
A The Quadratic Solver

Given a quadratic solver, we would like to formulate upper bounds
on the computed root errors and the residual errors.

A.1 The Root Error

We use the quadratic formula to compute the roots, which involves
square root and divide operations. Because of that, we cannot
use Theorem 4.1 to derive the error bounds. Without losing the
generality, we assume that the quadratic equation is at2+bt+c = 0,
where a > 0. To avoid cancellation catastrophe [Goldberg 1991]
caused by subtract, we use the following formula to compute the
two roots as proposed in [Goldberg 1991]:

⎧⎪⎪⎨⎪⎪⎩
t0 =

2c
−b+
√
Δ
,

t1 =
−b+
√
Δ

2a ,
if b ≤ 0;

⎧⎪⎪⎨⎪⎪⎩ t0 =
−b−√Δ

2a ,
t1 =

2c
−b−√Δ ,

if b > 0; (4)

in which Δ = Clamp(b2−4ac, 0,+∞) is a revised discriminant. The
Clamp step prevents roots from being eliminated due to the round-
ing errors. If no exact root exists in [0, 1] indeed, the above formula
may introduce a false root. Fortunately, it affects the computational
cost, but not the safety of collision detection.

Root t0 when b ≤ 0. The root t0 exists in (0, 1) only when c ≥ 0
and b2 ≥ 4ac. Using Theorem 4.1, we know the error associated
with Δ is bounded by: (b2 + 4ac)((1 + ε)2 − 1) ≤ 4b2ε + b2O(ε2).
This bound is still valid after Clamp, which makes the error even

smaller. Since
√|A ± E| ≤ √A +

√
E for any two positive numbers

A an E, the error associated with
√
Δ is bounded by: (

√
Δ+2|b|ε 1

2 +

|b|O(ε))ε + 2|b|ε 1
2 + |b|O(ε) ≤ 2|b|ε 1

2 + |b|O(ε). We then derive

an error bound for −b +
√
Δ as: (−b +

√
Δ + 2|b|ε 1

2 + |b|O(ε))ε +

2|b|ε 1
2 + |b|O(ε) ≤ 2|b|ε 1

2 + |b|O(ε). Let e be the error associated

with −b +
√
Δ. Using Taylor expansion, we get:

∣∣∣∣t0 − 2c
−b+
√
Δ+e

∣∣∣∣ ≤ t0

∣∣∣∣∣1 − 1
1+ e
−b+
√
Δ

∣∣∣∣∣ ≤
∣∣∣∣ e
−b+
√
Δ

∣∣∣∣ + O(ε) ≤ 2ε
1
2 + O(ε).

(5)

So the root error is bounded by: |t̂0 − t0| ≤
(
t0 + 2ε

1
2 + O(ε)

)
ε +

(2ε
1
2 + O(ε)) ≤ 2ε

1
2 + O(ε).

Root t1 when b ≤ 0. If b ≤ 0 and c > 0, then the error associated

with −b+
√
Δ should still be bounded by 2|b|ε 1

2 + |b|O(ε), as shown

previously. Let e be the error associated with −b +
√
Δ. We have:

∣∣∣∣t1 − −b+
√
Δ+e

2a

∣∣∣∣ = t1

∣∣∣∣ e
−b+
√
Δ

∣∣∣∣ ≤ |e||b| ≤ 2ε
1
2 + O(ε). (6)

Therefore, the root error |t̂1 − t1| is still bounded by 2ε
1
2 + O(ε).

If b ≤ 0 and c ≤ 0, both b2 and −4ac are non-negative. In that case,
the error associated with Δ is bounded by: ((b2−4ac)(1+ ε)2 −1) ≤
2εΔ + O(ε2)Δ. We can then formulate the error bound on

√
Δ as:

(
√
Δ+
√

2Δε
1
2 +
√
ΔO(ε))ε+

√
2Δε

1
2 +
√
ΔO(ε) ≤ √Δ(

√
2ε

1
2 +O(ε)),

and the error bound on −b +
√
Δ as: (−b +

√
Δ)ε +

√
Δ(
√

2ε
1
2 +

O(ε))(1+ε) ≤ (−b+
√
Δ)(
√

2ε
1
2 +O(ε)). Let e be the error associated

with −b +
√
Δ. We have:

∣∣∣∣t1 − −b+
√
Δ+e

2a

∣∣∣∣ = t1

∣∣∣∣ e
−b+
√
Δ

∣∣∣∣ ≤ √2ε
1
2 + O(ε). (7)

Therefore, |t̂1 − t1| ≤ (t1 +
√

2ε
1
2 + O(ε))ε +

√
2ε

1
2 + O(ε) ≤ 2ε

1
2 .

Root t0 when b > 0. Since a > 0, t0 is negative and invalid.

Root t1 when b > 0. If b > 0, we must have c ≤ 0 to make t1 ≥ 0.

If so, the error bound of
√
Δ is:

√
Δ(
√

2ε
1
2 + O(ε)), and the error

bound of b +
√
Δ is: (b +

√
Δ)(
√

2ε
1
2 +O(ε)), as shown previously.

Let e be the actual error associated with −b − √Δ. Using Taylor
expansion, we get:

∣∣∣∣t1 − 2c
−b−√Δ+e

∣∣∣∣ ≤ t1

∣∣∣∣∣1 − 1
1+ e
−b−√Δ

∣∣∣∣∣ ≤
∣∣∣∣ e
−b−√Δ

∣∣∣∣ + O(ε) ≤ √2ε
1
2 + O(ε).

(8)

So we have |t̂1 − t1| ≤ 2ε
1
2 .

Summary. In summary, 2ε
1
2 +O(ε) is an upper bound on the root

error in all of the four cases. This is valid even after Clamp, which
makes the error even smaller.

A.2 The Residual Error

While the exact root t satisfies at2 + bt + c = 0, the computed
root t̂ may not. So we would like to formulate an upper bound
on

∣∣∣at̂2 + bt̂ + c
∣∣∣. Again, the roots can be computed in three ways.

