a constrained water cell i from sti < ht−1
i . However, sti ≥ ht−1

i is not a

suitable criterion to determine when water cells lose contact with the rigid object,

such as when an immersed object is bouncing away from water. A more sophisticated

criterion will be given later after we discuss the Step 2.

Once the constrained water cells have been identified, their water heights are

constrained to be the same as the solid heights: hti = sti. Since water cannot move

freely in a constrained column, an unknown internal pressure P̃ will be formed to

push redundant water into neighboring free columns. We interpret internal pressure

as virtual gravity pressure and parameterize it using a virtual water height h̃i such

that P̃i = ρgih̃i. While hti has already been known as sti for a constrained cell, h̃i
t
is

still unknown. If we replace hti by h̃i
t
as an unknown for each constrained cell in the

matrix system of Equation 33 and apply the implicit gravity scheme as usual, we can

obtain exactly the same gravity matrix Ag as without coupling. The only difference

is a partial identity coupling matrix Ic and a coupling vector bc. Each of them is

padded with zeros except for constrained cell i as:

Ic(i, i) = 1

bc(i) = sti

(48)

In Step 2, we update the rigid object’s velocity and position based on the effects

of water pressure. According to Newton’s law, the internal pressure at each con-

strained cell not only squeezes water, but also repels the rigid object at the same
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time. Therefore, we use the internal pressure to estimate the floating force ~fi on the

solid object:

~fi = (ρgi(h̃i − hi)− Psurf ) ·∆areai · (− ~Ni) (49)

where Psurf is the surface tension pressure, ∆areai is the rigid object area within the

column, and ~Ni is the rigid surface normal. Since ρgi(h̃i−hi)−Psurf in Equation 49 is

supposed to be always positive for constrained cells, we use this as our actual criterion

to recognize whether a column of water loses contact with the rigid object.

The state of each rigid object is then updated by integrating all floating forces

according to standard rigid body dynamics. Interested readers are referred to SIG-

GRAPH course notes [116] for more details about rigid body equations of motion.

After the rigid body states have been updated, we recalculate the rigid height map

st+1 and return to Step 1. We use the depth buffer in graphics hardware to acceler-

ate the calculation of the rigid object’s height map when the flat surface below the

water is discretized by a regular grid. Note that all our examples of fluid/rigid body

coupling were performed on regular grids. We think this method will also perform

well for irregular grids if a suitable method for calculating the rigid object’s height

map is used.

4.7 Interactive Fluid Control

Since our system has little restriction on external forces, we can interactively control

fluid shapes by specifying various external control forces. We provide two techniques

to implement such external control forces ~fext.

The first method uses external pressures calculated from distance maps to a target

fluid shape. For example, the pressure field in the SCA example (Figure 5) uses the

Euclidean distance. To put it another way, if we express the control pressure field as a

terrain height field, control shapes are terrain valleys and water will flow from peaks

to valleys as expected. Because distance maps are C1 continuous in most places,
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Table 2: Simulation statistics. When available, we list simulation speeds for both
CPU (C) and GPU (G) solvers (rightmost column).

Name Type Resolution Surf. Tension Viscosity Speed
g (m/s2) γ (N/m) τ (fps)

BUNNY Surface 160,000 0.073 0.5 C: 11.0
GLASS Surface 160,000 0.073 0.5 C: 4.1
POOL Grid 400× 400 0.073 0.3 C: 4.3

WINDOW Grid 400× 400 0.073 0.3 G: 9.2, C: 11.0
SPHERES Coupling 400× 400 0 0 G: 1.2, C: 0.4

DRIFT Coupling 1, 200× 250 0 0 G: 2.0, C: 0.8
BOATS Coupling 400× 400 0 0 G: 3.3, C: 1.3

INTERACT. Accel. 400× 400 0.073 0.3 C: 20
SCA Pressure 400× 400 0.073 0.3 G: 4.2, C: 3.0

those control forces are smooth and continuous in most places as well. This method

is comparatively stable and robust. It runs faster when the target shape is static,

since reconstructing the distance map (by a fast marching method in our practice)

can be expensive.

Instead of constructing a pressure field, the second method modifies the fluid

velocity directly by external accelerations. We create these accelerations from cursor

motions, similar to some digital painting tools. We also clamp the magnitude of these

synthetic accelerations in order to prevent instability caused by arbitrary user inputs.

Figure 24b is a screenshot captured from our interactive shape design system. This

method is relatively more efficient and more straightforward to implement.

4.8 Matrix Solver and Data Structures

We take advantage of the surface mesh connectivity to store the sparse GSWE ma-

trices. Diagonal elements are stored at vertices, and off-diagonal elements are stored

at mesh edges between each vertex and its 1-ring neighbors. We use directional edges

when the matrix is asymmetric. We also create hyper edges that form connections

between vertices and their 2-ring neighborhoods in order to store the matrix required
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by the complete surface tension scheme.

To solve the symmetric positive definite matrix system defined by the implicit

gravity scheme and the incomplete surface tension scheme, we use the precondi-

tioned conjugate gradient method with either a Jacobi preconditioner or a modified

incomplete Cholesky decomposition preconditioner. We also implemented the pre-

conditioned Bi-Conjugate Gradient Stabilized method (Bi-CGSTAB) with modified

incomplete LU decomposition to test the complete surface tension scheme.

The 2D regular grid matrix solver is implemented on both CPUs and GPUs (with

a Jacobi preconditioner), as Table 4.7 shows. Details about GPU implementation can

be found in [8]. The extension to a GPU matrix solver for curved surfaces should be

straightforward, but remains as future work.

4.9 Results and Discussion

Our system was implemented using all the techniques described in the previous sec-

tions. We tested a variety of applications using this system on a DellTM XPS 700 PC

with Intel Core2Extreme 2.92Ghz CPU and Dual Geforce 7950 graphics card. Test

statistics are listed in Table 4.7. We use real-world units and parameters, including

the water density ρ, which is 1.0 × 103kg/m3 at 3.98◦C. The frame rate for each

example is measured in the worst case with maximum simulation burden. Table 4.7

shows that the GPU matrix solver runs faster on large bodies of water, such as the

coupling examples. On the other hand, the CPU solver can better take advantage of

sparse water, like the examples with water drops.

Our result shows multiple small scale water effects can be efficiently simulated

using this general shallow wave model, including flowing water drops in the WINDOW

and POOL example shown in Figure 27 and 25a, controlled water drops to formulate

specific shapes show in Figure 24b and 25b, gravity-capillary waves in Figure 26, and

solid-fluid coupling in Figure 28.
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Compared with particle systems or grid systems that usually require several min-

utes to generate a single frame at similar resolution, most of our applications run at

interactive rates and some of them run in real time. Compared with other height

field systems, our system has a slightly higher computational cost for several reasons.

Firstly, the overhead to handle a general system is small but not negligible. Sec-

ondly, more iterations are needed to solve the matrix system with a surface tension

matrix As, especially when the surface tension coefficient γ is large. The two-way

coupling algorithm introduces more iterations too, since constrained cells cause the

whole matrix to be less diagonally dominant. This is clearly shown in Table 4.7 from

the SPHERES example and the DRIFT example. Although SPHERES uses lower

resolution, the DRIFT example runs twice as fast since it involves less constrained

cells than SPHERES.

Interestingly, when gravity is in the same direction as the surface normal, the

gravity pressure component gi in Equation 37 becomes negative, which causes a less

diagonally dominant matrix. Eventually with sufficiently strong gravity, the matrix

is failed to be positive definite and its solution becomes unpredictable. Since the

influence of Ag on the matrix system depends on the water depth, ideally we can

remove redundant water from the height field in order to keep the system solvable.

This scenario corresponds to water drops dripping from the bottom of a solid surface,

after the amount of accumulated water goes above some threshold.

The WAVE example shown in Figure 26 illustrates water waves due to a raised

column of water. Our result matches with dispersion relations in that waves under

both gravity and surface tension will disperse faster than waver under gravity only.

It should be noted that shallow wave assumption implies that the wave length should

be much larger than the water depth, which means the system theoretically cannot

exactly represent Kelvin waves in deep ocean or capillary waves with wave lengths <

1.7cm. Fortunately, we noticed from our examples that when the water depth is close
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(a) POOL (b) SCA

Figure 25: Water drops are efficiently simulated using general shallow wave equa-
tions, and they can be controlled by user input to formulate specific target shapes.

to the wave length, shallow waves still provides a reasonable and fast approximation

to gravity-capillary waves for graphics applications, like ripples on a small pool.

One limitation of our GSWE approach is that water columns may intersect if the

surface is concave. We eliminate high -frequency curved regions by using averaged

normals and the background height field b(x), but this cannot entirely remove all

concavities. We have not come across problems from concavities in our examples, but

this issue may arise for some geometric configurations.

We provided GPU rendering with single reflection and refraction during online

simulation for all of our applications. Some examples were supported by offline GPU

rendering with multi-sampling to remove aliasing artifacts. We also used an offline

photorealistic ray tracer to produce high-quality videos for some examples.
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Gravity wave

Gravity-capillary wave
(a) WAVE

(b) DRIFT

Figure 26: The difference between gravity wave and gravity-capillary wave is shown
by the WAVE example. This is used to simulate a toy battleship sailing in a water
tub (DRIFT).
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Figure 27: WINDOW: Water drops are flowing on the window panel with a white
waterproof boundary “water”.

