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Abstract

Numerical errors and rounding errors in continuous collision de-
tection (CCD) can easily cause collision detection failures if they
are not handled properly. A simple and effective approach is to use
error tolerances, as shown in many existing CCD systems. Unfor-
tunately, finding the optimal tolerance values is a difficult problem
for users. Larger tolerance values will introduce false positive ar-
tifacts, while smaller tolerance values may cause collisions to be
undetected. The biggest issue here is that we do not know whether
or when CCD will fail, even though failures are extremely rare. In
this paper, we demonstrate a set of simple modifications to make a
basic CCD implementation failure-proof. Using error analysis, we
prove the safety of this method and we formulate suggested toler-
ance values to reduce false positives. The resulting algorithms are
safe, automatic, efficient, and easy to implement.

Keywords: Floating-point arithmetic, rounding error, numerical
error, continuous collision detection, quadratic and cubic solver.
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1 Introduction

Detecting the existence of exact vertex-triangle or edge-edge inter-
section within a time step is the fundamental step in continuous col-
lision detection (CCD). Due to numerical and rounding errors, the
detection result may be false in two ways: false negatives, when
CCD fails to detect real collision events; and false positives, when
CCD reports collisions while real ones do not happen. Since false
negatives have more severe consequences than false positives, they
are considered as collision detection failures, which must be strictly
avoided. Proposed by Bridson et al. [2002], a typical approach used
in existing systems is to report more collision events than necessary
by setting error tolerance thresholds. This approach can effectively
reduce collision failures, but it is still not clear how large the toler-
ances must be to avoid failures completely. To play it safe, user typ-
ically chooses larger tolerance values, but the extra false positives
may trigger other problems, such as visual artifacts, computational
burden, and convergence issues in collision handling. To solve this
problem, Brochu and Bridson [2012] studied CCD from a new geo-
metric perspective and they formulated a collision predicate that can
eliminate both false negatives and false positives. Unfortunately, it
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Figure 1: After a set of simple modifications, cubic-based CCD al-
gorithms can become failure-proof when simulating the animation
of a bow knot, in which complex collisions occur.

is computationally expensive due to more arithmetic operations in-
volved in exact and interval arithmetic, the latter of which is applied
to reduce the use of more expensive exact arithmetic.

A typical CCD method solves a cubic equation to find the time
when two primitives are coplanar and uses it to detect intersection.
Since the use of error tolerances has already demonstrated its effec-
tiveness in this method, an important question is: can it be strictly
failure-proof? Obviously, an algorithm is trivially and uselessly
“failure-proof”, if it always reports positive. So our real interest is
to avoid failures and reduce false positives at the same time. Un-
fortunately, our research showed that it is difficult to limit the false
positives caused by existing algorithms. To handle this issue, our
idea is to introduce a number of conditions, under which vertex-
triangle and edge-edge tests are guaranteed to be failure-proof. If
any condition is not satisfied, we resort to vertex-edge CCD test,
which reports a collision if the vertex-edge distance drops below a
certain threshold within a time step. By using a sufficiently large
distance threshold, we ensure the detection of any collision event.

While our idea is simple, its implementation forces us to face two
critical challenges. The first challenge is how to formulate vertex-
edge test. Computing the time when the Euclidean vertex-edge
distance is equal to a threshold involves solving a quartic equa-
tion, which is computationally expensive and susceptible to more
errors. The volume-based geometric predictor proposed by Brochu
and Bridson [2012] can detect the short distance without computing
the time, but it is not robust against rounding errors if not using ex-
act arithmetic. The second challenges is how to evaluate the overall
test error. Since the numerical error caused by the cubic solver and
the rounding errors caused by floating-point arithmetic coexist, we
cannot perform direct error analysis as in [Wilkinson 1994].

In this work, we made the following contributions: 1) a novel im-
plementation of vertex-edge test with O(ε

1
4 ) relative error, in which

ε is machine epsilon; 2) systematic error analysis of the cubic-based
tests; 3) a set of simple modifications to make cubic-based tests
failure-proof; and 4) the formulation of lower bounds on the error
tolerances. Compared with existing methods, our method is:

Safe. We prove that cubic-based CCD algorithms can be un-
conditionally failure-proof after applying our methods.

http://doi.acm.org/10.1145/2601097.2601114
http://portal.acm.org/ft_gateway.cfm?id=2601114&type=pdf
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Figure 2: Our CCD tests and their error tolerance values. A VT
test may call the VE test up to three times, and an EE test may
call the VE test up to four times. The choices of tolerance values
will be discussed in Section 4. Note that they have been slightly
increased in our analysis, so they can be computed using floating-
point arithmetic directly.

Simple. Our modifications are simple and can be easily incor-
porated into existing systems.

Efficient. Our experiment shows that the computational over-
head of our method is only a fraction of the original test cost.

Automatic. Based on error analysis, CCD algorithms can au-
tomatically determine all of the tolerance values. User does not
need to specify a single parameter.

Accurate. Our method computes the tolerance values by min-
imizing the vertex-triangle or edge-edge distance when a false pos-
itive occurs. So using them can reduce false positives.

2 Related Work

Collision detection. Errors and degeneracies in proximity
and intersection tests have been studied [Gilbert et al. 1988; Gold-
berg 1991; Shewchuk 1996; Larsen et al. 2000] in the past. Based
on these tests, researchers developed the discrete collision detec-
tion approach [Baraff et al. 2003; Volino and Magnenat-Thalmann
2006] that tests collisions at discrete time instants only. While this
approach is robust, it may miss collisions when objects move fast,
known as the tunneling artifact. One solution is to gradually ad-
vance the simulation time until a collision happens, as proposed by
Tang et al. [2010]. Alternatively, the continuous collision detection
approach computes the possible collision time when two primitives
are coplanar. For vertex-triangle and edge-edge collisions, the time
can be found by solving cubic equations as Provot [1997] showed.
Bridson et al. [2002] improved the robustness of this method by
using rounding error tolerances on vertex-plane distances, line-line
distances, and barycentric coordinates. However, how to find opti-
mal error tolerances is a tricky problem and there is often no way to
guarantee the detection of every collision event. To avoid collision
failures, Brochu and Bridson [2012] proposed to separate collision
detection from collision time query, and developed a root-parity-
based CCD algorithm using exact arithmetic. The robustness of
collision tests can also be improved by reporting a collision when
the distance between two primitives is less than a threshold as S-
tam [2009] suggested. This requires solving six-order polynomial
equations, when handling vertex-triangle or edge-edge collisions.

Collision culling and handling. Recent research in collision
culling has resulted in a number of efficient techniques [Schvartz-
man et al. 2010; Pabst et al. 2010; Lauterbach et al. 2010; Tang
et al. 2011; Zheng and James 2012]. Our method is fully compat-
ible with them. Once collisions are found, the next issue is how
to resolve collisions by applying collision responses on primitives.
This can be difficult in complex multi-collision cases. A typical so-
lution to unresolved collisions after a number of processing steps is
to treat them as rigid bodies in impact zones [Provot 1997; Bridson
et al. 2002; Huh et al. 2001; Harmon et al. 2008]. Thomaszews-

Algorithm 1 VV CCD(x0
i , x1

i , x0
j , x1

j , D2)

Compute x ji and v ji;
T← Clamp(−(x ji · v ji)/(v ji · v ji), 0, 1);
for every root t ∈ T do . Proximity test

if
∥∥∥x ji + tv ji

∥∥∥2

2
≤ D2 + δ then return true;

ki et al. [2008] suggested to process collisions asynchronously for
more accurate collision responses, although their method still relies
on synchronous collision handling to avoid remaining collisions. A
purely asynchronous system was developed by Harmon et al. [2009;
2011], which guarantees that each collision process can be done in a
finite time and its result is free of penetrations. Ainsley et al. [2012]
combined an asynchronous system with continuous collision detec-
tion, which reduces the number of rescheduling events and makes
the system faster. Since the use of our method in CCD reduces false
positives and makes the collision time more accurate, we believe it
will improve the robustness of collision handling as well.

