Defending Continuous Collision Detection Against Errors

Abstract

Numerical errors and rounding errors in continuous collision detection (CCD) can easily cause collision detection failures if they are not handled properly. A simple and effective approach is to use error tolerances, as shown in many existing CCD systems. Unfortunately, finding the optimal tolerance values is a difficult problem for users. Larger tolerance values will introduce false positive artifacts, while smaller tolerance values may cause collisions to be undetected. The biggest issue here is that we do not know whether or when CCD will fail, even though failures are extremely rare. In this paper, we demonstrate a set of simple modifications to make a basic CCD implementation failure-proof. Using error analysis, we prove the safety of this method and we formulate suggested tolerance values to reduce false positives. The resulting algorithms are safe, automatic, efficient, and easy to implement.

Publication
ACM Trans. Graph. (SIGGRAPH), 33(4)

Huamin Wang
Huamin Wang
Chief Scientist

My research interests include physics-based simulation and modeling, generative AI, numerical analysis and nonlinear optimization.