Figure 28: SPHERES: Spheres cause waves and splashes in the height field. They
have different volumes but identical mass.
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CHAPTER V

PHYSICALLY-GUIDED LIQUID MODELING FROM

VIDEOS

Figure 29: A synthetic rendering of a 3D model that was reconstructed from video
of a fountain. These are three static views of the same instant in time.

5.1 Introduction

In recent years, modeling complex real world objects and scenes using cameras has

been an active research topic in both graphics and vision. Exemplary work in this

broad topic includes reconstructing flower models [81], tree models [101], hair [113],

urban buildings [94, 118], human motion [124, 18], and cloth [114, 9]. The typical

approach is to use one or more cameras to capture different views, from which the

3D shape information of the scene can be estimated by matching feature points.

User interaction is often required to refine the initial 3D shape to create high-quality

models. Missing from the list of objects that have been successfully reconstructed

from video is water. Water’s complex shape, frequent occlusions, and generally non-

Lambertian appearance cause even the best feature matching methods to yield poor

depth maps. Its dynamic nature and complex topological changes over time make

human refinement too tedious for most applications.
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In computer graphics, a common technique to produce water animation is physically-

based fluid simulation, which is based on simulating fluid dynamics from the initial

state of a fluid scene. While realistic water animation can be generated by various

numerical simulation approaches, these methods can suffer from numerical errors that

accumulate over time, including volume loss and loss of surface details. The compu-

tational cost is another issue in physically based fluid simulation, since the governing

partial differential equations are expensive to solve and the time steps need to be

sufficiently small to maintain stability and accuracy.

In this chapter we present the idea of combining physically-based simulation with

image-based reconstruction to model dynamic water from video. That is, we adapt

physically-based methods as a correction tool to refine the water surface that is ini-

tially generated from matching feature points. In order to enforce temporal coher-

ence, we develop a 3D flow estimation method to approximate the velocity flow among

reconstructed shapes in neighboring frames. The surface optimization method then

removes redundant errors, applies physically based constraints such as volume preser-

vation and spatio-temporal smoothness, and completes the shape sequence by filling

in missing liquid regions. In this way, the final dynamic water model matches the

fidelity of the real world and the results are physically sound, even though fluid dy-

namics may not be strictly enforced in certain cases. Since fluid dynamics is only used

as a constraint rather than the target function to derive the entire surface sequence,

this process is efficient and should be easy to accelerate using graphics hardware.

Incorporating the physical properties of fluid provides strong constraints on the

possible water surface shape. This means the quality and coverage requirement for

the initial 3D shape is significantly reduced. This allows us to generate plausible 3D

water surface models even when the scene is observed by just one stereo camera, that

is, when more than 50% of the surface is occluded. A single-depth-view solution is

much easier to set up and use than the typical requirement of a surrounding array of
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cameras.

To help with spatial feature matching, we add white paint to the water to avoid

refraction, and we use a light projector to place a static random texture pattern onto

the moving fluid surfaces. The equipment used for our capturing system is shown

in Figure 31. It should be noted that our surface optimization scheme is not tied

to any particular depth acquisition method, nor does it require appearance-based

feature tracking over time, and this makes the use of active range sensing methods

possible. The choice of using a stereo camera in the existing system is due to two

considerations. First, since this technique can be potentially used with any capturing

and reconstruction system, it is interesting to test its performance in a tough case

when less surface information is provided. Second, one part of our ultimate goal along

this line of research is to reconstruct large, outdoor fluid phenomena, in which case

a hand-held stereo camera is much more practical than a surrounding multi-camera

system.

We view this new approach for creating liquid models as an alternative to creating

liquid animation through direct physically based simulation. As with other camera-

based data capturing methods, our approach has the benefit of capturing the nuances

and details in liquid that may be difficult to achieve using simulation alone. With

a complete 3D model, the captured water shape can be re-rendered seamlessly with

other graphics models. Though not demonstrated in this thesis, our framework should

allow artists to design and modify a coarse initial shape in order to create stylized

animations. Therefore we believe that our method may have applications in feature-

film special effects and in video game content creation.

5.2 Related Work

In this section, we will briefly review previous efforts for generating water anima-

tions, including volumetric reconstruction methods and physically based simulation

62



approaches. Then we will discuss existing similar spatio-temporal reconstruction

techniques that incorporate heuristics, such as local rigid motion and topological

consistency. Since this proposed hybrid work is also related to 3D volumetric meta-

morphosis algorithms, we will compare these techniques and illustrate the role that

physics plays in our hybrid method and its effects, which is not incorporated in tra-

ditional shape metamorphosis algorithms.

5.2.1 Fluid Modeling and Reconstruction

Although reconstructing and modeling fluid scenes from the real world is known to be

a challenging problem, researchers have attempted to use various capturing equipment

and techniques, and these efforts have been successful for certain fluid scenarios.

Using a specialized capturing system that includes a laser, a mirror galvanome-

ter, a cylindrical lens and a high-speed camera, Hawkins et al. [38] demonstrated a

technique for capturing time-varying volumetric data of participating media such as

smoke by rapidly sweeping a laser sheet through the volume. At 5000 frames per

second and 200 frames for each volume, this allows the volume to be scanned at 25

Hz in their work. Instead of scanning through the volume, Gu et al. [35] used a

projector to cast a sparse set of structured light patterns over the volume and re-

constructed the volume by decoding the integral measurements between the volume

density and compressive light patterns. By simplifying participating media volume

as a connected, semi-transparent surface, Hasinoff and Kutulakos [37] reconstructed

dynamic semi-transparent scenes from a small set of simultaneous views (even only

two views). Ihrke et al. [47, 48] and Trifonov et al. [105] used eight views and 72 -

360 views, respectively, for recovering flames and smoke, as well as transparent ob-

jects. Morris and Kutulaskos [70] and Hullin et al. [45] successfully reconstructed

static transparent objects, such as a vase or a glass, by tracing light transport under

structured scanning. A time-varying height-field surface can also be reconstructed by
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searching refractive disparity as proposed by Morris and Kutulakos [69] if each light is

refracted only once. Liquid thickness can be measured when liquid is dyed with fluo-

rescent chemical as demonstrated by Ihrke et al. [46], in which case the liquid surface

is calculated as a minimum solution to a photo-consistency-based error measure using

the Euler-Lagrangian formulation. Atcheson et al. [4] used Schlieren tomography to

capture fluids with time-varying refraction index values, such as heated smoke.

As far as we know, no existing volumetric reconstruction techniques considers

this problem as a 4D spato-temporal problem. In other words, the fluid shape in

each volume was independently reconstructed as a single 3D spatial problem. In

fact, the use of our hybrid method proposed in this chapter is not limited to any

particular capturing or reconstruction setup. This method can be used to handle

spatio-temporal data generated from other reconstruction techniques, assuming that

the underlying physical laws are known. It is capable of automatically removing

inconsistency and noise, which often exist in reconstructed data.

5.2.2 Physically Based Fluid Simulation

Numerous researchers have used physically based numerical simulation to animate flu-

ids. Using incompressible fluid dynamics as the governing equations and formulating

fluid animation as a numerical simulation problem, Foster and Metaxas [31] generated

realistic water animations using computational fluid dynamics techniques. Shortly

after that, Stam [96] proposed the stable fluid method that uses a semi-Lagrangian

method for handling fluid velocity advection. In a series of papers, Enright, Fedkiw

and Foster [30, 24] used the level set method and particles to evolve liquid surfaces for

more complex liquid motions. Losasso et al. [62] demonstrated the use of an octree

structure for speed and memory efficiency. In addition to volumetric representations,

water animation can also be simulated using particle systems [68, 72] or tetrahedral

meshes. Klingner et al. [58] and Bargteil et al. [6] used tetrahedra meshes and a finite

64



element method to simulate water, so more surface details can be maintained.

When solving fluid dynamics as an initial boundary value problem, numerical

errors, including volume loss and detail loss, are often found in physically based fluid

simulation. Another problem in this area is how to match user-specified fluid shapes at

particular time instants. McNamara et al. [64] and Fattal and Lischinski [25] studied

how to constrain fluid simulation by creating artificial control forces. This allowed

them to generate target-driven animation effects similar to ours, through optimization

over physically based simulation. In contrast to their work, we only use physics

as a heuristic constraint to improve spatio-temporal volumetric data, rather than

governing equations in numerical simulation. This makes our system more efficient

than physically based fluid simulation, and it avoids large error accumulation, which

is a difficult problem in physically based fluid simulation.

5.2.3 Spatial-Temporal Reconstruction

Although static surface reconstruction has been an active research problem in both

graphics and vision for decades, reconstructing dynamic scenes in a spatio-temporal

manner has not been well studied until recently. The greatest challenge in 4D space-

time reconstruction is how to introduce extra shape information over time to correct

errors and complete occluded regions in initial reconstruction results. Additional

shape information can either be provided through comparing feature correspondences

between frames [63, 36, 114, 9], or between each frame and a surface prior [1, 2, 122,

3]. Under the assumption that the surface topology does not change over time,

these techniques have successfully modeled cloth animations, human faces and body

motions. Unfortunately, this fixed-topology assumption is not valid for modeling

liquid, since the topology of a liquid surface changes frequently and dramatically in

most liquid animations.