3 Continuous Collision Detection

In this section, we will present our algorithms for vertex-vertex
(VV) CCD test, vertex-edge (VE) CCD test, vertex-triangle (VT)
CCD test, and edge-edge (EE) CCD test. Our basic idea is to incor-
porate the VV test into the VE test, and the VE test into the VT and
EE tests, as Figure 2 shows. We note that the pseudo code given in
this section slightly differs from the descriptions, due to the use of
error tolerances. We will discuss them later in Section 4.

3.1 Vertex-Vertex Collision Detection

Vertex-vertex CCD reports a collision, if the Euclidean distance is
shorter than a threshold D at any time t between the starting time 0
and the ending time 1. The Euclidean distance is defined as: (x ji +
tv ji) · (x ji + tv ji), in which x ji = x0

ji = x0
j − x0

i and v ji = (x1
j −

x1
i ) − (x0

j − x0
i ). We compute t0 when the distance is minimized as:

t0 = −(x ji ·v ji)/(v ji ·v ji). Since t0 must be in [0, 1], we apply Clamp
on it. After that, we compute the squared distance at t0. If it is less
than D2, the algorithm reports a collision as Algorithm 1 shows.

3.2 Vertex-Edge Collision Detection

Vertex-edge CCD reports a collision if the Euclidean distance is
less than a threshold R. Let x0 be a vertex and xix j be an edge. The
Euclidean distance between the vertex and the edge line at time t

is: ‖
(x0i+tv0i)×(x ji+tv ji)‖2
‖x ji+tv ji‖2

. Finding the time when it gets minimized (or
equal to R) is difficult without solving a complex equation. But
since ||x||1 ≤

√
3||x||2 ≤ 3||x||∞ for any x, if the Euclidean distance

is less than R at t, then the following condition must be satisfied:

F0i j(t) =
∥∥∥(x0i + tv0i) × (x ji + tv ji)

∥∥∥
1
− S

∥∥∥x ji + tv ji

∥∥∥
∞
≤ 0 (1)

in which S = 3R. So instead of finding tE
0 that minimizes the Eu-

clidean distance, we define the time t0 as the local minimum of
F0i j(t) closest to tE

0 , which may or may not be the global mini-
mum. Since F0i j(tE

0 ) ≤ 0 when a collision occurs, we must have
F0i j(t0) ≤ 0. In addition, we need to consider the boundary case
when the vertex-edge distance is not the vertex-line distance (i.e.,
when the vertex’s projection on the edge line is outside of the edge).
By formulating the test into a constrained optimization problem, we
must be able to find t0 from five Karush–Kuhn–Tucker cases.

Case 1. t0 = 0 or 1.



Algorithm 2 VE CCD(x0
0, x1

0, x0
i , x1

i , x0
j , x1

j , R)

Compute {x0i, xi j} and {v0i, vi j};

T←
{
0, 1,− x ji±y ji

u ji±v ji
,−

x ji±z ji
u ji±w ji

,−
z ji±y ji
w ji±v ji

}
; . Case 1 and 3

xa ← v0i × v ji;
xb ← x0i × v ji + v0i × x ji;
xc ← x0i × x ji;
for every component k in xa and xb do

if |k| ≤ ρ then k ← 0;
T← T

⋃
Quadratic Solver(xa.x, xb.x, xc.x); . Case 4

T← T
⋃
Quadratic Solver(xa.y, xb.y, xc.y);

T← T
⋃
Quadratic Solver(xa.z, xb.z, xc.z);

for every at2 + bt + c = 0 in Case 2 do
T← T

⋃
{−b/2a}; . Case 2

for every root t ∈ T do . Proximity test
Compute xt

0i, xt
ji; . xt

0i ← x0i + tv0i

if 0 ≤ t ≤ 1 and xt
ji · x

t
ji ≥ λ

2 and 0 ≤ xt
0i · x

t
ji ≤ xt

ji · x
t
ji and

F0i j(t) ≤ ψ then return true;
if VV CCD(x0

0, x1
0, x0

i , x1
i , D2) or

VV CCD(x0
0, x1

0, x0
j , x1

j , D2) then return true;
return false;

Case 2. The components in x ji+t0v ji have unique magnitudes and
no component in (x0i + t0v0i) × (x ji + t0v ji) is equal to zero. In this
case, F0i j(t0) can be considered as a quadratic function locally at t0
and the solution of F′0i j = 0 gives t0. There are eight possibilities
in

∥∥∥(x0i + tv0i) × (x ji + tv ji)
∥∥∥

1
and six possibilities in

∥∥∥x ji + tv ji

∥∥∥
∞

.
Due to the symmetry, only 24 time candidates are unique.

Case 3. At least two components of x ji + t0v ji have the same
magnitude at time t0. If so, we find t0 by solving a linear equation.
Since there are three components and each component can be either
positive or negative, there are at most six unique candidates.

Case 4. At least one component of (x0i +t0v0i)×(x ji +t0v ji) is zero
at time t0. If so, we can find t0 by solving the quadratic equation.
There are three equations and six collision time candidates at most.

Case 5. The time t0 is the vertex-vertex collision time between
x0 and xi, or x0 and x j.

Degenerate cases. Although degenerate cases are rare, we still
need to examine them to ensure the robustness of vertex-edge C-
CD. First of all, any linear equation may be trivially reduced to a
constant in Case 3. If so, t0 has no influence on

∥∥∥x ji + tv ji

∥∥∥
∞

and we
can find it from other cases. Similarly, if any quadratic equation1 in
Case 4 is reduced to a constant, we find t0 from other cases. If all
equations in Case 3 and 4 are trivial, the choice of t has no influence
on F0i j(t) and we can simply set t0 = 0 or 1. This may happen when
the vertex-line distance is relatively static. If the quadratic equation
in Case 2 is reduced to a linear equation or even a constant, then
F0i j(t) must be minimized at t0 = 0 or 1, which is covered by Case
1. We note that we have not discussed

∥∥∥x ji + t0v ji

∥∥∥
∞

= 0, which
makes Equation 1 ineffective. We will study it in Subsection 4.3.

Summary. Given the five cases, we can formulate our vertex-
edge CCD algorithm in two steps as Algorithm 2 shows. In the first
step, it computes a set of collision time candidates. In the second
step, it verifies whether F0i j(t) is indeed small at each candidate.
Although there are many candidates, only a few are valid (between
0 and 1) and need further verification. The average number of valid
candidates is about seven as our experiment shows.

1Our quadratic solver (in Appendix A) can handle the degenerate case
when a quadratic equation is reduced to a linear equation.

One question is how to determine the distance threshold D to cap-
ture missed collision events by vertex-vertex CCD. Let t0 be the
time when F0i j(t) is minimized and the time tE

0 be the time when the
Euclidean distance is minimized. If the vertex’s projection is out-
side of the edge at tE

0 , we can set D ≥ R. If the vertex’s projection is
inside of the edge at t0, vertex-vertex CCD is unused. So collisions
are missed when the vertex’s projection is outside at t0 but inside at
tE
0 only, as Figure 3a shows. Fortunately, since t0 is the minimum

of F0i j(t) closest to tE
0 , F0i j(t) ≤ 0 and the vertex-line distance must

be shorter than S at any t ∈ [t0, tE
0 ]. When the vertex’s projection

moves from the interior of the edge to the exterior, there must ex-
ist time t when the vertex’s projection is at an endpoint. We use
D ≥ S = 3R to capture this collision by vertex-vertex CCD at t.

3.3 Vertex-Triangle Collision Detection

In our vertex-triangle CCD algorithm shown in Algorithm 3, we
apply vertex-edge CCD after the cubic-based test [Provot 1997;
Bridson et al. 2002], to avoid missed collisions. The closed-form
solution of a cubic equation requires the cubic root, which cannot
be correctly rounded under the IEEE 754 standard. Instead, a nu-
merical solver finds t̂0, such that the residual error at t̂0 is below a
threshold µ. The use of this threshold2 suffers from two problems.

Small triangle. The cubic function F(t) = (x01 + tv01) · (x21 +
tv21) × (x31 + tv31) is proportional to the Euclidean vertex-plane
distance times the triangle area at time t. So if the triangle is small
at t̂0, the residual error is also small, even when the vertex-plane
distance is still large. As a result, proximity test will fail at time t̂0.

Parallel motion. Another problem happens when the vertex
moves nearly parallel to the triangle plane, in which case the residu-
al error becomes small even before the vertex intersects the triangle.