Root t0 when b ≤ 0. Let t̄0 =
2c

−b+
√
Δ̂

be the root when only the

discriminant error exists. When c � 0, t0 � 0 and t̄0 � 0. We have:∣∣∣∣∣a + b
t̄0
+ c

t̄2
0

∣∣∣∣∣ =
∣∣∣∣∣a + b

t̄0
+ c

t̄2
0

− a − b
t0
− c

t2
0

∣∣∣∣∣
≤

∣∣∣∣∣ b(−b+
√
Δ̂)

2c +
(−b+
√
Δ̂)2

4c − b(−b+
√
Δ)

2c − (−b+
√
Δ)2

4c

∣∣∣∣∣ =
∣∣∣∣ Δ̂−Δ4c

∣∣∣∣ .
(9)

Since
∣∣∣Δ̂ − Δ∣∣∣ ≤ (b2 + 4|ac|)((1 + ε)2 − 1), we get:

∣∣∣at̄2
0 + bt̄0 + c

∣∣∣ =
(
t̄0

2c

−b+
√
Δ̂

b2

4c + t̄2
0

4ac
4c

)
((1 + ε)2 − 1)

≤ (t̄0
|b|
2
+ t̄2

0 |a|)((1 + ε)2 − 1).

(10)

Now we can consider the rest of the process that calculates t̂0. Since

both −b and
√
Δ̂ are non-negative, the error associated with −b +√

Δ̂ is bounded by (−b+
√
Δ̂)((1+ ε)2−1). Let this error be e. From

the previous analysis, we know that |t̄0−t0| ≤ 3ε
1
2 and |t̂0−t0| ≤ 3ε

1
2 ,

so we assume |t̄0| ≤ 1.1 and |t̂0| ≤ 1.1, and we have:

∣∣∣∣∣ 2c

−b+
√
Δ̂+e
− t̄0

∣∣∣∣∣ ≤ t̄0

∣∣∣∣∣∣1 − 1
1+ e
−b+
√
Δ̂

∣∣∣∣∣∣
≤ t̄0

(∣∣∣∣∣ e

−b+
√
Δ̂

∣∣∣∣∣ + O(ε2)

)
≤ 2.2ε + O(ε2).

(11)

Therefore, |t̂0 − t̄0| ≤
(
t̄0 + 2.2ε + O(ε2)

)
ε + 2.2ε +O(ε2) ≤ 3.4ε. As

a result, |at̂2
0 +bt̂0 + c−at̄2

0 −bt̄0 − c| ≤ |t̂0 − t̄0||t̂0 + t̄0||a|+ |t̂0 − t̄0||b| ≤
(7.5|a| + 3.4|b|)ε. Together with Equation 10, we know that the
residual error |at̂2

0 + bt̂0 + c| must be bounded by (10|a| + 5|b|)ε.

Root t1 when b ≤ 0. If a � 0, then t1 exists. Let t̄1 =
−b+
√
Δ̂

2a be
the root when the discriminant error is the only error. We have:∣∣∣at̄2

1 + bt̄1 + c
∣∣∣ = ∣∣∣at̄2

1 + bt̄1 + c − at2
1 − bt1 − c

∣∣∣
≤

∣∣∣∣∣ (−b+
√
Δ̂)2

4a +
b(−b+
√
Δ̂)

2a − (−b+
√
Δ)2

4a − b(−b+
√
Δ)

2a

∣∣∣∣∣ =
∣∣∣∣ Δ̂−Δ4a

∣∣∣∣ . (12)

To ensure that t1 ≤ 1, we must have |b| ≤ 2a. Given
∣∣∣Δ̂ − Δ∣∣∣ ≤

(b2 + 4|ac|)((1 + ε)2 − 1), we get:∣∣∣at̄2
1 + bt̄1 + c

∣∣∣ ≤ (|b|
2
+ |c|)((1 + ε)2 − 1). (13)

Since both −b and
√
Δ̂ are still non-negative, the error associated

with −b+
√
Δ̂must be bounded by (−b+

√
Δ̂)((1+ ε)2−1). Let this

error be e. As before, we can safely assume |t̄1| ≤ 1.1 and |t̂1| ≤ 1.1,
and we have:

∣∣∣∣∣ −b+
√
Δ̂+e

2a − t̄1

∣∣∣∣∣ ≤ t̄1

∣∣∣∣∣ e

−b+
√
Δ̂

∣∣∣∣∣ ≤ 2.2ε + O(ε2). (14)

Therefore, |t̂1− t̄1| ≤
(
t̄1 + 2.2ε + O(ε2)

)
ε+2.2ε+O(ε2) ≤ 3.4ε. This

means |at̂2
1 + bt̂1 + c− at̄2

1 − bt̄1 − c| ≤ |t̂1 − t̄1||t̂1 + t̄1||a|+ |t̂1 − t̄1||b| ≤
(7.5|a| + 3.4|b|)ε. Together with Equation 13, we know that the
residual error |at̂2

1 + bt̂1 + c| is bounded by (8|a| + 5|b| + 3|c|)ε.
Root t1 when b > 0. This case is essentially the same as the first
case when calculating t0 under b ≤ 0, except that the signs of b and
c are flipped. So we should still have |at̂2

0 + bt̂0 + c| ≤ (10|a|+ 5|b|)ε.
In conclusion, if we set B as a upper bound on on |a|, |b|, and |c|,
then we have |at̂2 + bt̂ + c| ≤ 16Bε, in which t̂ is the computed
root. This conclusion is still valid after we implement Clamp on
t̂. Because if not, then the quadratic function must be minimized
somewhere between t and t̂, given the fact that a ≥ 0. The distance

between this minimum time tmin and t is:
√
Δ

2a . Since |t̂ − t| ≤ 3ε
1
2 ,

we have:
√
Δ ≤ 6aε

1
2 . However, the magnitude of the function

minimum is Δ
4a ≤ 9aε, which means |at2

min
+ btmin + c| ≤ 16Bε

even at the minimum. Since the quadratic function is monotonic in
[t, tmin] and [tmin, t̂], we must have |as2 + bs + c| ≤ 16Bε for any
s ∈ [t, t̂]. This contradicts our previous assumption. Therefore,
|at̂2 + bt̂ + c| ≤ 16Bε is valid even after clamping t̂ to 0 or 1.

A.3 Degenerate Cases

Our quadratic solver can robustly handle degenerate cases and the
error bounds provided in Appendix A.1 and A.2 are still valid.

• If a = b = 0, we must have c = 0 and the quadratic equation
becomes trivial. In that case, the solver simply returns t = 0
as the only root.

• If a = 0 and b � 0, only one root exists and we compute it as
t0 =

c
−b . Since it has only one step and t0 ∈ [0, 1], we have

|t̂0 − t0| ≤ ε and |at̂2
0 + bt̂0 + c| ≤ Bε. So the error bounds in

Appendix A.1 and A.2 are still valid.