Assuming that the deformation can be approximated locally in space and time as
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linear rigid motion under dense spatio-temporal sampling, Wand et al. [110] and Mitra

et al. [66] formulated the reconstruction problem as a 4D hypersurface optimization

problem. Sharf et al. [89] extended this idea to surfaces represented by volumetric

data and incorporated other constraints including both spatio-temporal continuity

and incompressibility, as our method does. However, they required sufficient temporal

sampling to make sure that the surface moves less than one grid cell in each time step,

and they cannot handle more challenging situations when the input surface sequence

contains outliers and many missing parts. In our system, we do not put any limits on

the capturing rate or the grid resolution, so the liquid surface can move significantly

faster in each time step (up to roughly 10 grid cells).

5.2.4 Volumetric Metamorphosis

Given two shapes that are represented by volumetric data, a volumetric metamor-

phosis algorithm tries to find a smooth transition from one shape to another in a

volumetric form. A number of existing volumetric metamorphosis algorithms [10, 61]

are 3D extensions of 2D image metamorphosis algorithms and they require user spec-

ified feature correspondences as input. Each feature correspondence, such as a point

or a rectangular block, determines local deformation from one shape to another.

The overall deformation is then linearly interpolated from local deformation based

on distance weights. When two shapes are well aligned, intermediate shapes can be

interpolated by a variational approach [108] even without feature correspondences.

This variational interpolation uses a generalization of thin-plate interpolation and

this simply yields a single implicit function for surface reconstruction from contours.

Volumetric metamorphosis can also be done by linear interpolation in the frequency

domain [39], however it is impossible to recover the spatial flow nor further apply any

physically based constraints from there.

How to automatically find feature correspondences is an important question in
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the shape metamorphosis community. Various methods, including ball map [115],

ortho map [14], and an implicit approach [17], can be used to find correspondences

in the XOR region between two registered shapes. Without registration, the method

proposed by Sederberg and Greenwood [85] finds correspondences that minimize the

bending energy for shape morphing, but they can only handle closed loops in 2D.

Zhang et al. [121] further extended this idea to handle meshes in 3D.

As far as we know, there is no other morphing algorithm that is easy to combine

with physically based constraints, including spatio-temporal continuity and incom-

pressibility, especially when a long sequence of shapes are to be used for interpolation.

Figure 41 shows the difference between the result of an ideal shape morphing algo-

rithm by minimizing the deformation energy and the result of our surface optimization

method in a rotational example. Our method without physically based constraints

can also be considered as a shape morphing algorithm with automatic feature match-

ing.

5.2.5 Other related Techniques

Researchers in other domains have used various techniques to capture the behavior

of fluids. The fluid imaging community regularly makes use of the Particle Imaging

Velocimetry (PIV) method to capture flow fields from the real world by tracking

macroscopic particles mixed in the fluid. This method creates fluid velocity values in

the interior of bodies of water, but the approach cannot be used to reconstruct the

geometry of the water surface due to the difficulty in maintaining the distribution of

those particles in fluid. More details of the PIV method can be found in [33].

Bhat et al. [7] studied temporal continuity in liquid videos by tracing textured

2D particles over video sequence, in order to synthesize new liquid videos. This work

was done completely in the image domain and no 3D models were reconstructed.

To obtain a complete space+time model from dynamic scenes, a camera array
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Figure 30: The entire fluid modeling system pipeline.

system is usually deployed to capture objects from different views (e.g., [52, 93,

125]). Recently, using a sparse camera array has become an active research topic

(e.g., [111, 67, 89]. We push this trend to the limit by using only one pair of cameras

with a narrow baseline. We show that by incorporating physically based constraints,

the amount of input data needed for complete 4D modeling can be dramatically

reduced.

5.3 Overview of the Fluid Reconstruction Method

Given a video sequence captured by a synchronized, calibrated stereo camera system,

the goal of our hybrid water modeling technique is to efficiently reconstruct realistic

3D fluid animation that is physically plausible. Our framework consists of two stages

as shown in Figure 30. Let {It} and {Jt} be video sequences captured by stereo

camera at time t ∈ [0, T ]. In the first stage, an initial shape sequence Ψ = {ψt} is

assembled by reconstructing each frame independently using depth from stereo. Ψ

is then optimized in the second stage to generate a shape sequence Φ = {φt} that

satisfies spatio-temporal coherence.

Spatial coherence means that Φ should still be similar to the captured data input

Ψ, while temporal coherence means that Φ should satisfy the behavior of fluid as

much as possible. Mathematically, this is interpreted as the minimum solution to the

following energy functional:

E(Φ) =
T∑
t=0

(Ed(φt, ψt) + Es(φt)) +
T−1∑
t=0

En(φt, φt+1) (50)

Here Ed(φt, ψt) calculates the similarity between φt and ψt, and En(φt, φt+1) measures
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how closely Φ satisfies physically based constraints in local. Besides spatio-temporal

coherence, a spatial smoothness term Es is also introduced to provide surface smooth-

ness, which is a common observation in real fluid scenes due to surface tension. If we

treat the solution to Equation 50 as a smooth hyper-surface in 4D, the combination

of the spatial smoothness term Es and the temporal smoothness term En can then be

considered as spatio-temporal smoothness in 4D. To solve Equation 50, each energy

will be treated as an independent sub-problem and solved separately in multiple it-

erations to obtain a final water animation that reaches a minimum of the sum of all

energies (as illustrated in Figure 30). Our experiment indicates that five optimization

iterations are sufficient for most cases.

We choose implicit signed distance functions to represent the 3D liquid surface

geometry for two reasons. First, signed distance functions are neutral to frequent

topological changes that occur in the evolution of liquid surfaces. Second, the 3D

flow estimation method can easily take advantage of this representation for comparing

similarity between iso-surfaces (Section 5.6.1.1). Our signed distance functions are

discretely defined on a regular grid for simplicity.

5.4 Surface Initialization

We use a single pair of calibrated cameras for scene acquisition. This consists of

two synchronized high-speed greyscale Dragonfly Express cameras. The water is

contained in a small round tub, and the water is dyed with white paint, making it

opaque to allow light patterns to be projected onto its surface. A LCD projector

is positioned directly behind the cameras and it projects a static random pattern

to provide artificial spatial features on the water surface. The projector position is

chosen to minimize self shadows, which would cause spatial features to be lost. We

typically capture the scene at a resolution of 640×480 at 200fps. The equipment

setup is shown in Figure 31.
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Figure 31: The capturing setup.

5.4.1 Depth Extraction

Captured stereo sequences {It} and {Jt} are first rectified according to epipolar ge-

ometry so that any 3D point will be projected onto the same horizontal line in It and

Jt. The depth of pixel p on It is determined from its feature correspondence p′ on Jt.

Since It and Jt are rectified, p′ must be on the same horizonal line as p. The problem

of stereo matching is then to find the disparity , which is defined as the difference of

horizontal coordinates between p and p′. Stereo matching is a well studied problem

in computer vision. We use the method proposed in [99], which is based on belief

propagation. Let Dp = arg minxMp(x) be the disparity for each pixel p on It, where

Mp(x) is a similarity measurement for each displacement candidate x, the following

energy functional describes the whole function set {Mp : p ∈ It} as its minimum

solution: ∑
p∈It

E0(Mp, Cp) +
∑
q∈Np

E1(Mp,Mq)

 (51)

q is one of four pixel neighbors to p. E0 defines the difference between Mp and the

initial cost Cp, given by pixel neighborhood similarity (usually measured by Sum of
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Squared Differences (SSD)), and E1 defines the disparity continuity among neighbor-

ing pixels.

Basically, the purpose of using belief propagation is to propagate messages among

neighbor pixels. Both Mp and Cp are discretized as vectors in pixel resolution and are

updated iteratively by linearly blending the received messages from pixel neighbor-

hood. The final depth for each pixel is given by the disparity that has the minimum

cost. Implementation details of this algorithm can be found in [99, 28]. In addition,

we use a sub-pixel interpolation scheme proposed in [119] to smooth the depth map

and to avoid aliasing artifacts that are caused by disparity vector discretization.

Shadow regions and regions occluded in another camera view often contain depth

errors due to missing spatial correspondences. Those regions are near depth bound-

aries and they usually belong to the further (occluded) surfaces. Our solution is a

two-pass algorithm. In the first pass, a left/right check in [21] is carried out over

depth maps from both cameras to identify regions with inconsistent disparity values.

Then in the second pass, the belief propagation algorithm estimates the depth map as

usual without the pixels from the problem regions. After that, their depth values are

assigned from already calculated regions through Laplacian smoothing. This two-pass

algorithm works best when a problem region is encircled by good regions and it fails

when the problem region is close to shape silhouettes. Placing the projector directly

behind the cameras helps reduce shadow regions as discussed before, however, this

cannot completely avoid shadows.

Figure 32 shows the depth map from a fountain example. Although we tried

to make the liquid as opaque as possible by saturating it with white paint, some

light scattering still occurred beneath the liquid surface. This effect blurred the light

pattern and caused noise in the depth map, which is more obvious after the initial

surface reconstruction, as shown in Figure 33 (top). For the same reason, thinner

water regions became more transparent, which made the stereo matching process
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Figure 32: The first two images in the top row are captured images from stereo
camera after rectification. A random texture pattern is projected on the water surface.
The top right image is the noisy depth result without belief propagation. The bottom
row from left to right shows problem regions (in gray) recognized by the two-pass
algorithm, and the depth result before and after the two-pass algorithm.

more difficult. The stereo matching algorithm also failed when water regions became

smaller, because of the transparency issues and due to resolution limits in the light

pattern. For instance, tiny water drops in the pouring example were usually omitted

from the depth map.