Due to the motion of the primitives, it is possible to notice such
degenerate problems only at t̂0 and in its neighborhood. So we can-
not detect them as special cases without computing t̂0. To prevent
them from causing collision failures, we apply vertex-edge CCD
after proximity test. If the triangle is small when a collision hap-
pens, the vertex must be close to a triangle edge and this collision
can be detected by vertex-edge CCD. Meanwhile, if a vertex moves
nearly parallel to the triangle plane, it must get sufficiently close to
a triangle edge before it intersects the triangle. So vertex-edge CCD
can detect this collision as well.

3.3.1 Errors and False Positives

Here we would like to study the overall error without considering
the rounding errors. Our goal is: 1) to eliminate false negatives;
and 2) to reduce false positives as much as possible.

Let µ be the convergence threshold of the cubic solver, σ be the
thickness threshold in the vertex-triangle proximity test, and R be
the Euclidean distance threshold in vertex-edge CCD. Let t0 be the
exact vertex-triangle intersection time (such that F(t0) = 0) and
t̂0 be its computed version (such that |F(t̂0)| ≤ µ). By definition,
F(t) = A(t)C(t), in which A(t) is twice the triangle area and C(t)
is the vertex-plane distance. Since |F(t̂0)| ≤ µ, instead of testing
whether |C(t̂0)| ≤ σ, we test whether |A(t̂0)| ≥ τ = µ/σ. If so, we
have |C(t̂0)| ≤ σ and the test proceeds. If not, we do vertex-edge
CCD. Assuming that |F(t)| ≤ µ for any t in [t0, t̂0] (in Appendix
B), we claim every exact collision event will be detected by setting
R = µ

1
3 . To prove this, we show that if an exact collision fails the

vertex-triangle proximity test, it must pass vertex-edge CCD.
2A numerical solver may use other convergence criteria, but they are

ineffective once the rounding error becomes dominant.
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Figure 3: Vertex-edge and vertex-triangle CCD cases. When the vertex x0 moves along its trajectory (in a dashed line) over time, the edge
length and the triangle size may vary. The red lines and triangles represent the upper bounds on the vertex-line and vertex-plane distances.

Algorithm 3 VT CCD(x0
0, x1

0, x0
1, x1

1, x0
2, x1

2, x0
3, x1

3)

Compute {x01, x21, x31} and {v01, v21, v31};
a← v01 · v21 × v31;
b← x01 · v21 × v31 + v01 · v21 × x31 + v01 · x21 × v31;
c← x01 · v21 × x31 + x01 · x21 × v31 + v01 · x21 × x31;
d ← x01 · x21 × x31;
T← {0, 1}

⋃
Cubic Solver(a, b, c, d, µ);

for every root t ∈ T do . Proximity test
Compute xt

01, xt
21, xt

31; . xt
01 ← x01 + tv01

N = xt
21 × xt

31;
if ‖N‖∞ ≥ τ and

max
(∥∥∥xt

21

∥∥∥
∞
,
∥∥∥xt

31

∥∥∥
∞
,
∥∥∥xt

31 − xt
21

∥∥∥
∞

)
η ≤ ‖N‖∞ and

0 ≤ N · xt
21 × xt

01 ≤ N · N and
0 ≤ N · xt

01 × xt
31 ≤ N · N and

0 ≤ N · xt
21 × xt

01 + N · xt
01 × xt

31 ≤ N ·N then return true;
if VE CCD(x0

0, x1
0, x0

1, x1
1, x0

2, x1
2, R) or . /* Additional tests */

VE CCD(x0
0, x1

0, x0
2, x1

2, x0
3, x1

3, R) or
VE CCD(x0

0, x1
0, x0

3, x1
3, x0

1, x1
1, R) then return true;

return false;

Triangle area test. The proximity test fails because A(t̂0) ≤ τ at
time t̂0, as Figure 3b shows. If we also have A(t0) ≤ τ, then the
maximum squared radius of the triangle inner circle is

√
3

18 τ and at

least one squared Euclidian vertex-edge distance is less than
√

3
18 τ at

time t0. So by setting R2 ≥
√

3
18 τ, we can get this collision reported

by vertex-edge CCD. On the other hand, we may have A(t0) ≥ τ
(Figure 3c). Since A(t) and the vertex’s projection are two con-
tinuous functions of time, there must exist time t in [t0, t̂0], such
that A(t) = τ and the vertex’s projection is within the triangle (Fig-
ure 3d), or A(t) ≥ τ and the vertex’s projection is on a triangle edge
(Figure 3e), the latter of which may not happen if the vertex’s pro-
jection is always within the triangle from t0 to t̂0. If the first event
happens, we have C(t) ≤ µ/τ = σ and we can set R2 ≥ σ2 +

√
3

18 τ to
detect this case at time t. If the second event happens, the vertex-
edge distance is less than σ at time t and we need R ≥ σ. We will
refer to the idea of defining two events and finding the time when
an event happens as the two-event analysis in the rest of this paper.

One interesting observation from the above analysis is that if A(t) ≤
τ at any t ∈ [t0, t̂0], we can replace t̂0 by t and use the above anal-
ysis to conclude that R2 ≥ σ2 +

√
3

18 τ is also sufficient to get such
collisions detected. So we need to consider only the cases when
A(t) ≥ τ for any t ∈ [t0, t̂0] next.

Barycentric test. If A(t̂0) > τ, the proximity test can fail only
because of the barycentric test, in which case the vertex’s projec-
tion is outside of the triangle at time t̂0. Let t be the time when the
vertex’s projection intersects a triangle edge. Since A(t) ≥ τ accord-
ing to the previous analysis, the vertex-plane distance is bounded by
σ and we can use R ≥ σ to detect such collisions at time t.

Algorithm 4 EE CCD(x0
0, x1

0, x0
1, x1

1, x0
2, x1

2, x0
3, x1

3)

Compute {x20, x10, x32}, {v20, v10, v32};
a← v20 · v10 × v32
b← x20 · v10 × v32 + v20 · v10 × x32 + v20 · x10 × v32;
c← x20 · v10 × x32 + x20 · x10 × v32 + v20 · x10 × x32;
d ← x20 · x10 × x32;
T← {0, 1}

⋃
Cubic Solver(a, b, c, d, µ);

for every root t ∈ T do . Proximity test
Compute xt

20, xt
10, xt

32; . xt
20 ← x20 + tv20

N = xt
10 × xt

32;
if ‖N‖∞ ≥ τ and max(

∥∥∥xt
10

∥∥∥
∞
,
∥∥∥xt

32

∥∥∥
∞

) · η ≤ ‖N‖∞ and
0 ≤ N · xt

20 × xt
10 ≤ N · N and

0 ≤ N · xt
20 × xt

32 ≤ N · N then return true;
if VE CCD(x0

2, x1
2, x0

0, x1
0, x0

1, x1
1, R) or . Additional tests

VE CCD(x0
3, x1

3, x0
0, x1

0, x0
1, x1

1, R) or
VE CCD(x0

0, x1
0, x0

2, x1
2, x0

3, x1
3, R) or

VE CCD(x0
1, x1

1, x0
2, x1

2, x0
3, x1

3, R) then return true;
return false;

Summary. In conclusion, R2 ≥ σ2 +
√

3
18 τ is sufficient to detec-

t missed collision events by vertex-edge CCD. A simple way to
reduce the false positives is make R as small as possible. Given
τ = µ/σ, we can minimize R by setting τ3 =

36µ2
√

3
, in which case

R3 = 1
4µ. For simplicity, we use τ = 4µ

2
3 and R = µ

1
3 . We will

discuss the changes caused by the rounding errors in Section 4.4.

3.4 Edge-Edge Collision Detection

To detect the collision between two edges x0x1 and x2x3, we for-
mulate edge-edge CCD similar to vertex-triangle CCD, except that
the normal N is defined as the cross product of the two edges. In
this case, ‖N‖2 is equal to twice the area of the quadrilateral formed
by the four vertex projections along the N direction, and the cubic
function is defined as: F(t) = (x20 + tv20) · (x10 + tv10)× (x32 + tv32).
The algorithm suffers from similar problems: small quadrilateral,
when the quadrilateral formed by the two edges is small; and per-
pendicular motion, when the relative motion of the edges is nearly
perpendicular to N. Our solution again is to use vertex-edge CCD.