• If a � 0 and b = 0 and c = 0, then t0 = t1 = 0 and there
is no root error or residual error. If a � 0 and b = 0 and
c � 0, then Δ � 0. If −b +

√
Δ exists, it must be nonzero and

its computed version must be nonzero as well. So all of the
formulae in Equation 4 can be computed and the analysis is
still valid.

• Finally, when a � 0 and b � 0, we must have −b +
√
Δ > 0

when b < 0, and −b − √Δ < 0 when b > 0. Since b is a
floating-point number, the computed version of −b ± √Δ is
nonzero as well and all of the formulae in Equation 4 can be
computed. If a � 0, b � 0, and c = 0, we have t0 = 0 when
b ≤ 0 and t1 = 0 when b > 0. In that case, there is no residual
error and the analysis in Appendix A.2 is still valid.

B The Cubic Solver

Given a cubic equation F(t) = at3 + bt2 + ct + d = 0, the cubic
solver first splits the interval [0, 1] into a set of sub-intervals by
computing the local minimum and maximum using the quadratic
solver, and then uses the hybrid Newton-bisection method to find
the root in each sub-interval. If the cubic equation is degenerate
(a = b = c = d = 0), the root can be trivially reported as t = 1,
and the vertex-triangle and edge-edge CCD algorithms will resort
to vertex-edge CCD to find the actual collision time. Otherwise,

there are a finite number of roots and there can be at most one root
in every sub-interval. In this appendix, we will study the errors in
the formulation of the sub-intervals first, and then we will discuss
how to make the solver robust against the errors.

Local Minimum and Maximum. The local minimum and maxi-
mum are computed by solving the quadratic equation et2 + f t+ g =
0, in which e = 3a, f = 2b, and g = c. According to Sub-
section 4.4 and 4.5, the computation of the coefficients involves
errors and we have: |ê − e| ≤ 18B3((1 + ε)6 − 1) ≤ 109B3ε,
| f̂− f | ≤ 36B3((1+ε)7−1) ≤ 253B3ε, and |ĝ−g| ≤ 18B3((1+ε)7−1) ≤
127B3ε. If the local minimum or maximum does not exist, then the
computation here will cause unnecessary sub-intervals and compu-
tational costs, which fortunately has no influence on the outcome of
the whole algorithm.

Let tm be the exact root of et2 + f t + g = 0, t̄m be the exact root of
êt2 + f̂ t+ ĝ = 0, and t̂m be the computed version of t̄m. Without loss
of generality, we assume e ≥ 0. There are three possible cases.

Case 1. When |e| ≥ | f | and |e| > 8000B3ε, we must have |g| ≤
|e|+ | f | ≤ 2|e| to ensure the existence of tm in [0, 1]. Let Δ = f 2−4eg
and Δ̄ = Clamp(f̂ 2 − 4êĝ, 0,+∞) be two discriminants. Using the
error bounds provided previously, we have:

∣∣∣Δ̄ − Δ∣∣∣ ≤ ∣∣∣ f̂ + f
∣∣∣ ∣∣∣ f̂ − f

∣∣∣ + 4 |ê| |ĝ − g| + 4 |g| |ê − e|
≤ (2|e| + 253B3ε) · 253B3ε + 4(|e| + 109B3ε) · 127B3ε+

8|e| · 109B3ε ≤ 1886|e|B3ε + 119381B6ε2.
(15)

Since tm ∈ [0, 1], ê � 0, and |
√
Δ̄ − √Δ| ≤

√
|Δ̄ − Δ|, We can get an

upper bound on |t̄m − tm| as:

| f̂− f |+|
√
Δ̄−√Δ|

|2ê| + tm
|ê−e|
|ê| ≤

√
1886|e|B3ε+817B3ε

2|ê| . (16)

The solver defines the initial interval as [0, 1], which is equivalent
to defining 0 and 1 as two default roots. So if t̄m > 1 or t̄m < 0, we
assume t̂m = t̄m = 0 or 1, and the upper bound in Equation 16 still
holds for |t̂m − tm|. Otherwise, t̄m ∈ (0, 1), we know from Appendix

A.1 that
∣∣∣t̂m − t̄m

∣∣∣ ≤ 3ε
1
2 due to the quadratic solver. According to

Taylor expansion,
∣∣∣F(t̂m) − F(tm)

∣∣∣ must be bounded by:

|3at2
m+2btm+c| ∣∣∣t̂m − tm

∣∣∣+ |3atm+b| ∣∣∣t̂m − tm

∣∣∣2+ |a| ∣∣∣t̂m − tm

∣∣∣3 . (17)

Since 3at2
m + 2btm + c = 0, |3atm + b| ≤ 1.5|e|, and |a||t̂m − tm| ≤ 1

3
|e|,

We can further bound
∣∣∣F(t̂m) − F(tm)

∣∣∣ by:

2|e|
(

1886|e|B3ε+(817B3ε)2

4ê2 + 9ε
)
· 3 ≤ 2955B3ε

(
e
ê

)2
+ 972B3ε

≤ 2955B3ε
(
1 + 109

8000−109

)2
+ 972B3ε ≤ 4010B3ε.

(18)

Case 2. When | f | ≥ |e| and | f | > 8000B3ε, we must have
|g| ≤ 2| f | to ensure the existence of tm in [0, 1]. Similar to Case
1, we have |Δ̄ − Δ| ≤ 1886| f |B3ε + 119381B6ε2 here. If f > 0,

the only valid solution in [0, 1] is: tm = (2g)/(− f − √Δ). Since

| f | > 8000B3ε, we get f̂ > 0 and − f̂ −
√
Δ̄ � 0. We can then bound

|t̄m − tm| by:

2|ĝ−g|
f̂+
√
Δ̄
+ tm

| f̂− f |+|
√
Δ̄−Δ|

f̂+
√
Δ̄
≤
√

1886| f |B3ε+853B3ε

f̂
. (19)

When t̄m > 1 or t̄m < 0, we assume t̂m = t̄m = 0 or 1, and the
upper bound in Equation 19 still holds for |t̂m − tm|. Otherwise,

t̄m ∈ (0, 1), we know from Appendix A.1 that
∣∣∣t̂m − t̄m

∣∣∣ ≤ 3ε
1
2

due to the quadratic solver. Using Taylor expansion, we can bound∣∣∣F(t̂m) − F(tm)
∣∣∣ by:

2| f |
(

1886| f |B3ε+(853B3ε)2

f̂ 2 + 9ε
)
· 3 ≤ 11862B3ε

(
f
f̂

)2

+ 1944B3ε

≤ 11862B3ε
(
1 + 253

8000−253

)2
+ 1944B3ε ≤ 14600B3ε.