5.4.2 Surface Initialization Heuristics

The depth map created in Section 5.4.1 only covers part of the real liquid surface, in

fact, less than 50%. Since the optimization method in Section 5.6 requires a roughly

complete surface sequence as input, we use a heuristic method for creating an initial
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Figure 33: The initialization result for the splash example. From left to right and
top to bottom are the partial surface Γt from the depth map, the surface after ini-
tialization, the surface after initialization and smoothing, and the final reconstructed
surface, respectively.

guess of the surface. All surfaces at this point and later on are represented as signed

distance functions on a regular volumetric grid.

Using Γt, the partial surface defined according to the depth map at time t, an

initial surface ψt is created by the union of all spheres centered at Γt with radius r:

ψt(~x) = min
y∈Γt

(‖~x− ~y‖ − r) (52)

This method is effective when water behaves like a thin shell or film, as the pouring

example shown in Figure 43. It is not sufficient when large water regions are missing

due to occlusion, therefore, we use some simple heuristics in our experiments to

approximate the missing regions. For instance, the splash example of Figure 44 is

nearly symmetric to a vertical plane z = z0. We first fill in the water volume beneath
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Figure 34: While each surface reconstructed solely in the front view (left) or back
view (middle) cannot cover the whole surface, a reasonable initial surface can be
generated by assembling two views together, even if they were captured at different
times.

the visible surface as a height field. Let ~y be the lowest point in Γt on the same

vertical line as a grid cell ~x:

~y = arg min ~yy (~y ∈ Γt, (~y − ~x) ‖ Y axis ) (53)

For any ~x whose ~y exists, its signed distance value is simply:

ψt(~x) = ~yy − ~xy (54)

If ~x doesn’t have ~y but its symmetric counterpart ~x′ = ~x+ (2z0 − ~xy)(0, 1, 0)T to the

plane has a ~y′ defined, the signed distance can then be duplicated from its counterpart

as: ψt(~x) = ψt(~x
′). Finally, distance values for the rest of the undefined grid cells are

interpolated from their defined horizontal neighbors to complete the surface ψt. An

example is shown in Figure 33.

Space-Time Merging When a water scene exhibits temporal repetitiveness rather

than spatial repetitiveness, similar ideas can be applied to reconstruct the initial

shape ψt using video sequences captured at different times from different viewpoints.

For example, a single pair of cameras is unable to simultaneously capture both the

downstream (front) and the upstream (back) surfaces in our fountain case in Figure 34
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due to occlusions. Our solution is to capture each of these streams in turn, that is, first

capture the upstream view, then move the camera around to capture the downstream

view. While each surface immediately generated from video cannot cover the whole

liquid surface, they can be stitched together assuming that temporal repetitiveness

provides a similar dynamic appearance over time. In practice, we first recover the

relative camera pose of each view using static points (fiducials) in the scene. From

the pose information, different sequences can then be aligned. It should be noted that

this alignment does not require high-accuracy, and even slightly moving points can be

used as fiducials. If the original sequences are sufficiently long, we choose two optimal

sub-sequences from the original input such that the overall difference between them

are minimized after spatial alignment. The shape difference is measured as the Sum

of Squared Differences (SSD) over an intersection region between two signed distance

functions. Although the resulting surface ψt may not correspond exactly to a real

water scene, our experiment shows that this approach produces visually plausible

initial results.

5.5 Surface Smoothing and Spatial Coherence

Real liquid surfaces are smooth due to the effect of surface tension, especially for

water at small scales. To provide similar results in our method, we use a surface

smoothing scheme each time the surface sequence is updated.

The mean curvature flow can provide a surface smoothing effect, and this can be

achieved using the following level set formulation:

φs = κ · |∇φ| (55)

in which s → ∞, standing for a steady solution. κ is the surface mean curvature.

The mean curvature flow tries to minimize the surface area by enforcing the mean

curvature uniformly distributed over the whole surface, so that the tendency of this

75



method is to evolve a surface toward a spherical shape. Such a level-set mean curva-

ture evolution is straightforward to implement, but it performs excessive smoothing

and undermines the fidelity to the original geometry (our spatial constraints). In

fact, although the final goal of the surface tension effect is similar to that of the mean

curvature flow over time, the surface tension distribution at a particular time instant

should not be the steady state of the mean curvature flow. Therefore, we choose the

smoothing scheme proposed by Schneider and Kobbelt [83] under the following target

PDE instead:

∆Bκ(~x) = 0 (56)

∆B is the Laplace-Beltrami operator on a curved surface. Assuming that κ along the

surface normal on iso-surfaces is locally linear, ∆B can be approximated simply by

a Laplacian operator in 3D, and the solution is an evolution equation in the fourth

order:

φs = ∆κ · |∇φ| (57)

Intuitively, this will produce a liquid surface with C2 continuous mean curvature,

leading to a C2 surface tension field over the surface. This fourth-order equation is

better at preserving spatial constraints, and it also preserves volumes according to

the divergence theorem. We solve Equation 57 iteratively using a first-order forward

Euler method. Instead of calculating ∆κ directly using a four-order scheme, we first

calculate κ for each grid cell close to the surface boundary, then calculate ∆κ, both

by central differencing:

∆κ = ∇ · ∇κ = κxx + κyy + κzz (58)

In practice, we combine the surface smoothing step together with a fidelity term for

spatial coherence (penalizing differences from the input geometry):

φs = α(ψ − φ) + ∆κ · |∇φ| (59)
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Figure 35: The velocity field estimation scheme for physically based fluid simulation
(top) and the 3D flow estimation method (bottom).

α is a coefficient balancing between fidelity and smoothing strength, ranging from 0

to 0.1. For the data sets we have processed, only 5 to 10 iteration steps are needed

to produce good smoothing results with preservation of most of the spatial features.

5.6 Temporal Coherence

In this section we will discuss the surface optimization approach for enforcing temporal

coherence, corresponding to En in Equation 50. The basic idea is to iteratively update

the liquid surface at each frame based on the prediction from its neighboring frames,

as shown in Section 5.6.3, similar to a Laplacian smoothing algorithm. In order to

achieve this, we first present a 3D temporal flow estimation method in Section 5.6.1,

which takes incompressibility into account. When local minimum happens due to

two types of errors, false-positives and false-negatives, two extra steps will be used

to address these issues in Section 5.6.2 and 5.6.4, respectively. False-positives are

errors when certain surface components fail to find their temporal correspondences in

adjacent frames, since they do not actually exist in the real fluid scene. Meanwhile,

false-negatives are defined as missing surface components in the reconstruction result,

preventing other frames from finding temporal correspondences.

5.6.1 3D Temporal Flow Estimation

Given a fluid surface φt at time t and a velocity field ~vt−1,t from the previous time

step, physically based fluid simulation first calculates the new velocity flow ~vt,t+1 by

solving fluid dynamics equations, then evolves φt+1 from φt using ~vt,t+1. Different
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from physically based fluid simulation, both φt and φt+1 are given as input to our

problem, and our goal in this section is to find the corresponding velocity field ~vt,t+1

that is most likely to cause the surface advection between φt and φt+1.

The dynamic behavior of water can be described by incompressible viscous fluid

dynamics according to the Navier-Stokes equations. Most fluid simulation methods

in graphics use operator splitting (sometimes called the method of characteristics) to

calculate the separate terms of the Navier-Stokes equations. In such cases, a fluid

solver first applies external forces on ~vt−1,t, then advects the velocity flow by itself,

damps the velocity flow by viscosity diffusion, and finally projects the velocity field

back to a divergence-free space to maintain incompressibility. Figure 35 top shows

these steps.

If we treat φt and φt+1 as knowns and ~vt,t+1 as unknowns, a solution ~vt,t+1 is

expected to satisfy following properties:

1) surface advection: ~vt,t+1 evolves φt to φt+1.

2) Spatial continuity: ~vt,t+1 is continuous in space, due to the viscosity effect.

3) temporal continuity: ~vt−1,t is continuously related to ~vt,t+1 and ~vt+1,t+2, due to

velocity advection.

4) Incompressibility: ~vt−1,t is divergence-free.

These properties are formulated as constraints to ~vt,t+1 as shown in Figure 35

bottom, and the goal of this method is to find ~vt,t+1 that can satisfy those constraints

as much as possible. A ~vt,t+1 exactly satisfying all constraints may not exist some-

times due to internal conflictions in input shapes. For example, surface advection

and incompressibility cannot be both satisfied if φt and φt+1 do not have the same

volume. In this case, the solution balances between all of these constraints and the

method iteratively relaxes each constraint until a balance is reached. The initial cor-

respondence search step (Section 5.6.1.1) first finds a velocity field that can satisfy

the surface advection constraint based on a signed-distance-similarity measure. The
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Figure 36: Three correspondence methods. For each point ~x in water (φt(~x) < 0),
the left scheme matches ~x with any point ~x′ in water φt+1(~x

′). The middle scheme
matches ~x with ~x′ so that their signed distance values are the same φt(~x) = φt+1(~x

′).
The right scheme looks for ~x′ so that their neighborhoods are similar, and this is the
method that we use.

initial result is then smoothed in space and time, and projected back to be divergence-

free to enforce incompressibility, as a fluid solver does. Our flow estimation method

is related to the classical optical flow problem in computer vision, in which image

intensity similarity and spatial continuity are two constraints that are to be satis-

fied. In addition to spatial continuity, however, our method also considers temporal

continuity and incompressibility.