3.4.1 Errors and False Positives

By ignoring the rounding errors, we would like to: 1) to eliminate
false negatives; and 2) to reduce false positives. Let µ be the con-
vergence threshold of the cubic solver, σ be the thickness threshold
on the line-line distance, and R be the distance threshold in vertex-
edge CCD. By definition, F(t) = A(t)C(t), in which A(t) is twice
the quadrilateral area and C(t) is the line-line distance. Similar to
vertex-triangle CCD, the proximity test contains two steps: the area
test: |A(t̂0)| ≥ τ = µ/σ; and the barycentric test. If a real collision
fails any step, we must use vertex-edge CCD to detect it.



Quadrilateral area test. The proximity test fails because A(t̂0) ≤
τ at time t̂0. Given a quadrilateral defined by two crossing edges, the
shortest distance from any vertex to the other edge must be bounded
by half of the shorter edge length. If A(t0) ≤ τ, the shorter crossing
edge length cannot exceed

√
τ, and the shortest Euclidean vertex-

edge distance is less than
√
τ

2 at time t0. This means we can use
vertex-edge CCD to detect such events by setting R2 ≥ τ

4 . On the
other hand, we may have A(t0) ≥ τ. Using the two-event analysis
presented in Subsection 3.3.1, we formulate a sufficient condition to
get the collision detected: R2 ≥ σ2 + τ

4 . Based on the same analysis
in Subsection 3.3.1, we know R2 ≥ σ2 + τ

4 is also sufficient to detect
any collision, if A(t) ≤ τ happens at any t ∈ [t0, t̂0].

Barycentric test. When the barycentric test fails, the edges do
not intersect at time t̂0 in the projected plane. Let t be the time
when a projected edge intersects the other projected edge’s vertex.
As shown previously, we have A(t) ≥ τ and the line-line distance is
bounded by σ at t. So R ≥ σ is sufficient.

Summary. In conclusion, R2 ≥ σ2 + τ
4 is sufficient to prevent

collision events from being missed. To reduce the false positives,
we need to make R as small as possible. Given τ = µ/σ, we can
minimize R by setting τ3 = 8µ2, in which case R2 = 3

4µ
2
3 . For

simplicity, we use τ = 2µ
2
3 and R = µ

1
3 .

4 Error Analysis

Compared with the numerical errors, the rounding errors caused
by floating-point arithmetic are more complex. We will study their
properties in Subsection 4.1 and then discuss their effect in CCD.

4.1 Rounding Error Properties

Let a be a real number, the rounding process converts a into a
floating-point number â, such that |a − â| < |a|ε, in which ε is
machine epsilon. The single precision floating-point format us-
es ε = 2−23, and the double precision format uses ε = 2−52.
The arithmetic operations performed on floating-point numbers are
floating-point arithmetic. According to the IEEE 754 standard, ba-
sic floating-point arithmetic operations, including add, subtract,
multiply, divide, and square root, must be correctly rounded.
In other words, given an exact arithmetic operator ∗ and its floating-
point counterpart ~, a~b = ROUND(a∗b) and |a~b−a∗b| ≤ |a∗b|ε.

When there are multiple floating-point operations, rounding errors
are accumulated and the error bounds are not straightforward to
compute. To handle this issue, we propose an error estimation strat-
egy based on forward error analysis. Let f be a function containing
multiple arithmetic operations. Its rounding error | f̂ − f | is bounded
by: E f = B f ((1 + ε)k f − 1), in which B f is an upper bound on | f |
and k f is an exponential coefficient. Assuming that all variables in
f are bounded by B0, we can formulate the operations of f into a
tree and find B f and k f as:
• If node i is a leaf, Bi = B0 and ki = 0.
• If i is a non-leaf node corresponding to add or subtract

and it has two children l and r, then Bi = Bl + Br and
ki = max(kl, kr) + 1.

• If i is a non-leaf node corresponding to multiply and it has
two children l and r, then Bi = BlBr and ki = kl + kr + 1.

We prove the correctness of these rules by the following theorem.

Theorem 4.1. If f is a function made of add, subtract, and
multiply operations, then | f | ≤ B f and | f − f̂ | ≤ E f = B f ((1 +
ε)k f − 1), in which B f and k f are calculated using the above rules.
Proof. This can be proven by induction. By definition, a leaf node
is an input variable, so its bound is B0 and its error bound is 0.

Now suppose that Bl, kl, Br, and kr can provide valid bounds for
the children of a non-leaf node. If the node i corresponds to add
or subtract, then |i| = |l ± r| ≤ |l| + |r| ≤ Bl + Br, and |î − i| ≤∣∣∣l̂ − l

∣∣∣ + |r̂ − r| +
∣∣∣î − (l̂ ± r̂)

∣∣∣ ≤ Bi((1 + ε)ki−1 − 1) + Bi(1 + ε)ki−1ε =

Bi((1 + ε)ki − 1). If i corresponds to multiply, then |i| = |lr| ≤ BlBr

and |î− i| ≤
∣∣∣l̂r̂ − lr

∣∣∣+ ∣∣∣î − l̂r̂
∣∣∣ ≤ Bi((1 + ε)kl+kr − 1) + Bi(1 + ε)

kl+kr
ε =

Bi((1 + ε)ki − 1). So Bi and ki are valid for node i as well. �

The Upper Bound B. Our algorithms start with vector compu-
tation to obtain relative positions and velocities. To apply Theo-
rem 4.1 in error analysis, we would like to derive an upper bound
on their vector components. Here we consider the cases when exact
collisions happen only. Let Emax be an upper bound on the edge vec-
tors at time 0: E0

max = max
{i, j}

∥∥∥∥x0
i − x0

j

∥∥∥∥
∞

for any edge {i, j}. Let Vmax

be an upper bound on the velocities: Vmax = max
i

∥∥∥x1
i − x0

i

∥∥∥
∞

. If the

vertex x0 collides with the triangle at a point xt
m when t ∈ [0, 1], then

their distance at time 0 must be bounded by 2Vmax. Since the dis-
tance from x0

m to any triangle vertex is bounded by E0
max, we know

x0
01, x0

02, and x0
03 is bounded by E0

max + 2Vmax. By definition, all of
the relative velocities are bounded by 2Vmax. So B = E0

max + 2Vmax
is an upper bound on the vector components of both the displace-
ments and velocities in vertex-triangle CCD. The same analysis can
be applied to edge-edge CCD, except that collision can happen any-
where within the two edges. Because of that, there must exist ver-
tex i from one edge and vertex j from the other edge, such that
B = E0

max +2Vmax is an upper bound on the displacement from i to j.
In practice, this vertex pair can be detected as the one with the min-
imum component, and we assume x20 is such a pair in Algorithm 4.
We note that B is also an upper bound on the relative positions at
any time in [0, 1]. We will use this fact to study the errors of prox-
imity tests later. A small issue is B cannot be exactly computed.
According to Theorem 4.1, the error involved in B is B((1 + ε)2 − 1)
at most, due to two subtract and one add. So to make B valid in
both exact and computed cases, we set: B = (E0

max + 2Vmax)(1 + ε)2.
When the primitives move fast, we make B tighter by using relative
velocities. Specifically, we compute the bounding boxes at the s-
tarting and ending times, and use their difference to obtain an upper
bound V rel

max on the relative velocities, similar to [Selle et al. 2009].
We then set Vmax to V rel

max, if V rel
max is smaller.

For simplicity, we ignore the errors of the relative positions and
velocities in this section. We will visit them later in Section 5.

4.2 Errors in Vertex-Vertex CCD

We first study the collision time t0 in vertex-vertex CCD. Let∥∥∥x ji

∥∥∥
∞
≤ B,

∥∥∥v ji

∥∥∥
∞

= b ≤ B, m = −x ji ·v ji and n = v ji ·v ji. We know
from Theorem 4.1 and Figure 4a that |m̂ − m| ≤ 3Bb((1 + ε)3 − 1)
and |n̂ − n| ≤ 3b2((1 + ε)3 − 1). Given n ≥ b2, we have:∣∣∣ m̂

n̂ −
m
n

∣∣∣ ≤ ∣∣∣ m̂−m
n̂

∣∣∣ + t0

∣∣∣ n̂−n
n̂

∣∣∣ ≤ 10ε
(

B
b + 1

)
. Since t0 ∈ [0, 1], |t̂0 − t0| ≤∣∣∣t̂0 −

m̂
n̂

∣∣∣+∣∣∣ m̂
n̂ −

m
n

∣∣∣ ≤ (
1 + 10ε

(
B
b + 1

))
ε+10ε

(
B
b + 1

)
≤ 12ε

(
B
b + 1

)
.