(20)
On the other hand, if f < 0, the only valid solution is: tm =

(2g)/(− f +
√
Δ). The same analysis applies and we also have:∣∣∣F(t̂m) − F(tm)
∣∣∣ ≤ 14600B3ε.

Case 3. Finally, |e| ≤ 8000B3ε and | f | ≤ 8000B3ε. In this case,
the computation of t̂m does not matter. Based on the fact that |t̂m −
tm| ≤ 1, we apply Taylor expansion to bound

∣∣∣F(t̂m) − F(tm)
∣∣∣ by:

|3atm + b| ∣∣∣t̂m − tm

∣∣∣2 + |a| ∣∣∣t̂m − tm

∣∣∣3 ≤ 16000B3ε. (21)

From the three cases cases, we see
∣∣∣F(t̂m) − F(tm)

∣∣∣ ≤ 16000B3ε. It

is also straightforward to see that |F(t) − F(tm)| ≤ 16000B3ε, for
any t ∈ [tm, t̂m] as well.

The convergence criterion. For every root t0, the goal of the
cubic solver is to find a computed root t̂0, such that F(t) ≤ μ for
any t ∈ [t0, t̂0], in which μ is a user-specified threshold. If the sub-
intervals can be computed exactly, then the cubic function changes
monotonically and at most one root can exist in each sub-interval.
Once the solver finds a solution t̂0 such that F(t̂0) ≤ μ, then F(t) ≤ μ
is satisfied for any t in-between as well.

The problem is that the computation of F(t) may contain an error.

Let F̄(t) = ((ât + b̂)t + ĉ)t + d̂, in which â, b̂, ĉ, and d̂ are the com-
puted variables, and F̂(t) be the computed version of F̄(t). There
are six arithmetic operations in F(t). From Subsection 4.4 and The-
orem 4.1, we know

∣∣∣F̂(t) − F(t)
∣∣∣ ≤ ∣∣∣F̄(t) − F(t)

∣∣∣ + ∣∣∣F̂(t) − F̄(t)
∣∣∣ ≤

313B3ε + 4B((1 + ε)6 − 1) ≤ 746B3ε, in which B = 18B3(1 + ε)7 is
an upper bound on |â|, |b̂|, |ĉ|, and |d̂|. So to ensure that |F(t̂0)| ≤ μ,
we need to adjust the convergence threshold from μ to μ̂, for
μ̂ ≤ μ − 746B3ε. Once we find |F̂(t̂0)| ≤ μ̂, we know |F(t̂0)| ≤ μ
must also be true.

The next issue is how to evaluate the existence of the root. The
cubic solver uses the signs of F(ti) and F(t j) to determine whether
a roots exists in a sub-interval [ti, t j]. If F(ti) and F(t j) have different

signs while F̂(ti) and F̂(t j) have the same sign, the solver will fail
even before the iterative process starts. This means μ̂ must also be
greater than 746B3ε. If |F̂(ti)| ≤ μ̂ or |F̂(t j)| ≤ μ̂, the solver reports

a solution at ti or t j immediately. Otherwise, if F̂(ti) > μ̂, we know

F(ti) > 0; and if F̂(ti) < −μ̂, we know F(ti) < 0. We can avoid
or continue the process according to the signs. The continuity of
the function ensures that for every computed root t̂0, there exists
an exact root t0, such that the function changes monotonically from
t0 to t̂0. So if sub-intervals are exact, the solver can detect every
sub-interval that contains a root and find the root in it.

Unfortunately, the sub-intervals may not be exact and there can be
more than one exact roots within a computed sub-interval. If such
a event happens, we must ensure that the computed root is valid
for all the exact roots. If there are two exact roots in a comput-
ed sub-interval [t̂i, t̂ j] as Figure 8a shows, then there must exist a
local minimum or maximum between the two roots t0 and t1. With-
out loss of generality, if this local minimum/maximum is ti, whose
computed time is t̂i, we know |F(t̂i) − F(ti)| ≤ 16000B3ε from the
previous analysis on local minimum/maximum. Since only one root
exists in [t̂i, ti], F(t̂i) and F(ti) must have different signs and we
have |F(t)| ≤ 16000B3ε for any t in [t̂i, t1]. So if we set the actu-
al convergence threshold to μ̂ ≥ (16000 + 746)B3ε = 16746B3ε,

tt

ît ˆ
jt

it

1t0t

i

(a) Two root case

it

t

ît ˆ
jt1t

0t
2t

(b) Three root case

Figure 8: Computed sub-intervals. More than one roots may exist
in a computed sub-interval. To address this problem, the conver-
gence threshold μ needs to be sufficiently enlarged.

we know t̂i can be detected as a solution for both t0 and t1. If
the local minimum/maximum is tk, whose solution t̂k is outside of
[t̂i, t̂ j], then either t̂i or t̂ j must be within [tk, t̂k]. If so, we can sim-
ply treat t̂i or t̂ j as t̂k and we have |F(t̂i) − F(tk)| ≤ 16000B3ε (or
|F(t̂ j) − F(tk)| ≤ 16000B3ε). Therefore, μ̂ ≥ 16746B3ε is still a
sufficient condition to ensure the detection of both roots. Similar
analysis can be performed on the cases when three roots exist in a
computed sub-interval, except that it is possible to have two roots
from ti to t̂i, as Figure 8b shows. Since |F(t) − F(ti)| ≤ 16000B3ε
for any t ∈ [t̂i, ti], we know F(t̂i) ≤ 32000B3ε and we use μ̂ ≥
(32000 + 746)B3ε = 32746B3ε to detect t̂i as a valid root.

In summary, the solver first tests |F̂(t̂i)| ≥ μ̂ and |F̂(t̂ j)| ≥ μ̂. If

both are satisfied and F̂(t̂i)F̂(t̂ j) < 0 , it means there can be at most
one root within [t̂i, t̂ j] and the solver will start the iterative process.