5.6.1.1 Correspondence Search

Given two liquid surfaces φt and φt+1 at time t and t + 1 respectively, the velocity

estimation method first tries to find a correspondence ~x′ in φt+1 for each grid cell

~x within or around water in φt. The velocity field ~vt,t+1 at ~x is then implied as

(~x′−~x)/∆t. To find ~x′ under the surface advection constraint, a conservative approach

is to accept any water grid cell ~x′ in φt+1: φt+1(~x
′) < 0 (φt(~x) < 0), as illustrated in

Figure 36 left. Because each ~x has more than one acceptable ~x′ using this method,

other constraints must be used to remove the ambiguity and the whole process has to

be performed over several iterations. An alternative approach is to treat the signed

distance field as an image, and then use a classical optical flow algorithm to find
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correspondences based on ~x’s signed distance value: φt+1(~x
′) = φt(~x). This method

successfully restricts the ambiguities by only searching correspondences over ~x’s iso-

surface in φt+1, as shown in Figure 36 middle. However, this approach still requires

10 to 20 iterations in order to get plausible results, as our experiment shows. To

further reduce ambiguities and accelerate the convergence, we use a local 3 × 3 × 3

neighborhood window N~x centered at ~x aligned with grid as the shape feature at ~x. In

this way, we look for ~x′ such that ~x’s neighborhood and ~x′’s neighborhood are similar

to each other:

~x′ = arg min
∑
~y∈N~x

w(~y) (φt+1(~y + ~x′ − ~x)− φt(~y))
2

~vt,t+1(~x) = (~x′ − ~x)/∆t

(60)

w(~y) is a weight function for the neighborhood, typically a Gaussian falloff. We

calculate ~x′ for all water grid cells in all frames, which gives us a sequence of initial

forward velocity fields {~vt,t+1} with only surface advection considered.

In order to process the whole surface optimization algorithm, we also need the

backward velocity field ~vt+1,t, which evolves the shape sequence in the backward di-

rection. One way to do this is to convert the forward velocity field ~vt,t+1 into a

backward velocity field ~vt+1,t by inverting and resampling ~vt,t+1. However, a resam-

pling process causes blurry effects over ~vt+1,t and the inverse of ~vt,t+1 is not necessarily

a valid velocity field for ~vt+1,t in many cases. It is also possible to explicitly calculate

the backward velocity field sequence {~vt+1,t} like the forward sequence, but this will

introduce extra storage and computational cost.

Our approach is to estimate the mean velocity field ~vt from time instant t− 1 to

t + 1 by using errors in both directions simultaneously. ~vt can also be treated as an

approximation to the instant velocity field at time t. Under constant acceleration,

this approximation is exact. How to approximate ~vt,t+1 and ~vt,t−1 using ~vt will be

discussed in details in Section 5.6.3. This method is formulated mathematically as
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follows:

~vt(~x) = arg minD(~x,~v)

= arg min
∑
~y∈N~x

w(~y)
(
(φt+1(~y

′)− φt(~y))
2 + (φt−1(~y

′′)− φt(~y))
2)

~y ′ = ~y + ~vt(~x)∆t

~y ′′ = ~y − ~vt(~x)∆t

(61)

in which ~y ′ and ~y ′′ are ~y’s correspondence location in φt+1 and φt−1 respectively.

Estimating the mean velocity field ~vt not only gives us a way to approximate the

velocity fields ~vt,t+1 and ~vt,t−1 in both directions, and it also helps remove ambiguities

in searching correspondences because the local temporal continuity of the velocity

field at ~x has been implicitly considered.

To solve Equation 61, we differentiate D(~x,~v) with respect to ~vt(~x), therefore:

∑
~y∈N

w(~y)

 + (φt+1(~y
′)− φt(~y))∇φt+1(~y

′)

− (φt−1(~y
′′)− φt(~y))∇φt−1(~y

′′)

 = 0 (62)

∇φ is close to 1 by the definition of a signed distance function, therefore, Equation 62

can be solved iteratively using the Newton-Ralphson method. ~v can be initialized

with zeros, several candidate seeds from heuristics, or user input if available. In each

iteration, a new velocity flow ~vnew(~x) is calculated from the old one ~vold(~x):

∑
~y∈N

w(~y)

 + (φt+1(~y
′
new)− φt(~y))∇φt+1(~y

′
old)

− (φt−1(~y
′′
new)− φt(~y))∇φt−1(~y

′′
old)

 = 0 (63)

~y′new, ~y
′′
new and ~y′old, ~y

′′
old are ~y’s correspondences calculated using new and old ve-

locity flows respectively. We further linearize φt+1(~y
′
new) and φt−1(~y

′′
new) as:

φt+1(~y
′
new) ≈ φt+1(~y

′
old) +∇φTt+1(~y

′
old)(~vnew − ~vold)∆t

φt−1(~y
′′
new) ≈ φt−1(~y

′′
old)−∇φTt+1(~y

′′
old)(~vnew − ~vold)∆t

(64)

Combining Equation 63 with 64 gives us a linear system with ~vnew(~x) as unknowns.

We terminate the iteration process if maximum iteration number is reached or if
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|~vnew − ~vold| drops below certain threshold (0.05 of a grid cell size in our experi-

ments). We also limit |~vnew−~vold| in each iteration by an upper bound for smoother

convergence. We limit the search space within a region around the initial guess to

prevent large velocity changes in case the problem is ill defined. This method is

similar to the classic Kanade-Lucas-Tomasi (KLT) feature tracker [90] with transla-

tional motion only, except that our problem is defined in 3D and the search procedure

considers both forward and backward directions.

If the correspondence search in one direction goes beyond the spatio-temporal

boundary, we assume that any configuration is possible outside of the 4D space-

time grid, so the corresponding error in Equation 61 and correction in 63 are simply

ignored.

Since the correspondences are found completely based on shape deformation, the

result becomes highly sensitive to surface motion when the motion is small, as shown

in Figure 37f. Another problem called the aperture problem in the KLT feature

tracker also exists in this method, which brings ambiguities into the velocity field

for a flat liquid surface. When the change in the signed distance function does not

reflect the actual surface motion, for example when two water drops merge or split

(Figure 38), this estimation method fails to work well according to Equation 61 around

the contact region.

Although the initial goal of applying physically based constraints on the velocity

field is to augment the temporal coherence process with physical plausibility, we

found that it also provides a solution to some of the above problems by propagating

velocity information from well-defined regions to ill-defined regions. To accelerate the

propagation into the less-deformed regions (shown in Figure 37), we scale the update

|~vnew−~vold| by the error metric in Equation 61 so that the propagation process goes

faster.
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5.6.1.2 Error Measure

We use the error metric D(~x,~v) in Equation 61 to determine whether ~x’s correspon-

dence exists in the neighboring frame. If D at time t is below some tolerance ε, we

categorize ~x at time t as Type-I, which means it has correspondences in both φt−1

and φt+1. Otherwise, the method will try to locate correspondences only in φt−1 or

φt+1, with a tolerance ε/2. Searching in one direction can simply be done by remov-

ing the error and correction contribution from the opposite direction in Equation 61

and 63. Grid cells belong to type-II if a correspondence exists in φt+1, or type-III,

if a correspondence exists in φt−1. The rest of the grid cells will be type-O, which

means that no correspondence has been found in either φt−1 or φt+1.

5.6.1.3 Spatial Smoothing

Our spatial smoothing step mimics the viscosity effect for spatial continuity, and the

process is similar to an explicit Laplacian smoothing solver:

~vt(~x) =
∑

s(~y)~vt(~y) (65)

~y is a water grid cell within an immediate grid neighborhood of ~x, including ~x and

its six neighbors. s(~y), the spatial smoothing kernel covering ~p and its six immediate

neighbors, and is typically defined as:

s(~y) = 1− 6β (~y = ~x), s(~y) = β (otherwise) (66)

β is specified by user according to their expectation of the velocity spatial smoothness.

Although this step looks similar to the explicit viscosity solver in a physically based

fluid simulation, it only provides a similar effect to viscosity diffusion and it is not

based on actually fluid dynamics since only a static velocity field is involved.

To generate large viscosity effects, some fluid simulation algorithms [96, 13] for-

mulate viscosity diffusion implicitly as a sparse linear system. Instead, our method
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simply applies the smoothing process multiple times to produce a visually plausible

large viscosity effect.

5.6.1.4 Temporal Smoothing

In the real world, liquid inertia provides a continuous velocity field sequence by prop-

agating the velocity along the liquid motion, and this is called velocity advection in

physically based fluid simulation. The temporal smoothing step mimics this effect by

using a Laplacian smoothing algorithm:

~vt(~x) = (1− 2γ)~vt(~x) + γ(~vt−1(~x− ~vt(~x)∆t) + ~vt+1(~x+ ~vt(~x)∆t)) (67)

γ is typically chosen from [0, 0.3] in our experiments. This step can be applied multiple

times to achieve a large smoothing effect, as the spatial smoothing step does. In

practice, we prefer to use larger γ and fewer iterations (one to three) to avoid excessive

blurring effects in the temporal domain. For example, small water splashes may occur

even before a water drop hits the water surface in the splash example (Figure 37),

because the real splash can be propagated backward too far if many iterations are

used.