This conclusion is still valid after applying Clamp on t̂, which
makes |t̂0 − t0| even smaller. Let Fi j(t) =

∥∥∥xi j + tvi j

∥∥∥
2

be the Eu-
clidean distance at time t. Since

∥∥∥v ji

∥∥∥
∞

= b ≤ B, we must have∥∥∥v ji

∥∥∥
2
≤
√

3b and
∣∣∣Fi j(t̂) − Fi j(t)

∣∣∣ ≤ √3b12ε
(

B
b + 1

)
≤ 24

√
3Bε.

Meanwhile,
∣∣∣Fi j(t)

∣∣∣ ≤ ∥∥∥xi j

∥∥∥
2

+
∥∥∥vi j

∥∥∥
2
≤ 2
√

3B, so
∣∣∣F2

i j(t̂) − F2
i j(t)

∣∣∣ ≤
(4
√

3B + 24
√

3Bε) · 24
√

3Bε ≤ 289B2ε.

The proximity test cannot evaluate F2
i j(t̂) exactly. Since the com-

ponents of x ji, v ji, and x ji + t̂v ji are all bounded by B, the error
associated with the components of x ji + t̂v ji must be bounded by
(B+ Bε)ε + Bε ≤ B((1 + ε)2−1). Using Theorem 4.1, we can bound
the proximity test error by:

∣∣∣F̂2
i j(t̂) − F2

i j(t̂)
∣∣∣ ≤ 3B2((1 + ε)7 − 1) ≤



22B2ε. Together, we have:
∣∣∣F̂2

i j(t̂) − F2
i j(t)

∣∣∣ ≤ 311B2ε and we can
set the error tolerance δ = 311B2ε to avoid false negatives.

False positives. When a false positive occurs, We must have:∣∣∣F2
i j(t) − D2

∣∣∣ ≤ 2δ. Assuming that D2 is substantially larger than 2δ,

we get the distance error:
∣∣∣Fi j(t) − D

∣∣∣ ≤ √2δ ≤ 25Bε
1
2 .

4.3 Errors in Vertex-Edge CCD

We first study the error of F0i j(t), which is related to the vertex-line
distance. To simplify the analysis, we modify F0i j(t) by removing
any component in xa or xb, if it is less than ρ = 3B2ε

1
2 . Let the

result be G0i j(t). Since |F0i j(t) − G0i j(t)| is small, the minimization
of G0i j(t) approximates the minimization of F0i j(t) well.

Case 1 to 4. According to Algorithm 2, there are four cases re-
lated to G0i j(t). Let tF

0 be the local minimum of F0i j(t) closest to
tE
0 , t0 be the local minimum of G0i j(t) closest to tF

0 , and t̂0 be the
computed version of t0. In the first three cases, t̂0 is given by simple
linear equations and it is not difficult to see that |G0i j(t̂0) −G0i j(t0)|
and F0i j(t̂0) − F0i j(tF

0 ) are bounded by B2O(ε). The problem comes
from Case 4, which requires to solve quadratic equations. Let
Q(t) = at2 + bt + c = 0 be the exact quadratic equation, and
Q̄(t̄) = ât2 + b̂t+ ĉ be the actual equation sent to the solver. The time
t̂0 is computed from Q̄(t̄), not Q(t). Since |â − a|, |b̂ − b|, and |ĉ − c|
are small, the residual error |Q(t̂0) − Q(t0)| is also small. Unfortu-
nately, |t̂0 − t0| can be large and it can cause |G0i j(t̂0) − G0i j(t0)| to
be as large as 688B2ε

1
2 . In our detailed analysis in Appendix C, we

further show F0i j(t) − F0i j(tF
0 ) ≤ 725B2ε

1
2 for any t ∈ [tF

0 , t̂0]. So we
set the tolerance threshold ψ = 725B2ε

1
2 in Algorithm 2, to avoid

failures due to the rounding errors.

Case 5. Case 5 is done by vertex-vertex CCD and our job is to
find a suitable distance threshold D in vertex-vertex CCD. Let tE

0 be
the exact time when the Euclidean vertex-edge distance gets mini-
mized. We need to study only the cases when the vertex’s projection
is inside of the edge at tE

0 , as discussed in Subsection 3.2. To further
reduce false positives, we introduce an edge length test. Our goal
is to make sure if a real collision fails both the length test and the
barycentric test, it must be detected by vertex-vertex CCD.

• Edge length test. This test prevents F0i j(t) from inviting large
false positives when the edge is short: l̂2 ≤ λ2, in which l̂ is
the computed Euclidean edge length at time t̂0. Since |l̂2−l2| is
at most 3B2((1 + ε)7 −1) ≤ 22B2ε as shown in Subsection 4.2,
we know l2 ≤ λ2 + 22B2ε at time t̂0. If the squared edge
length at time tE

0 is also less than λ2 + 22B2ε, given the vertex-
line distance short than R, we can detect this case by setting
D2 ≥ R2 + λ2+22B2ε

4 . If not, the squared edge length at time tE
0 is

greater than λ2 +22B2ε. Since tF
0 is a local minimum of F0i j(t)

closest to tE
0 and F0i j(tE

0 ) ≤ 0, we know F0i j(t) ≤ 725B2ε
1
2 , for

any t ∈ [tE
0 , t̂0]. By the definition of F0i j(t), the vertex-line dis-

tance is bounded by 725B2ε
1
2

√
λ2+22B2ε

+S , if l2 ≥ λ2 +22B2ε at time t.
By defining two events: 1) l2 = λ2 + 22B2ε and 2) the vertex’s
projection is an endpoint of the edge, we apply the two-event
analysis in Subsection 3.3.1 to derive a sufficient condition:

D2 ≥ λ2+22B2ε
4 +

(
725B2ε

1
2

√
λ2+22B2ε

+ S
)2

, using which vertex-vertex
CCD detects the relevant collision at certain time t ∈ [tE

0 , t̂0].

• Barycentric test. After the edge length test, the barycentric
test may still fail. Passing the edge length test means l̂2 ≥ λ2

at time t̂0, or l2 ≥ λ2 − 22B2ε. Since barycentric weights are
also calculated using dot products, their errors are bounded
by 22B2ε and the barycentric test error is bounded by 44B2ε.
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Figure 4: Error bounds in collision detection. The red arrows rep-
resent multiply and the green arrows represent add or subtract.

The value examined by the barycentric test is equal to the edge
length times the distance of the vertex’s projection to an end-
point. So when the barycentric test fails erroneously, the dis-
tance of the vertex’s projection to a certain endpoint cannot
exceed (44B2ε)2

√
λ2−22B2ε

at time t̂0. Together with the upper bound on
the vertex-line distance at time t̂0, we get a sufficient condi-

tion: D2 ≥
(44B2ε)2

λ2−22B2ε
+

(
725B2ε

1
2

√
λ2−22B2ε

+ S
)2

.

False positives. A false positive can be detected either by
vertex-edge CCD itself, or vertex-vertex CCD. Since the error in
vertex-vertex CCD is small, we can consider D as an upper bound
on the squared vertex-edge distance in both cases. To reduce false
positives, we would like to find the optimal λ that minimizes D.
After temporarily ignoring S and performing simplifications, we
choose λ2 = 2080B2ε

1
2 and we set D2 ≥ (16Bε

1
4 + S )2 + 522B2ε

1
2

as a sufficient condition for vertex-edge CCD.

4.4 Errors in Vertex-Triangle CCD

The vertex-triangle CCD algorithm contains four steps: 1) finding
the roots of a cubic equation; 2) testing the triangle area; 3) verify-
ing the triangle heights; and 4) testing the barycentric coordinates.