Otherwise, the solver will report t̂i as a root if |F̂(t̂i)| ≤ μ̂, or t̂ j

if |F̂(t̂ j)| ≤ μ̂. The solver may report them both, if both condi-
tions are satisfied. Since 32746B3ε ≤ μ̂ ≤ μ − 746B3ε, we must set
μ ≥ 33492B3ε. This condition is satisfied automatically when using

μ = 64B3ε
3
4 for both vertex-triangle and edge-edge collision cases.

In practice, we simplify the computation by using μ̂ = 64B3ε
3
4 di-

rectly, assuming that μ = 128B3ε
3
4 . The analysis and the conclu-

sions provided in Subsection 4.4 and 4.5 are still valid.

The convergence. To guarantee the robustness of our algorith-
m, we need to know whether the cubic solver always converges
when using floating-point numbers. To understand this problem,
we first present an important property of floating-point arithmetic.
Let a and b be two unique floating-point numbers. We claim that
if Round((a + b)/2) = a or Round((a + b)/2) = b, then there can
be at most one floating-point number between a and b. Assuming
that a < b, we first consider the case when Round((a + b)/2) = a.
Let a1 and a2 be the two floating-point numbers immediately above
a: a < a1 < a2. If Round((a + b)/2) = a, we must have a+b

2
< a1

and b < 2a1 − a. Since a1 − a ≤ a2 − a1, we have b < a2, so
b = a or b = a1, and no floating-point number exists between a
and b. Similarly, let b1, b2, b3 be the three floating-point numbers
immediately below b: b3 < b2 < b1 < b. If Round((a + b)/2) = b,
we have a+b

2
> b1 and 2b1 − b < a. Since b1 − b3 ≥ b − b1, we

have a > b3. So we must have a = b, a = b1, or a = b2. There-
fore, at most one floating-point number can exist between a and
b. This property indicates that the Newton-Bisection method can
keep subdividing the interval until the interval spans no more than
three floating-point numbers. When floating-point numbers are in
[0, 1], the gap between two adjacent ones cannot exceed ε. There-
fore, the ultimately subdivided interval size must be bounded by 2ε.
Let [t0, t1] be an interval that contains an exact root t. Using Taylor
expansion, we know that both |F(t0)| and |F(t1)| should be bounded
by:

∣∣∣3at2 + 2bt + c
∣∣∣ 2ε + |3at + b| (2ε)2 + |a| (2ε)3 ≤ 13Bε, in which

B = 18B3(1 + ε)7. Together with the sign detection error 746B3ε,
we must have μ̂ ≥ 981B3ε to ensure the convergence of the cubic
solver. Fortunately, this has already been satisfied previously.

B2 1 B2 1

2B2, 2

B, 0

B2, 1

B, 0 B, 0

B2, 1

B, 0

4B2, 3

2B2, 2

4B , 3

2B2, 2

(a) xa, xb, and xc

4B2 3

6B2, 4

4B2, 3

2B2,2 2B2,2 2B2,2

13B2, 6

12B2, 5 B2, 1

13B , 6

(b) Value a and b

8B2 4

12B2, 5

8B2, 4

4B2,3 4B2,3 4B2,3

7B2, 5

6B2, 4 B2, 1

7B , 5

(c) Value c

Figure 9: Error bounds in different cases. The red arrows represent
multiply and the green arrows represent add or subtract.

C Errors in Vertex-Edge CCD

In this section, we provide detailed error analysis on the first four
cases in vertex-edge CCD. Our idea is to formulate a new function
G0i j(t) from F0i j(t), by removing any component in xa or xb if it is

less than ρ = 3B2ε
1
2 . Let tF

0 be the desired minimum of F0i j(t), t0 be

the minimum of G0i j(t) closest to tF
0 , and t̂0 be its computed version.

Our ultimate goal is to find an upper bound on |F0i j(t̂0) − F0i j(tF
0)|.

Firstly, we formulate an upper bound on |G0i j(t̂0) −G0i j(t0)|.

Case 1. In Case 1, t0 = t̂0 = 0 or 1. So |G0i j(t̂0) −G0i j(t0)| = 0.

Case 2. If the three components of x ji + tv ji have unique magni-
tudes and no component in (x0i+tv0i)×(x ji+tv ji) is zero, then G0i j(t)
can be considered locally at t0 as a quadratic function G0i j(t) =
at2+bt+c as Subsection 3.2 shows. Let Ḡ0i j(t) = ât2+ b̂t+ ĉ. Using
Theorem 4.1 and Figure 9a, we get ‖x̂a − xa‖∞ ≤ 2B2((1 + ε)2 − 1),
‖x̂b − xb‖∞ ≤ 4B2((1+ ε)3−1), ‖x̂c − xc‖∞ ≤ 2B2((1+ ε)2−1). Sup-
pose that S ≤ B, we can further get |â − a| ≤ 6B2((1 + ε)4 − 1),

|b̂ − b| ≤ 13B2((1 + ε)6 − 1), and |ĉ − c| ≤ 7B2((1 + ε)5 − 1),
as Figure 9b and 9c shows. To make t0 =

−b
2a ∈ [0, 1], we must

have a � 0 and |b| ≤ |2a| ≤ |2â| + 48B2ε + B2O(ε2). So when
|â| ≤ 25B2ε, we have |a| ≤ 49B2ε + B2O(ε), |b| ≤ 98B2ε + B2O(ε),
and |b̂| ≤ 176B2ε + B2O(ε). Given the fact that t0 ∈ [0, 1] and
t̂0 ∈ [0, 1], we have:

|Ḡ0i j(t̂0)−G0i j(t0)| ≤ |â|+ |a|+ |b̂−b||t̂0|+ |b||t̂0− t0|+ |ĉ−c| ≤ 286B2ε.
(22)

Alternatively, if |â| > 25B2ε, we have:∣∣∣∣ −b̂2

4â − −b2

4a

∣∣∣∣ ≤ ∣∣∣b̂ − b
∣∣∣ |b̂−b|+2|b|

|4â| +
∣∣∣ b

4a

∣∣∣ ∣∣∣ b(a−â)

â

∣∣∣
≤ (78B2ε+B2O(ε2))(174B2ε+B2O(ε2)+|4â|)

|4â| +
(|2â|+48B2ε+B2O(ε2))(24B2ε+B2O(ε2))

2|â|
≤ 264B2ε.

(23)
Let t̃0 = −b̂/(2â), we get:

|Ḡ0i j(t̃0) −G0i j(t0)| ≤
∣∣∣∣ −b̂2

4â − −b2

4a

∣∣∣∣ + |ĉ − c| ≤ 300B2ε. (24)

In practice, t̃0 is set to 0 if it is less than 0. The existence of t0

in [0, 1] minimizing the quadratic form requires a > 0 and b ≤ 0.