5.6.1.5 Pressure Projection

While the velocity is defined at each grid cell for the convenience of estimation and

optimization, it is not straightforward to couple velocity with pressure, which is also

defined at the grid cell. Our solution is to first interpolate the velocity flow to a

staggered grid formulation by averaging, then apply pressure projection, and convert

the velocity back to the grid cell center. Details about the pressure projection in a

staggered Mark-and-Cell (MAC) grid can be found in [96]. We use Dirichlet boundary

condition with zero outer pressure when water bodies are completely within the space-

time grid. Water bodies expanding beyond the space-time grid are ignored in this

step since their volumes outside of the grid are unknown.
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After the pressure projection step, the error values are recalculated and the grid

cells are re-categorized. This category information will later be used to determine

whether a missing correspondence is caused by false-positives or false-negatives.

5.6.1.6 Discussion

Given a time-varying shape sequence, the solution to a velocity field that evolves

one shape into another is not unique. In general, arbitrary vortices can be added

to plausible solutions as long as each vortex does not affect the surface shape. The

velocity estimation method described above finds a velocity field with few vortices in

most cases, even though it fails if the signed distance function changes dramatically,

such as the contact region where two drops merge, as shown in Figure 38g. Such a

solution may or may not be similar to the actual velocity field in the real world. On

the other hand, it is theoretically impossible to recover the flow underneath the water

surface if the flow does not affect the surface because we can only observe the surface.

Fortunately, since the estimated velocity field is used for surface optimization, which

only modifies the liquid surface, ambiguities in these solutions do not seem to have

any noticeable effects in our results.

Apply physically based constraints improves the initial estimation result by prop-

agating information from well-defined regions to ill-defined regions. The actual so-

lution is a balance between the initial correspondence search and physically based

constraints. When the initial correspondence has too many errors, the final result

can be far away from the actual velocity field, and may lack physical plausibility.

Fortunately, those regions are rare and small. Plausible results can still generated

even if some correspondence errors exist, such as those caused by topological changes,

as shown in Figure 38.

The side effect of physically based constraints is the excessive smoothing effect over

the velocity field in both space and time. When reflected in the temporal coherence
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(a) Frame 9 (b) Frame 14 (c) Frame 19 (d) Frame 24

(e) Ground truth. (f) Without constraints.

(g) With constraints. (h) Difference between (e) and (g).

Figure 37: A synthetic 2D splash sequence (a, b, c, d) and the estimated velocity
fields for Frame 19 (c). This example was simulated using a five-times smaller time
step and the simulated velocity field is used as the ground truth in (e). The wave
surface remains less changed before the splash wave is propagated, causing the region
far away from the impact location to obtain higher velocity in (f) than the actual.
This problem is addressed by applying physically based constraints. The result after
applying the constraints is shown in (g) and the error magnitude is shown in (h).
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(a) Frame 0 (b) Frame 5 (c) Frame 10 (d) Frame 15

(e) Ground truth. (f) Without constraints. (g) With constraints.

Figure 38: A synthetic 2D sequence (a, b, c, d) shows a small water drop merging
with a larger drop under the surface tension. The velocity field is estimated for
Frame 5 (b). From (e) to (g), the figure shows the ground truth of the velocity field
from simulation, the estimation without constraints and with constraints. Applying
physically based constraints can smooth out velocity errors due to the rapid changes
in the sign distance function when two water drops merge. However, it cannot remove
the vortex ambiguity show by the red arrows (g). The final result in (g) is different
from the ground truth in (e) mostly around the merging point.

process, it creates overly smooth shapes and less dynamic behaviors in the temporal

domain. Therefore, we use as few iterations as possible to make sure that velocity

information is propagated while minimizing the extra smoothing effects.

5.6.2 False-Positive Removal

Since both false-positives and false-negatives can cause missing correspondences in

neighboring frames, the first task is to determine the cause of a missing correspon-

dence. We do this by counting how many consecutive frames a water region appears

in, assuming that real water should exists in several consecutive frames. For example,

when a water region only appears in frame t, or frame t and t + 1, it is less likely
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Figure 39: Forward/backward tags for a water drop that sequentially appears from
frame 2 to 6.

Figure 40: When two water drops (in blue) sequentially appear from frame 2 to 6
and an incorrect water drop (in red) suddenly appears in frame 5, their particular
positions cause an ambiguity in the velocity flow at frame 4. Without the velocity
consistency check at the top diagram, T f4 will be erroneously propagated to the red
water drop, preventing it from being removed. After the consistency check, this can
be addressed as shown in the bottom diagram.

to be a water component in the real scene. Such false positives should be removed.

However, if it exists in more frames, missing correspondences are more likely to be

caused by false-negatives, so the component should be retained. This assumption

fails in certain cases, for example, when a water drop is intermittently missing in a

sequence, it will be treated as a false-positive even though it is more likely to be in

the real scene. Fortunately, our experiments show that such cases are rare and both

false-positives and false-negatives are usually distributed continuously over time.

To count how many times a water region appears in previous and successive frames,

two count tags are assigned to each water grid cell: a forward tag T ft and a backward

88



Algorithm 1 The pseudo code for calculating forward tags.

for t = 0 to T do
T ft = 0;

end for
for t = 0 to T do

for each fluid cell ~x do
if φt(~x) < band width and type(~x, t) = I then

if T ft (~x) < 0 then
T ft (~x) = 0;

end if
T ft (~x)+ = 1;
next = T ft (~x);
~x′ = ~x+ ~vt(~x)∆t;
if |~vt(~x)− ~vi+1(~x

′)| > θ then
next = −next;

end if
T ft+1(~y) = max(next, T ft+1(d~x′xe ,

⌈
~x′y

⌉
, d~x′ze));

· · · · · ·
T ft+1(~y) = max(next, T ft+1(b~x′xc ,

⌊
~x′y

⌋
, b~x′zc));

end if
end for

end for

tag T bt . Here we will explain how to set up the forward tags T ft by tracing particles

from each grid cell. Backward tags are calculated in a similar fashion, except in the

opposite direction. All T ft are initialized to be zero, and then processed forward from

frame 0 to frame T . In each frame, every type-I water grid cell ~x first increases its

T ft by 1, and propagates its value to all eight cells adjacent to ~x′ = ~x + ~vt(~x)∆t in

frame t+ 1:

T ft+1(~y) = max(T ft (~x), T ft+1(~y)), ~y ≈ ~x′ (68)

Figure 39 shows a single water drop example with both tags calculated. T ft +T bt +1 is

the count of the times that a water grid cell appears in previous and successive frames,

and T ft + T bt + 2 is the number at the two ends. For each water grid cell ~x at time t,

if T ft + T bt is below some threshold k, it is considered to be a false-positive and will

be removed by setting φt(~x) to infinity. Theoretically, the trajectory of a free-falling

water region existing in three consecutive frames can be predicted, assuming that the
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acceleration is constant. In practice we choose k from the range of 3 to 7, in order to

remove more false-positives and keep more confidence in the remaining water regions.

The ambiguity in velocity estimation may prevent false-positives from be removed

if we are only counting correspondences, as shown in Figure 40 top. To solve this

issue, we also compare ~vt(~x) with ~vt+1(~x
′). If their difference is above certain threshold

θ, ~x′ will be considered to involve a velocity ambiguity, tagged as negative, and will

lose its ability to propagate. One may ask whether the temporal smoothing step in

the velocity estimation method can help the water region in frame 4 to choose the

right velocity flow by exchanging velocity with its neighbors. Unfortunately this is

hard to achieve since the velocity estimation method does not know which velocity

is correct until the false-negatives and false-positives are recognized, and we have to

defer such decisions until the false-positive removal step.

It should be noted that ideally ~x’s correspondence at time t+1 should be calculated

as ~x′ = ~x + ~vt,t+1(~x)∆t instead of using the mean velocity ~vt. Since the difference

between ~vt and ~vt,t+1 does not affect the false-positive removal step much, we simply

use ~vt and we did not notice any difference in our experiment. The pseudo code for

computing forward tags is given in Algorithm 1. The pouring example in Figure 43

shows redundant water regions that are removed as false-positives by this algorithm.

5.6.3 Optimization for Temporal Coherence

Given all the estimated velocity fields, we will apply optimization over En in Equa-

tion 50 to achieve temporal coherence. Let ~x be a type-I grid cell with both corre-

spondences in the space-time grid, and let P−(φt−1, ~x,~vt,t−1) and P+(φt+1, ~x,~vt,t+1) be

two functions that predict ~x’s signed distance value according to neighboring frames

φt−1 and φt+1 respectively. An ideal solution is to iteratively refine φt by interpolating

its predicted values:

φt(~x) = ω(P−(φt−1, ~x,~vt,t−1) + P+(φt+1, ~x,~vt,t+1)) + (1− 2ω)φt(~x) (69)
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in which ω is a relaxation coefficient between 0 and 0.5. A naive approach would be

to replace ~vt,t+1 and ~vt,t−1 by the mean velocity field ~vt as in the false-positive step,

so:

φt(~x) = ω(P−(φt−1, ~x,~vt) + P+(φt+1, ~x,~vt)) + (1− 2ω)φt(~x) (70)

Equation 70 implies that ~x will be at the average position of its correspondences,

assuming that ~vt,t+1 = ~vt,t−1 in each iteration. Therefore, the tendency after apply-

ing Equation 70 in multiple iterations is to introduce blurry effects in dynamics by

smearing the accelerations in the liquid motion.