Root finding. The first step is to solve F(t) = at3 + bt2 + ct +
d = 0. The difference between each exact root t0 and its computed
version t̂0 can be caused by two reasons. The first reason is the
errors associated with the coefficients. According to Theorem 4.1,
|â−a| and |d̂−d| are bounded by 6B3((1+ε)5−1) and |b̂−b| and |ĉ−c|
are bounded by 18B3((1 + ε)7 − 1) as Figure 4b and 4c show. The
second reason is the errors caused by the cubic solver. Appendix B
shows that our cubic solver guarantees the existence of t̂0 for every
t0 and |F(t)| ≤ µ for any t ∈ [t0, t̂0], if µ ≥ 33492B3ε.

Triangle area test. In this step, we test whether the triangle area
is sufficiently large at a computed collision time candidate t̂0. To
simplify the error analysis, we test

∥∥∥N̂
∥∥∥
∞
≥ τ, in which τ is an area

threshold. Using Theorem 4.1 and Figure 4d, we know the error
associated with N is bounded by 2B2((1 + ε)6 − 1) ≤ 13B2ε. If
the triangle area test fails, then A(t̂0) ≤

√
3 ‖N‖∞ ≤

√
3(τ + 13B2ε)

at time t̂0. From the analysis in Subsection 3.3, we know R2 ≥
τ+13B2ε

6 + r2 is sufficient to get such collisions detected, in which
r =

µ

τ−13B2ε
. On the other hand, if a vertex and a triangle passes

the area test, then ‖N‖2 ≥ ‖N‖∞ ≥ τ − 13B2ε. By definition, the
vertex-plane distance must be bounded by r. We note that if any
collision satisfies A(t) ≤ τ − 13B2ε for any t ∈ [t0, t̂0], then R2 ≥
τ+13B2ε

6 + r2 is also sufficient to get it detected, according to the



analysis in Subsection 3.3.1. So we assume A(t) ≥ τ − 13B2ε and
the vertex-plane distance is bounded by r for any t ∈ [t0, t̂0] next.

Triangle height test. When triangles are slim, the rounding er-
rors in the barycentric test may cause large false positives. So
we propose a triangle height test to detect them and send them to
vertex-edge CCD instead. Specifically, we compare every trian-
gle height with a height threshold η at time t̂0: η

∥∥∥xi j

∥∥∥
∞
≤ ‖N‖∞,

in which i j is a triangle edge. Since this test happens after the
area test, we must have ‖N‖2 ≥ τ − 13B2ε. Let h be a triangle
height. If it passes the height test, then h =

‖N‖2
‖xi j‖2

≥ τ−13B2ε

‖xi j‖2
and

η
∥∥∥xi j

∥∥∥
∞
< ‖N‖∞ + 21B2ε, in which 21B2ε is the error associated

with this test according to Theorem 4.1 (assuming that η ≤ B). So
h ≥ η

√
3
− 21B2ε

‖xi j‖2
≥

η
√

3
− 21hB2ε

τ−13B2ε
. Since τ is going to be substantial-

ly greater than B2O(ε), it is safe to simplify the previous equation
into: 2h ≥ η. Therefore, all of the heights must be greater than η

2 ,
if a triangle passes the triangle height test. On the other hand, if
a triangle fails the height test, we must ensure that a real collision
still gets detected by vertex-edge CCD.

• The height test fails when any triangle edge is shorter than E
at time t̂0. If any edge is shorter than E at time t0, we can
simply use the condition: R2 ≥ E2

4 . If not, by defining two
events: 1) the shortest edge length is E and 2) the vertex’s
projection is on a triangle edge, and we can use the two-event
analysis in Subsection 3.3.1 to derive a sufficient condition:
R2 ≥ E2

4 + r2, in which r =
µ

τ−13B2ε
is an upper bound on the

vertex-plane distance at any time t ∈ [t0, t̂0].

• Otherwise, the height test fails when no edge is shorter than
E at time t̂0. Using Theorem 4.1, we know η

∥∥∥xi j

∥∥∥
∞
> ‖N‖∞ −

21B2ε. Since
∥∥∥xi j

∥∥∥
2
≥

∥∥∥xi j

∥∥∥
∞

and ‖N‖∞ ≥ 1
√

3
‖N‖2, at least

one triangle height is less than
√

3(η + 21B2ε
E ). Based on the

previous analysis, we use R2 ≥ 3
4 (η + 21B2ε

E )2 + r2.

By temporarily ignoring η, we choose E = 21
4 Bε

1
2 , in which case

the condition is reformulated into: R2 ≥
3(η+4Bε

1
2 )2

4 + r2.

Barycentric test. The barycentric test computes the barycentric
weights and compares them to 0 or N · N. Each weight contains
at most 12B4((1 + ε)15 − 1) ≤ 181B4ε error, as Figure 4e shows.
So the overall error of each barycentric criterion must be bounded
by 24B4((1 + ε)16 − 1) + 12B4((1 + ε)15 − 1) ≤ 565B4ε. If the
barycentric test fails correctly, then the vertex’s projection is outside
of the triangle at time t̂0 indeed. According to our previous analysis
in Subsection 3.3.1, R ≥ r is sufficient to get such cases detected by
vertex-edge CCD. If the barycentric test fails erroneously, then the
vertex’s projection should still be inside of the triangle at time t̂0.
By definition, the barycentric weight assigned to x1 is equal to ‖N‖2
times the edge length ‖x23‖2 times the vertex-edge-line distance l,
as Figure 5a shows. Since the vertex and the triangle passed the
area test and the height test, we know ‖N‖2 ≥ τ − 13B2ε and all
of the heights are greater than η

2 . Given the fact that no edge can
be shorter than the shortest height, we have l ≤ 1130B4ε

η(τ−13B2ε) . When
a vertex’s projection is within the triangle, its distance to the edge
lines is also its distance to the edges. So R2 ≥

(1130B4ε)2

η2(τ−13B2ε)2 + r2 is
sufficient to get the case detected by vertex-edge CCD at t̂0.

4.4.1 False Positives

To study false positives, we would like to formulate an upper bound
on the vertex-triangle distance at t̂0 when a false positive happens.

Proximity test. A false positive can occur when it erroneous-
ly passes all of the three tests. Based on the previous analysis, we

x1 x1
e13e12 φ θ

x2 x3
l

x2 x3

13φ
θ

θ

φ
β α

(a) A region formed by six dash
lines parallel to the edges, in which
a false positive can exist.

x1 x1
e13e12 φ θ

x2 x3
h

x2 x3

13φ
θ

θ

φ
β α

(b) A corner point. The distance
between the corner point and x3 is
inversely proportional to the height.

Figure 5: False positives in vertex-triangle CCD.

know the vertex-plane distance is bounded by r at time t̂0. The ques-
tion is what is the distance between the vertex’s projection and the
triangle edges, when a false positive occurs due to the barycentric
test. As we showed previously, the rounding error of a barycentric
criterion is bounded by 565B4ε and the barycentric weight is equal
to ‖N‖2 times the edge length times the vertex-edge-line distance.
Let e be an Euclidean edge length at time t̂0. If the vertex’s pro-
jection is erroneously treated as if it was inside, then its distance to
the corresponding edge line must be bounded by 565B4ε

e‖N‖2
at time t̂0.

The six criteria used in the barycentric test form six lines around
the triangle and a false positive can occur only if the vertex’s pro-
jection is within the region surrounded by the six lines, as Figure 5a
shows. So instead finding an upper bound on the distance from the
vertex’s projection to the triangle, we find an upper bound on the
distance from the six corner points (where the lines intersect) to the
triangle edges. Without loss of generality, let us consider a cor-
ner point formed by the barycentric criteria of two edges, as shown
in Figure 5b. Let the two edge lengths be e13 and e12. Since the
distance from x3 to the two lines are 565B4ε

e13‖N‖2
and 565B4ε

e12‖N‖2
, we have

e13 cos θ = e12 cos φ, in which θ and φ are two angles formed by the
corner point and the perpendicular directions. Let α and β be two
triangle angles and we know α+ β+ θ + ϕ = π. This means the line
splitting the angle at x1 into θ and φ must be perpendicular to x2x3.
Therefore, e13 cos θ = e12 cosϕ = h, where h is the triangle height
and we know the corner-point-vertex distance must be bounded by
565B4ε
h‖N‖2

. Since a false positive passes both the area test and the height
test, we have ‖N‖2 ≥ τ−13B2ε and h ≥ η

2 . So the corner-vertex dis-
tance must be bounded by 1130B4ε

η(τ−13B2ε) , which is also an upper bound
on the distance between the vertex’s projection and the edges. This
conclusion is valid even if α or β is greater than π

2 , in which case
θ or ϕ is negative. Together the squared vertex-triangle distance is
bounded by (1130B4ε)2

η2(τ−13B2ε)2 + r2 at time t̂0.