According to |â| > 25B2ε, we have â > 0 and b̂ > 0. Since |b̂ − b| ≤
78B2ε + B2O(ε2), we must have −79B2ε ≤ b ≤ 0. So,

|Ḡ0i j(0) −G0i j(t0)| ≤
∣∣∣∣ b2

4a

∣∣∣∣ + |ĉ − c| ≤ ∣∣∣ b
2

∣∣∣ + |ĉ − c| ≤ 75B2ε. (25)

Alternatively, t̃0 is set to 1 if it is greater than 1. In that case, we

have −b ≤ 2a and 2â ≤ −b̂. Since |â − a| ≤ 24B2ε + B2O(ε2) and
|b̂ − b| ≤ 78B2ε + B2O(ε2), we get 2a − 127B2ε ≤ −b ≤ 2a. So,

|Ḡ0i j(1) −G0i j(t0)| ≤
∣∣∣∣â + b̂ + b2

4a

∣∣∣∣ + |ĉ − c|
≤ |â − a| + |b̂ − b| + (2a + b)

(∣∣∣ 2a
4a

∣∣∣ + ∣∣∣ b
4a

∣∣∣) + |ĉ − c| ≤ 265B2ε.

(26)

Equation 25 and 26 indicate that |Ḡ0i j(t̃0) − G0i j(t0)| ≤ 300B2ε is
still valid after clamping t̃0. Now let us examine the divide step
that causes errors between t̃0 and t̂0, if t̃0 is not clamped. Since
0 ≤ t̃0 ≤ 1, we have |t̂0 − t̃0| ≤ |t̃0|ε ≤ ε. So we get |Ḡ0i j(t̂0) −
Ḡ0i j(t̃0)| ≤ (2+ε)|â|ε+|b̂|ε ≤ 26B2ε and |Ḡ0i j(t̂0)−G0i j(t0)| ≤ 326B2ε.
Meanwhile, by the definition of Ḡ0i j, we have |Ḡ0i j(t̂0) −G0i j(t̂0)| ≤
(24 + 78 + 35 + 1)B2ε = 138B2ε. Together, |G0i j(t̂0) − G0i j(t0)| ≤
(326 + 138)B2ε ≤ 464B2ε.

We note that |G0i j(t)−G0i j(t0)| ≤ 464B2ε is valid for any t ∈ [t0, t̂0].
This is because the transition from G0i j to Ḡ0i j can be treated as a
continuous functional. When t ∈ [t0, t̃0], there must exist an inter-
mediate function Gint

0i j(t) = aintt2 + bintt + cint whose exact solution

(after clamping) is t. By treating Gint
0i j as Ḡ0i j and t as t̃, we can use

the same analysis to reach this conclusion. If t ∈ [t̃0, t̂0] instead, we
treat t as t̂0 and |G0i j(t) −G0i j(t0)| ≤ 464B2ε must be true as well.

Case 3. In Case 3, t0 is found by solving a linear equation. With-
out loss of generality, we suppose that x ji + tu ji = y ji + tv ji. The
error |t̂0 − t0| here can be caused by subtract and divide only.
Let a = uji − v ji and b = y ji − x ji, such that t0 = b/a and t̂0 be its
computed version. The existence of t0 requires a � 0. Assuming
that the velocities are substantially larger than the smallest floating-
point value, so there is no underflow and â � 0 as well. Given

|â − a| ≤ |a|ε, |b̂ − b| ≤ |b|ε and |b| ≤ |a|, we get:

∣∣∣∣ b̂
â − b

a

∣∣∣∣ ≤ |b(â−a)−a(b̂−b)|
|aâ| ≤ 3ε. (27)

Using t0 ∈ [0, 1], we have
∣∣∣t̂0 − t0

∣∣∣ ≤ (1+3ε)ε+3ε ≤ 5ε. If t̂0 < 0 or

t̂0 > 1, the algorithm clamps it to 0 or 1. Doing this makes t̂0 closer
to t0, so |t̂0 − t0| ≤ 5ε must still be valid. Using the bounds derived
in Case 2, we can bound

∣∣∣G0i j(t̂0) −G0i j(t0)
∣∣∣ by:

3
(
2B2

∣∣∣t̂2
0 − t2

0

∣∣∣ + 4B2
∣∣∣t̂0 − t0

∣∣∣) + B2
∣∣∣t̂0 − t0

∣∣∣ ≤ 126B2ε. (28)

This conclusion is valid for any t in [t0, t̂0], which can be derived
from Equation 28 after replacing t̂0 by t.

Case 4. Case 4 is the most complex one among four. Without
loss of generality, we suppose that Q(t0) = xat2

0 + xbt0 + xc (xa ≥
0) is the quadratic function whose root gives the collision time t0.
We first study Q̄(t̄0) = x̂at̄2

0 + x̂bt̄0 + x̂c, whose exact root provided
by the quadratic solver in Appendix A.1 is t̄0 (without clamping).
Since G0i j(t) is formulated in a way that |xa| and |xb| are greater than

3B2ε
1
2 , there are two possible cases.

• Case 4.1. When 5xa ≥ |xb| ≥ 3B2ε
1
2 , we must have

|xc| ≤ |xa| + |xb| ≤ 6|xa| to ensure the existence of t0 in
[0, 1]. Let Δ = x2

b − 4xa xc be the discriminant of Q(t0) and

Δ̄ = Clamp(x̂2
b − 4x̂a x̂c, 0,+∞) be the discriminant of Q̄(t̄0).

Using the error bounds provided in Case 2, we have
∣∣∣Δ̄ − Δ∣∣∣ ≤

(2|xb| · 12 + 4|xa| · 4 + 4|xc| · 4)B2ε + B4O(ε2) ≤ 232|xa|B2ε +

B4O(ε2). So |
√
Δ̄ − √Δ| ≤ √232xaBε

1
2 + B2O(ε). Since

xa ≥ 3B2ε
1
2 , x̂a > 0 and we can get an upper bound on |t̄0− t0|:

|x̂b−xb |+|
√
Δ̄−√Δ|

2|x̂a | + |t0| |x̂a−xa |
|x̂a | ≤

√
232xa Bε

1
2 +B2O(ε)

2(xa−5B2ε)
≤ 5ε

1
4 . (29)

If Δ̄ is not clamped, t̄0 is a valid root and Q̄(t̄0) = 0. If Δ̄ is
clamped, then Δ ≥ 0 while x̂2

b − 4x̂a x̂c < 0. From the previous

analysis, we know that x̂2
b − 4x̂a x̂c ≥ −233|xa|B2ε. According

to the quadratic formula in Appendix A.1, when Δ̄ is clamped,

Q̄(t̄0) =
−x̂2

b+4x̂a x̂c

4xa
≤ 60B2ε.