Instead, we approximate ~vt,t+1 and ~vt,t−1 by mean velocity fields:

~vt,t+1(~x) = (~vt(~x) + ~vt+1(~x+ ~vt(~x)∆t))/2

~vt,t−1(~x) = −(~vt(~x) + ~vt−1(~x− ~vt(~x)∆t))/2
(71)

This approximation is proved to be exact when the acceleration is constant. To

implement a prediction function, one may think of evolving φt−1 and φt+1 to time

t using the given velocity flow using by the level set method. This implementation

is limited by the CFL condition, and must be done in multiple sub-steps when the

fluid surface moves much more than one grid cell at each time step. To avoid the

computational cost incurred in subdividing the time steps, a simple alternative is to

use the signed distance value of ~x’s correspondence in both frames:

P+(φt+1, ~x,~vt,t+1) = φt+1(~x+ ~vt,t+1(~x)∆t) (72)

similar to a simplified one-step semi-Lagrangian method. Unfortunately, this method

suffers from volume lose (10% to 20% in each iteration as our experiment shows)

because the required resampling process gradually smears out the surface sequence in

each iteration. Instead, we use a non-interpolating semi-Lagrangian method described

in [98] by combining it with the level set method, under the assumption that the

velocity flow is locally uniform due to viscosity effects. This method first separates

the offset vector ~vt,t+1(~x)∆t into a rounded-up integer component ~oi and the remaining
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floating component ~of . The surface motion in the integral displacement is to shift

signed distances in ~x’s local neighborhood to ~x + ~oi. The remaining surface motion

corresponding to ~of is less than half of a grid cell in any axis, so the level set method

can be safely used with less stability issues. This method is described as follows:

P+ = φt+1(~x+ ~oi)− (−~of )∇φt+1(~x+ ~oi)

~o = ~vt,t+1(~x)∆t

~oi = Round(~o); ~of = ~o− ~oi

(73)

When the surface motion is originally less than half of a grid cell (~oi = 0), the method

is simply reduced to the level set method. This hybrid method can successfully reduce

volume loss to less than 5% over more than 5 optimization iterations in most of our

experiments.

The above scheme is for type-I grid cells. If a grid cell ~x belongs to type-II or

III, or if one of ~x’s correspondence goes beyond the space-time grid, it is impossible

to predict it from both directions. In these cases, we only consider the prediction in

one direction. For example, the following equation calculates the update only from

the backward direction:

φt(~x) = γP−(φt−1, ~x,~vt,t−1) + (1− γ)φt(~x) (74)

5.6.4 False-Negative Completion

The final step in the system pipeline is to resolve false negatives by adding missing

water regions back. Type-II and III grid cells can be safely assumed to be caused

by false-negatives at this time. We first propagate their velocities to the neighboring

frame with no correspondence by trilinear resampling. We then apply the one-way

prediction tool provided in Equation 74 to grid cells with newly updated velocities to

recover missing water regions. The false-negative completion process is executed more

than once to allow water regions to propagate over multiple frames. After this, the
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whole optimization procedure may be performed again to remove any spatio-temporal

incoherence incurred by the false-negative completion step.

5.6.5 An extreme example

In order to demonstrate the effectiveness of this surface optimization algorithm, we

tested it in 2D using an example shown in Figure 41. The blue rod rotates 180 degree

around the red axis with a volume of 300 voxels in this example. Given the shape

in Frame 1 and 3, it is impossible to know that the motion is rotational and the

result of a shape metamorphosis algorithm that minimizes the deformation energy is

shown in (f). Because the top of the rod in (f) is limited by the top of the shape

in (b) and (d), the volume has only 233 voxels, 20% less than before. A surface

optimization algorithm without physically based constraints can be considered to be

a feature-based shape morphing algorithm, and it gives a similar result in (g), with

249 voxels. Applying physically based constraints gives the more plausible result

in (h). This result is taller due to temporal coherence over all five frames in the

surface optimization process. It also preserves more volume (283 voxels), with only

9% volume loss. The remaining volume loss is mostly due to the non-interpolating

semi-Lagrangian method, especially because the velocity field in this rotation example

does not quite satisfy the spatial smoothness assumption. The difference between (h)

and the background truth (the black curve) is caused by the fact that the acceleration

in a rotational motion is not constant. In practice, the deformation is usually much

smaller than this one and the actual velocity field is more spatial continuous, making

the temporal coherence algorithm more nearly volume preserving.

5.7 Results and Discussion

In this section we present results from several different real-world fluid examples.

Please watch the accompanying video to see animations for each of these results. The

scene in the pouring example shown in Figure 43 is made of free-falling streams poured
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(a) Frame 0 (b) Frame 1 (c) Frame 2 (d) Frame 3 (e) Frame 4

(f) Shape Morphing. (g) Without constraints. (h) With constraints.

Figure 41: A testing example: a blue rod rotates around a red axis. The black curve
in (f), (g) and (h) shows the silhouette of the rod in (c) as the ground truth. A shape
morphing algorithm that minimizes the deformation energy generates the in-between
shape in (f) from (b) and (d), which is smaller than the shape in (c). Using a velocity
field without any constraints in the optimization process gives a similar shape in (g).
With all the constraints, our algorithm produces the shape in (h).

out of a coffee cup. The animation is reconstructed at a resolution of 176× 120× 120

for 155 frames. The splash example in Figure 44 shows the scene of a bottle lid

dropping into an open region of water. The resolution of the 3D volume grid in this

example is 158×120×163 and includes 138 frames. Since it is difficult to discriminate

the lid from the water surface, we modeled the lid as if it was part of the fluid surface.

External acceleration and incompressibility are ignored for the large water body in

the pool because it expands beyond the spatial grid and the pressure projection step

cannot be easily resolved for it. The fountain example in Figure 1 (on the first page)

was reconstructed from two video sequences captured at different times from two

different viewpoints, containing the upstream and the downstream views of a small

water fountain by placing stereo camera in front and back respectively. The resolution

is 110× 150× 140 and the result has 120 frames.
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Table 3: Common variables and their values in our experiment.

Name Definition Value
α a balancing coefficient between fidelity 0.1

and shape smoothness in Equation 59
β a parameter used in the velocity spatial 1/7

smoothing kernel in Equation 66
γ a parameter used in the velocity temporal [0, 0.3]

smoothing kernel in Equation 67
ω a relaxation coefficient for temporal 0.3

coherence by interpolation in Equation 69
ε a tolerance bound in Error Measure, [64, 256]

in Section 5.6.1.1
k a threshold to determine false positives by [3, 7]

tag values in Section 5.6.2
θ a threshold to avoid velocity inconsistency 0.2

when calculating tags in Section 5.6.2

All examples are calculated on an Intel Quad-Core 9550 workstation with 8G mem-

ory. The initial reconstruction and smoothing process in the first part of our algorithm

typically took 10-30 minutes. Velocity estimation took 20-40 minutes and the rest

of the surface optimization algorithm took 20-30 minutes. Five surface optimization

iterations are usually sufficient to generate acceptable results. Overall, each frame

takes two to three minutes to process on average. Compared with physically-based

fluid simulation, this method is not limited to any CFL condition and the surface

motion in each time step ranges between four to eight grid cell sizes on average. At

the same resolution, a physically-based simulation would have to use smaller time

steps to maintain stability and accuracy, causing significantly higher computational

cost than this method, especially for rapid water motion.

Memory becomes an issue in our experiments since loading the entire 3D volume

sequence with the velocity field and other data structure would require at least 6GB

of memory, even for a small example. One possible solution would be to create a

dynamic grid data structure that allocates memory only to grid cells that are close

to the water surfaces. We choose to keep a simple grid data structure and use a large
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Figure 42: The middle shape is interpolated from the left shape and the right shape
according to the estimated velocity field. In this way, the water drops break up
continuously from the stream.

amount of virtual memory instead. Each iteration procedure requires at least one

full memory swap to disk for each frame and contributes about 10% to 20% of the

computational time.

The estimated velocity flow can be used to increase the temporal resolution of a

sequence or to complete missing frames in case of data capture failure. Figure 42

shows that the shape in the middle frame is successfully interpolated from the left

shape and the right shape. In addition, our algorithm can be considered to be a

feature-based shape morphing method even without requiring shape alignment as

pre-processing. When treating regions beyond the space-time grid as missing regions

in the false-negative completion method in Section 5.6.4, our algorithm can also au-

tomatically extrapolate shapes in those regions in a spatio-temporal fashion as shown

in Figure 45.

Our experiments show that our results can faithfully inherit the nuances and

details of the fluids from regular video input. Our optimization algorithm converges

in less than five iterations in most cases, therefore, it is safe from error accumulation

over time. Although the overall solution may not be identical to the real world case,
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for example, when a sudden splash is caused under strong acceleration, the result

is a minimum to the whole energy functional (Equation 50) that closely satisfies

spatio-temporal coherence and provides a visually plausible animation for graphics

applications.

The existing system has several limitations due to the techniques we are currently

using. Here we provide a list of those limitations. We plan to look for better solutions

to these problems in the future.

Data Capture and Stereo Matching The existing capture system dyes the liquid

with white paint and projects a random light pattern onto the liquid surface for better

spatial feature extraction. Even when the liquid is highly saturated, light scattering

effects can still occur beneath the liquid surface, causing small random noise in the

reconstructed depth map. The liquid also becomes more transparent in small water

drops and thin water films, making it impossible to reconstruct very fine details of

the liquid surface. Shadows and occlusions are always difficult to handle in a stereo

matching algorithm. The proposed two-pass algorithm gives a way to recognize those

regions and then to propagate good depth information to them. However, this is

only an approximation and it may or may not be the same as the real depth. Using

more cameras can provide more visible surfaces and lessen the occlusion problem,

but deploying and synchronizing multiple cameras makes the data capture process

more difficult. In the future, we are interested in finding new capture devices or

methods that are more practical for capture and reconstruction of general outdoor

liquid effects.