Vertex-edge test. If a false positive fails the three tests, then it
passes vertex-edge CCD. According to Subsection 4.3, the squared
distance is bounded by (16Bε

1
4 + 3R)2 + 522B2ε

1
2 .

In summary, our goal is to minimize:

min
(

(1130B4ε)2

η2(τ−13B2ε)2 + r2, (16Bε
1
4 + 3R)2 + 522B2ε

1
2

)
, (2)

subject to R2 ≥ max
(
τ+13B2ε

6 , 3(η+4Bε
1
2 )2

4 , (1130B4ε)2

η2(τ−13B2ε)2

)
+ r2, in which

r =
µ

τ−13B2ε
. Although this minimization is complex, many terms

are not so significant. After simplifications and approximations, we
propose to use µ = 64B3ε

3
4 , τ = 64B2ε

1
2 , η = 4Bε

1
4 , and R = 6Bε

1
4 .

The resulting vertex-triangle distance is approximately 41Bε
1
4 . Us-

ing the double precision format, this is about 0.5 percent of the
maximum edge length. We note the false positive analysis is to pre-
dict the vertex-triangle distance in the worst case and it does not
need to be exact.



4.5 Errors in Edge-Edge CCD

Similar to vertex-triangle CCD, edge-edge CCD uses the cubic
solver to compute each potential collision time t0. The computed
root t̂0 satisfies |F(t)| ≤ µ for any t ∈ [t0, t̂0], if µ ≥ 33492B3ε. The
analysis is different in the rest of the steps.

Quadrilateral area test. Similar to the triangle area test in Sub-
section 4.4, we use

∥∥∥N̂
∥∥∥
∞
≥ τ to test whether the quadrilateral area

is sufficiently large. If this test fails, then A(t̂0) = ‖N‖2 ≤
√

3(τ +
13B2ε) at time t̂0. From the analysis provided in Subsection 3.4, we
know that R2 ≥

√
3(τ+13B2ε)

4 + r2 is a sufficient condition, in which
r =

µ

τ−13B2ε
. Using the same analysis, we know if two edges pass

the area test, we must have ‖N‖2 ≥ τ − 13B2ε. If A(t) ≤ τ − 13B2ε

at any t ∈ [t0, t̂0], it must be detected by R2 ≥
√

3(τ+13B2ε)
4 + r2 in

vertex-edge CCD. So we assume A(t) ≥ τ− 13B2ε and the line-line
distance is bounded by r at any t ∈ [t0, t̂0] later on.

Quadrilateral height test. Similar to the triangle height test in
Subsection 4.4, the quadrilateral height test is used to reduce the
false positives. For every edge xix j, we define its quadrilateral
height as: ‖N‖2

‖xi j‖2
. In our test, we compare every height with a thresh-

old η: η
∥∥∥xi j

∥∥∥
∞
≤ ‖N‖∞. Similar to the triangle height test, we know

that if a height h passes the height test, then we must have 2h ≥ η.
To ensure the detection of every real collision event, we consider
two possibilities when a real collision fails this test.

• This test may fail when any edge is shorter than E at time t̂0.
If any edge is shorter than E at the intersection time t0, we
can simply use the condition: R2 ≥ E2

4 to get it detected at
time t0. Otherwise, by using the same two-event analysis in
Subsection 4.4, we see R2 ≥ E2

4 + r2 is a sufficient condition.

• If the height test fails when no edge is shorter than E at time
t̂0, at least one height is shorter than

√
3(η + 16B2ε

E ) at time
t̂0, in which 16B2ε is an upper bound on the height test error.
When two edges intersect, the shortest vertex-edge distance
must be bounded by half of the shorter height. So we can set
R2 ≥ 3

4 (η+ 16B2ε
E )2 + r2 using the two-event analysis as before.

By using E = 4Bε
1
2 , the condition becomes: R2 ≥

3(η+4Bε
1
2 )2

4 + r2.

Barycentric test. Similar to the barycentric weights in vertex-
triangle CCD, the error associated with each weight is bounded by
181B4ε. So the overall error associated with each criterion must be
bounded by 362B4ε. If the barycentric test fails correctly, then the
projections of the two edges do not intersect at time t̂0. We know
from our previous analysis in Subsection 3.4 that R ≥ r is sufficient
to get this case detected by vertex-edge CCD. If the barycentric test
fails erroneously, then the projections of the two edges still intersect
at time t̂0. By definition, the barycentric weight is equal to ‖N‖2
times the edge length times the vertex-line distance. Since the two
edges passed the area test and the height test, we know ‖N‖2 is
greater than τ− 13B2ε and the heights are greater than η

2 . Given the
fact that no edge can be shorter than the shortest height, all vertex-
edge-line distances in the projected space are bounded by 724B4ε

η(τ−13B2ε) .
Since at least one vertex-line distance is the vertex-edge distance in
the projected space, at least one vertex-edge distance is bound by

724B4ε
η(τ−13B2ε) . So we use R2 ≥

(724B4ε)2

η2(τ−13B2ε)2 + r2 to detect such collisions.

4.5.1 False Positives

Next we study the upper bound on the edge-edge distance at time
t̂0, when a false positive happens.

x0

e01
e23 φ θ

x3 x2 φθ θ

x0 x1
x3 x1

e01φ θ
β αx2

(a) The maximum EE distance
occurs when both edge-line dis-
tances reach the upper bounds.

x0

e01
e23 φ θ

x3 x2 φθ θ

x0 x1
x3 x1

e01φ θ
β αx2

(b) The EE distance is inversely pro-
portional to the height of a virtual tri-
angle formed by aligning x2x3 to x0x1.

Figure 6: False positives in edge-edge CCD.

Proximity test. A false positive occurs when it passes the three
tests. We know the line-line distance must still be bounded by r
at t̂0. The question is what is the maximum distance between two
projected edges at t̂0, when a false positive occurs? As showed pre-
viously, the error of a barycentric criterion is bounded by 362B4ε.
By definition, the weight is equal to ‖N‖2 times the edge length
times the vertex-edge-line distance. Let e be an Euclidean edge
length at time t̂0. If the vertex’s projection is erroneously treated
as if it was on the wrong side, then its distance to the other edge
line must be bounded by 362B4ε

e‖N‖2
at time t̂0. Let x0x1 and x2x3 be two

edges with fixed lengths and orientations. The maximum edge-edge
distance happens if and only if the distance from the edge x0x1 to
the line x2x3 is 362B4ε

e23‖N‖2
, and the distance from the edge x2x3 to the

line x0x1 is 362B4ε
e01‖N‖2

, in which e01 and e23 are the edge lengths. Be-
cause if not, we can move the two edges to increase the edge-edge
distance, such as moving x2x3 to the right side as Figure 6a shows.
Since these two edges do not intersect, there is no quadrilateral in
this configuration. Instead, we can translate x0x1 to form a trian-
gle as Figure 6b shows. Similar to the analysis in Subsection 4.4.1,
we have α + β + θ + ϕ = π and the triangle height splits the angle
at x2 into θ and φ. So e01 cos θ = e23 cosϕ = H, in which H is
the triangle height. Since the new edge cannot be longer than 2e01
nor 2e23, H must be greater than half of the shorter triangle height
corresponding to e01 or e23, which is also a quadrilateral height.
Therefore, H ≥ h

2 ≥
η

4 . Since a false positive passes the area test
and the height test, we bound the edge-edge distance in the project-
ed space by 1448B4ε

η(τ−13B2ε) , according to Figure 6b. Together, the squared

edge-edge distance must be bounded by: (1448B4ε)2

η2(τ−13B2ε)2 + r2.

Vertex-edge test. If a false positive fails any of the three test,
it can pass vertex-edge CCD only. The analysis in Subsection 4.3
shows the squared distance is bounded by (16Bε

1
4 +3R)2+522B2ε

1
2 .