• Case 4.2. When |xb| ≥ 5xa ≥ 3B2ε
1
2 , we must have

|xc| ≤ 1.2|xb| to ensure that t0 is in [0, 1]. We have
∣∣∣Δ̄ − Δ∣∣∣ ≤

(2|xb| · 12 + 4|xa| · 4 + 4|xc| · 4)B2ε + B4O(ε2) ≤ 47|xb|B2ε +

B4O(ε2) and |
√
Δ̄ − √Δ| ≤ √47|xb|Bε 1

2 + B2O(ε). If xb > 0,

the only valid solution is: t = (2xc)/(−xb −
√
Δ). Since

|xb| ≥ 3B2ε
1
2 , −x̂b −

√
Δ̄ � 0 and |t̄0 − t0| is bounded by:

2|x̂c−xc |
x̂b+
√
Δ̄
+ |t0| |x̂b−xb |+|

√
Δ̄−√Δ|

x̂b+
√
Δ̄

≤
√

47|xb |Bε
1
2 +B2O(ε)

|xb |−13B2ε
≤ 5ε

1
4 . (30)

Similarly, if xb < 0, the only valid solution is t = (2xc)/(−xb+√
Δ) and |t̄0 − t0| ≤ 5ε

1
4 is true again.

Additionally, we have Δ = x2
b −4xa xc ≥ x2

b −4 ·0.2xb ·1.2xb =

0.04x2
b. Since |xb| ≥ 3B2ε

1
2 while

∣∣∣Δ̄ − Δ∣∣∣ ≤ 48|xb|B2ε, we

must have Δ̄ > 0 and it is not clamped. Therefore, t̄0 is actu-
ally a valid root and Q̄(t̄0) = 0.

The above analysis indicates that although |t̄0 − t0| ≤ 5ε
1
4 , we still

have: |Q(t̄0)| ≤ |Q̄(t̄0)| + |Q̄(t̄0) − Q(t̄0)| ≤ (60 + 4 + 12 + 4)B2ε +

B2O(ε
5
4) ≤ 81B2ε. In addition, any t ∈ [t0, t̄0] can be considered as

the exact quadratic solution of an intermediate function Qint(t) be-
tween Q(t) and Q̄(t). By treating t as t̄0 and Qint(t) as Q̄(t), we know
|Q(t)| ≤ 81B2ε for any t ∈ [t0, t̄0]. According to Taylor expansion,
we know |Q(t̄0)| =

∣∣∣ 1
2
Q′′(t0)(t̄0 − t0)2 + Q′(t0)(t̄0 − t0)

∣∣∣ ≤ 81B2ε and

|Q′(t0)(t̄0 − t0)| ≤ 81B2ε + 1
2

∣∣∣Q′′(t0)(t̄0 − t0)2
∣∣∣. Since |Q′′(t0)| ≤ 2B2,

we get:

|Q′(t0)(t̄0 − t0)| ≤ 25B2ε
1
2 + 81B2ε. (31)

Using Equation 31 and Taylor expansion, for any t ∈ [2t0 − t̄0, t0],
we can formulate an upper bound on |Q(t)| as:

|Q(t)| ≤ |−Q′(t0)(t − t0)| +
∣∣∣∣ Q′′(t0)

2
(t − t0)2

∣∣∣∣
≤ |−Q′(t0)(t̄0 − t0)| +

∣∣∣∣ Q′′(t0)

2
(t̄0 − t0)2

∣∣∣∣ ≤ 51B2ε
1
2 .

(32)

Note that the above conclusions are valid for any candidate solved
by Case 4, even when it is not a minimum of G0i j(t).

Our next goal is to study how t̄0 affects G0i j(t̄0). Without loss
of generality, we assume that all of the Case 3 and Case 4 can-
didates are unique. If no candidate exists from t0 to t̄0, we can
formulate G0i j(t) from t0 to t̄0 as: G0i j(t) = |Q(t)| + R(t), in
which R(t) is the residual quadratic component of G0i j(t). S-
ince G0i j(t) is minimized at t0, we must have |Q′(t0)| ≥ |R′(t0)|.
Therefore, |R(t̄0) − R(t0)| ≤

∣∣∣ 1
2
R′′(t0)(t̄0 − t0)2

∣∣∣ + |R′(t0)(t̄0 − t0)| ≤∣∣∣ 1
2
R′′(t0)(t̄0 − t0)2

∣∣∣ + |Q′(t0)(t̄0 − t0)|. Using the fact that |R′′(t0)| ≤
4B2, we get |R(t̄0) − R(t0)| ≤ 75B2ε

1
2 + 81B2ε. Combined with

|Q(t̄0)−Q(t0)| ≤ 81B2ε, we know
∣∣∣G0i j(t̄0) −G0i j(t0)

∣∣∣ ≤ 76B2ε
1
2 . We

note that for any t ∈ [t0, t̄0], we can find an intermediate function be-
tween Q(t) and Q̄(t) whose exact solution is t. By treating t as t̄0 and
the intermediate function as Q̄(t), we can get

∣∣∣G0i j(t) −G0i j(t0)
∣∣∣ ≤

76B2ε
1
2 . It means

∣∣∣G0i j(t̄0) −G0i j(t0)
∣∣∣ ≤ 76B2ε

1
2 is also valid after

clamping t̄0 to [0, 1].

If no collision candidate exists in [2t0 − t̄0, t0], we would like to find
the change of G0i j(t) in it as well. Since no candidate happens in
[2t0 − t̄0, t0], G0i j(t) is still G0i j(t) = |Q(t)| + R(t). Like before, we

have: |R(2t0 − t̄0) − R(t0)| ≤
∣∣∣ 1

2
R′′(t0)(t̄0 − t0)2

∣∣∣ + |R′(t0)(t̄0 − t0)| ≤
75B2ε

1
2 +81B2ε. Combined with |Q(2t0−t̄0)−Q(t0)| ≤ 51B2ε

1
2 given

in Equation 32, we know
∣∣∣G0i j(t̄0) −G0i j(t0)

∣∣∣ ≤ 127B2ε
1
2 . From the

above analysis, it is straightforward to see that
∣∣∣G0i j(t) −G0i j(t0)

∣∣∣ ≤
127B2ε

1
2 is also true, for any t ∈ [2t0 − t̄0, t0].