Surface Initialization To complete missing regions in the liquid surface that are

caused by camera occlusion, we use heuristic functions in the surface initialization

process, including spatial repetitiveness and temporal repetitiveness. In a complicated

liquid scene with severe occlusion problems, heuristic functions may no longer be
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applicable. For instance, in the fountain example, the water flow appears to be too

thin when viewed from a side angle because its thickness is unknown. Again, using

multiple cameras can ameliorate this problem, but does not fully solve it. Under the

single-stereo-camera paradigm, user interaction may be the only way to address this

problem.

Velocity Estimation Generally speaking, the solution to a velocity field that

evolves one shape into another shape is not unique. Given an initial guess, our

velocity estimation algorithm is guaranteed to find a minimum solution in a gradi-

ent descent fashion. However, this solution may not be the optimal, especially when

water regions merge or split, causing the distance field to change more rapidly than

the actual surface motion. Applying physically based constraints helps resolve these

issues by prorogating well-defined velocities into those problem regions. Extensively

using physically based constraints will cause blurring effects in the velocity fields, so

we prefer to use as few constraint iterations as possible. In a tough case when the ini-

tial velocity field has too many errors from the correspondence search, the estimation

process becomes a tug-of-war between errors and blur.

Although this method does not require shape registration and alignment before

correspondence search, it does require a good initial guess to reduce the searching time

if two shapes are too different from each other. The searching space becomes larger

when the liquid surface moves rapidly in a time step. At this time, the maximum

offset our computation can handle is around 10 voxels. This method would fail if the

liquid surface moves faster than this or if the frame rate drops.

Temporal Coherence Our temporal coherence algorithm is based on the assump-

tion that the surface moves with constant acceleration. Therefore, the result can

be different from real physics especially for large time steps when the acceleration
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changes greatly, such as during rotation. To help with volume preservation, the non-

interpolating semi-Lagrangian method prefers a spatially smooth velocity field. In a

highly dynamic scene, this method may introduce more volume loss. Like the veloc-

ity estimation method, fewer iterations are preferable to avoid error accumulation,

including excessive blurring artifacts and volume loss.
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Figure 43: The pouring example: The top row shows the result without using any
surface optimization. The bottom row show the result after applying our algorithm.

100



Figure 44: The splash example.
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Figure 45: Water regions beyond the spatial grid (in red) can be easily generated by
spatio-temporal extrapolation. We begin with data only in the small vertical region
shown at the left, and we create a final sequence with a larger vertical component
(right).
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CHAPTER VI

CONCLUSION

Three water animation techniques are described in this thesis, targeting toward dif-

ferent aspects in natural phenomena modeling problems.

6.1 Water Drops on Surfaces

We have presented an algorithm to solve the capillary solid coupling problem by

modeling surface tensions between the liquid and solid object. The virtual surface

method replaces the liquid-solid surface by a virtual surface beneath the solid surface

so that the estimated boundary pressure can represent all surface tensions on the

contact front. We use a dynamic contact angle model to choose different stable

contact angles according to the contact fronts velocity and surface wetness. Our

results show that the algorithm is robust, accurate, and ready to be incorporated

into level set fluid solvers.

Although we use a sparse grid representation for our simulations, the memory

and the computing times used for simulating smallscale fluid phenomena are still

large. We plan to concentrate much of our future effort on further reducing these

computational costs. Related to this is the issue of maintaining fine details of the fluid

surface. Since the virtual surface method depends on sampling the signed distance

function represented by the grid cells, the grid domain needs to be sufficiently refined

in order to keep surface details. An octree structure might be useful for representing

cells on the contact front. Another possible way to recover the surface details might

be to use the particles from the particle level set method, possibly by reconstructing

a point set surface.
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6.2 General Shallow Wave Equations

We have presented a new physically based framework to efficiently simulate small-scale

3D water flows on solid surfaces under shallow wave assumptions. This framework is

governed by the General Shallow Wave Equations (GSWE) and it is based on a height

field representation. We have developed several techniques within this framework

including an implicit gravity scheme, an implicit surface tension scheme and two-way

fluid/rigid body coupling. Our experiments show that our system is fast, stable,

straightforward to implement on both CPUs and GPUs. The approach is flexible

enough to produce multiple effects such as water waves, rivulets, water drop effects,

fluid/rigid body coupling and interactive control and shape modeling.

Looking into the future, our short-term plan includes developing a GPU matrix

solver for curved surfaces and incorporating our algorithm into an interactive media

painting system. system. In the long term, we would like to study how to combine

height field techniques with particle systems and grid systems so that non-height-

field effects can be efficiently produced as well. Motion reduction of the height field

provides another possibility to explore in the future.

6.3 Physically-Guided Liquid Surface Modeling from Videos

We have presented a hybrid framework to efficiently reconstruct realistic water anima-

tion from real water scenes by using video-based reconstruction techniques together

with physically-based surface optimization. Using depth maps from stereo vision, the

novelties of our framework include a surface initialization algorithm to create a rough

initial guess of the surface sequence, a 3D flow estimation method to define tempo-

ral coherence, and a surface optimization method to remove false-positives, enforce

temporal coherence and complete false-negatives.

Looking towards the future, a more robust acquisition system and algorithms that
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do not require the dying of water is our first priority. Solving this will make it prac-

tical to capture the complex shapes and interactions of real water in our everyday

environment, not just in a laboratory. Since our method does not require feature

tracking in video, we are optimistic that some active sensing methods may be de-

veloped. In addition, we are also interested in finding a more memory efficient data

structure for the grid representation and in creating a GPU implementation of our

algorithm for acceleration. We speculate that there may be a way to more closely

combine the physically-based optimization and video-based reconstruction. We are

planning to explore other interesting fluid effects, including viscoelastic fluid and gas

animation. Providing more flexible tools based on this algorithm is also an interesting

topic that we plan to study in the future, and this will help artists to design specific

water animation effects via editing the end visual images directly, rather than setting

up initial conditions and various force controls.

More broadly, we believe this combination of reconstruction with simulation can be

extended to model many dynamic real-world objects with the promise of significantly

reducing the amount of captured samples. Ultimately we hope that the acquisition

of 4D models can be as simple as sweeping a camera around – something currently

limited to static scenes only. Adding simulation into the pipeline is, in our view, a

very promising direction.
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APPENDIX A

VALIDATION FOR THE VIRTUAL SURFACE METHOD

CLAIM 1: Given any point P and its closest point L(t0) on L(t), let V (s0, t0) be a

point on Ωv so that P − V (s0, t0) is perpendicular to R(t). If 1 + s cos θs|L′′(t)| > 0

and Ns(t) is constant, V (s0, t0) is a closest point to P .

PROOF: Let SD(t) and SD(s, t) be squared Euclidean distance functions from

P to L(t) and V (s, t) respectively. L(t0) is the closest point to P , so: SD′(t0) =

−2[P − L(t0)] · L′(t0) = 0 and SD′′(t0) = −2[P − L(t0)] · L′′(t0) + 2 > 0. Let k(t) be

a scalar function 1 + s cos θs|L′′(t)|, we see:

∂V (s, t)/∂t = L′(t)− s cos θs(Ns × L′′(t)) = k(t)L′(t)

k(t) > 0 for all t is satisfied if L(t) is sufficiently smooth (|L′′(t)| is small) and if

| cos θs| is small enough. Geometrically, this means the virtual surface has no self-

intersections so that V (s0, t0) and L(t0) share the same tangent direction L′(t). For

SD(s, t), we get:

∂SD(s0,t0)
∂s

= −2[P − V (s0, t0)] ·R(t0) = 0

∂SD(s0,t0)
∂t

= −2k(t0)[P − V (s0, t0)] · L′(t0) = 0

∂2SD(s0,t0)
∂s2

= 2|R(t0)|2 > 0

∂2SD(s0,t0)
∂s∂t

= 2k(t0)R(t0) · L′(t0) = 0

∂2SD(s0,t0)
∂t2

= −2[k(t0)(P − V (s0, t0)) · L′(t0)]′

= −2k(t0)[(P − V (s0, t0)) · L′(t0)]′

= k(t0)(SD
′′(t0)− 2s sin θsNs · L′′(t0)

−2s cos θs((Ns × L′(t0)) · L′′(t0)− |L′′(t0)|))

= k(t0)SD
′′(t0) > 0

106



since (Ns × L′(t)) · L′′(t) = |L′′(t)|. So V (s0, t0) is a local minimum of SD(s, t).

CLAIM 2: If L(t0) is the closest contact point to Cx,0,z, then L(t0) is also the

closest contact point to Cx,−1,z.

PROOF: The node Cx,−1,z’s position is: Cx,−1,z = Cx,0,z − hNs, where Ns is the

Y direction in this case. Let SD0(t) and SD−1(t) be the squared distances to two

nodes respectively, SD−1(t) satisfies:

SD′
−1(t) = SD′

0(t) + hNs · L′(t0) = 0

SD′′
−1(t) = −2(Cx,−1,z − L(t0)) · L′′(t0) + 2(L′(t0)) · L′(t0)

= SD′′
0(t0) + 2hNs · L′′(t0) = SD′′

0(t0) > 0

Therefore, L(t0) is also the closest contact point to Cx,−1,z.
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