In summary, we have:

min
(

(1448B4ε)2

η2(τ−13B2ε)2 + r2, (16Bε
1
4 + 3R)2 + 522B2ε

1
2

)
, (3)

subject to R2 ≥ max
( √

3(τ+13B2ε)
4 , 3(η+4Bε

1
2 )2

4 , (724B4ε)2

η2(τ−13B2ε)2

)
+ r2. After

simplifications and approximations, we propose to use µ = 64B3ε
3
4 ,

τ = 64B2ε
1
2 , η = 4Bε

1
4 , and R = 6Bε

1
4 . The resulting edge-edge

distance is approximately 41Bε
1
4 . Using the double precision for-

mat, this is about 0.5 percent of the maximum edge length.

5 Results

Based on an existing cubic-based CCD system, we implemented
our modifications in less than an hour. We also implemented plane-
based culling (not including AABB culling) in our CCD tests, as
proposed by Brochu and Bridson [2012]. Instead of using inter-
val arithmetic, we avoid the influence of rounding errors on plane-



(a) A lifted tablecloth (b) Colliding tablecloth (c) Virtual clothing

Figure 7: Animation examples. These are the examples used to test the performance and robustness of our system.

based culling by introducing another error tolerance. To further
speed up our algorithms, we developed another culling method for
the vertex-edge test. Specifically, given the computed collision time
candidate t̂0, we first test whether the magnitude of the cubic func-
tion value goes beyond µ at both t̂0 ± ε

1
2 . If so, when collision hap-

pens at t0, we must have |t̂0−t0| ≤ ε
1
2 . Given B as an upper bound on

the relative velocities, the distance between the vertex’s projection
and the triangle must be bounded by

√
3Bε

1
2 at time t̂0, and at least

one barycentric weight must be in [−9B4ε
1
2 , ||N||22 +9B4ε

1
2 ]. In other

words, no collision can happen if the weight is beyond this range.
Since ε is small, this test can eliminate more than 99.9 percent of
VE tests as our experiment shows.

One issue we have not considered yet is the errors in vector com-
putation. Take vertex-vertex CCD for example. The goal is to find
the collision between {x0

i , x
1
i } and {x0

j , x
1
j }, but the algorithm tests

{x0
i , x

1
i } and {x0

i + x̂ ji, x1
i + x̂ ji + v̂ ji}. Since such errors are bounded

by BO(ε), if a collision failure happens because of this, the vertex-
triangle distance at the ending time must be bounded by BO(ε).
This problem can be solved by doing proximity tests at the ending
time as in many existing systems, including ours. Since our toler-
ances are larger, they guarantee the detection of such collisions.

Another issue comes from the upper bound B, when it is computed
for every time step. Let B0 be the upper bound in the previous time
step and B1 be the upper bound in the next time step. If B1 > B0,
collisions may be detected at the starting time of the next step, caus-
ing convergence issues in collision handling. One possible solution
is to go back to the previous time step and use B1 for collision detec-
tion at the ending time. For simplicity, we predefine B and assume
that it is valid through the whole animation. We can even define
B separately for every vertex-triangle or edge-edge pair, using their
resting shapes. Doing this reduces B, when handling adaptively
sampled meshes with both long and short edges.

Performance. We first test the performance of our algorithm-
s on four cloth animation examples as shown in Figure 1 and 7,
using a single core of a 2.67GHz Intel Xeon X5650 processor. Af-
ter AABB culling, the average computational time of each basic
vertex-triangle or edge-edge CCD test is 350ns, while the computa-
tional time after using our modifications is 355ns. So the overhead
is approximately 1.4 percent of the basic cost. Without plane-based
culling, the costs before and after our modifications are 409ns and
416ns. To better understand the performance in complex situations,
we construct a synthetic example by randomly sampling vertex po-
sitions and velocities in a unit cube and we exhaustively tested 10
billion cases (taking about one hour to run). The average compu-
tational costs per test before and after our modifications are 364ns
and 369ns. The timing difference between the synthetic example
and the animation examples is due to more positive cases.

Compared with the exact approach proposed by Brochu and Brid-
son [2012], our tests run 20 to 40 times faster than exact tests after
collision culling. This is highly noticeable in the synthetic exam-
ple, where nearly half cases pass AABB culling and nearly one
third cases pass plane-based culling. Our experiment shows the av-
erage time per exact test is 4,962ns after AABB culling. In contrast,
our tests are fast even without culling. In real animation examples,
however, such difference may not be so noticeable because of col-
lision culling. The only difference we found occurs at the collision
peaking time, when our approach can be up to 20 percent faster than
the exact approach. We believe the efficiency of our approach will
be more obvious, once the cost of collision culling becomes less
dominant in the overall collision handling cost.

False positives. According to our previous analysis, the max-
imum vertex-triangle (or edge-edge) distance of a false positive is
approximately 20µm in our simulation. To evaluate the influence
of false positives on animation examples, we cannot simply count
them among all of the positive cases, because a false positive may
just cause earlier collision handling and avoid true positives from
happening later. So instead, we count the total numbers of tested
cases and their positive results, when we simulate the animation
examples using our approach and the exact approach respective-
ly. Our experiment shows that the total case numbers are about the
same when using the two approaches, but the system can detect up
to 10 percent more positive cases when using our approach. For-
tunately, since most results are negative, these additional positives
have little influence on the collision detection performance.

Safety. Collision detection failures can be problematic in
cubic-based CCD tests, if no error tolerance is used. Even when tol-
erances are used, it is still possible to construct failure cases based
on the two degenerate cases as shown in Subsection 3.3. Inter-
estingly, it is extremely rare to see failures in cloth animation and
the colliding cloth example in Figure 7b is the only failure one we
found. In this example, basic CCD tests missed multiple collisions
at first. Shortly after that, a burst of collisions were detected and
collision handling failed to converge. We did not apply other tech-
niques (such as impact zones) to fix it after this. We believe that col-
lision failures are rare in cloth animation due to two main reasons.
The first reason is because physically based simulation often avoid-
s small triangle or short edge cases for numerical stability. If we
assume that the triangle areas and the edge lengths remain approxi-
mately constant, then we can reduce the error bounds substantially.
The second reason is that the failure of a single case does not nec-
essarily cause the failure of the whole collision handling process.
For instance, ill-shaped triangles or edges may be surrounded by
good-shaped ones, whose correct test results will prevent failures
from happening. It will be interesting to see whether basic CCD
tests are more likely to fail in other cases, such as hair animation.



Strengths and limitations. Given the fact that it is rare to see
collision failures in basic CCD algorithms, the question is: why is it
still necessary to use our algorithms? This is due to the uncertainty
of collision detection failures. No matter how large the error toler-
ances we use and how rare collision detection failures are, the risk
still exists in basic CCD algorithms. This risk can be reduced by in-
creasing error tolerance values, but that will invite more false posi-
tives. In contrast, our method not only eliminates collision failures,
but also reduces false positives in an automatic way. Our method is
also affordable and easy to implement.

Due to a number of simplifications we made in the analysis, the
error bounds and the suggested tolerance values are not the tight-
est. However, it is unlikely to make them asymptotically smaller,
without substantially modifying our approach. The conditions and
the modifications we proposed in this paper are sufficient, and it is
not clear whether they are always necessary. In our analysis, we as-
sume that the errors are independent and we formulate the bounds
and the conditions in the worst scenario. In reality, some errors may
be related and they may not be large simultaneously.

6 Conclusion and Future Work

We proposed a simple yet effective approach to eliminate collision
detection failures in cubic-based CCD algorithms. Based on our
forward error analysis, we draw two additional conclusions. 1)
It is a good idea to use double precision rather than single preci-
sion. When using the single-precision floating-point format in our
method, the error caused by false positives can be as large as half of
the maximum edge length. 2) Large time steps not only cause nu-
merical instability in simulation, but also increase false positives,
since the vector bound B becomes larger.

In the future, we are interested in understanding the errors when
machine epsilon varies, i.e., under the extended floating-point for-
mat. Some computational steps, such as normal computation, are
more important than the others to our approach. We would like to
analyze whether it is worthwhile to compute them by exact arith-
metic. Finally, we plan to study the compatibility and performance
of our method on GPU and with floating-point optimizations.
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