1t 1t

0t0 02t t� 0t
(a) Case 4a

1t1t 1

0t0 02t t� 0t

1

(b) Case 4b

1t

0t0 02t t� 0t

1t

(c) Case 4c

1t

0t0 02t t� 0t

1t

(d) Case 4d

Figure 10: Different cases under Case 4. The existence of a new
Case 4 collision time candidates between 2t0 − t̄0 and t̄0 will cause
the error within the interval to increase.

But what happens when there are collision time candidates between
t0 and t̄0, assuming that t0 ≤ t̄0? Here we consider the candidates
belonging to Case 3 and 4 only, since they are the only ones that
can change G0i j(t). To begin with, we first consider the change of
G0i j(t) when a new Case 4 candidate t1 is introduced. By definition,
G0i j(t) is changed by −2Q1(t), when it passes through t1 from t0.
Suppose that |G0i j(t) − G0i j(t0)| ≤ A for t ∈ [2t0 − t̄0, t̄0]. There are
five possible cases.

• Case 4a. In this case, t1 ∈ [t0, t̄0] and t̄1 ∈ [t0, t1], as
Figure 10a shows. Since G0i j(t) was unchanged in [2t0− t̄1, t̄1],
we treat t̄1 as t̄0 and we still have: |G0i j(t) − G0i j(t0)| ≤ A, for
t ∈ [2t0 − t̄0, t̄0].

• Case 4b. If t1 ∈ [t0, t̄0] and t̄1 ≥ t1 as Figure 10b shows, we
set t̄ = min(t̄0, t̄1). Since Q1(t̄) ≤ 81B2ε, we have: |G0i j(t) −
G0i j(t0)| ≤ A + 2 · 81B2ε for t ∈ [2t0 − t̄, t̄]. So we treat t̄ as t̄0.

• Case 4c. If t1 ∈ [t0, t̄0] and t̄1 ≤ 2t0 − t̄0 as shown in
Figure 10c, then t̄0 ∈ [t1, 2t1 − t̄1] and we know |Q1(t̄0)| ≤
51B2ε

1
2 . Therefore, |G0i j(t) − G0i j(t0)| ≤ A + 2 · 51B2ε

1
2 for

t ∈ [2t0 − t̄0, t̄0].

• Case 4d. If t1 ∈ [t0, t̄0] and t̄1 ∈ [2t0 − t̄0, t0] as shown
in Figure 10d, then we treat t̄1 as t̄0. The function G0i j(t) is
unchanged in [t̄1, t0], so we still have |G0i j(t) − G0i j(t0)| ≤ A
for t ∈ [t̄1, t0]. If 2t0 − t̄1 ∈ [t0, t1], G0i j(t) is unchanged in
[t0, 2t0 − t̄1] as well. If not, since 2t0 − t̄1 ≤ 2t1 − t̄1, we have

|Q1(2t0 − t̄1)| ≤ 51B2ε
1
2 , so |G0i j(t)−G0i j(t0)| ≤ A+ 2 · 51B2ε

1
2

for t ∈ [t0, 2t0 − t̄1]. By treating t̄1 as t̄0, we know |G0i j(t) −
G0i j(t0)| ≤ A + 2 · 51B2ε

1
2 for t ∈ [2t0 − t̄0, t̄0].

• Case 4e. If t1 ∈ [2t0 − t̄0, t0], it also affects G0i j(t). Since
we maintain the same error bound within the interval and the
interval is symmetric to t0, the analysis from Case 4a to 4d is
also applicable here.

The above analysis indicates that when a new Case 4 candidate is
introduced, the error bound within the constructed interval is in-

creased by 102B2ε
1
2 at most and one end of the interval is a comput-

ed candidate. Since there can be five additional Case 4 candidates,

we must have: |G0i j(t̄0)−G0i j(t0)| ≤ (127+5 ·102)B2ε
1
2 ≤ 637B2ε

1
2 ,

for t ∈ [2t0 − t̄0, t̄0]. We can then introduce Case 3 candidates and
replace t̄0 by a Case 3 candidate, if it is within [2t0 − t̄0, t̄0]. In the

end, we still have |G0i j(t̄0) −G0i j(t0)| ≤ 637B2ε
1
2 .

If t̄0 is given by Case 3, it is exact. According to Case 3, we have
|G0i j(t̂0) −G0i j(t̄0)| ≤ B2O(ε). If t̄0 is given by Case 4, it is the exact
solution provided by the quadratic solver. Appendix A.1 shows that

|t̂0 − t̄0| ≤ 2ε
1
2 +O(ε). So by definition, we get: |G0i j(t̂0)−G0i j(t̄0)| ≤

6B2|t̂0+ t̄0||t̂0− t̄0|+13B2|t̂0− t̄0| ≤ 51B2ε
1
2 . So in both cases,we have

|G0i j(t̂0) −G0i j(t0)| ≤ 688B2ε
1
2 . This conclusion is valid for any t in

[t0, t̂0] as well.

In summary, we have |G0i j(t̂0) − G0i j(t0)| ≤ 688B2ε
1
2 for all of the

four cases. Since G0i j(t) is derived from F0i j(t) by removing the
components of xa and xb when they are less than ρ and there are
six components in total, we know |G0i j(t) − F0i j(t)| ≤ 6ρ, for any

t ∈ [0, 1]. One small problem is that ρ as 3B2ε
1
2 cannot be exactly

computed. To ensure that the computed ρ̂ is greater than ρ, we
can either use the round-to-ceiling scheme or multiply each
intermediate result with a factor 1 + ε. By doing this, we can get
ρ̂ ≥ ρ and |ρ̂ − ρ| ≤ B2O(ε). Let tF

0 be the exact time when Fi j(t)
gets minimized locally, we have:

G0i j(t0) − F0i j(tF
0) ≤ G0i j(tF

0) − F0i j(tF
0) ≤ 18B2ε + B2O(ε). (33)

So we have:

F0i j(t̂0) − F0i j(tF
0) ≤ |F0i j(t̂0) −G0i j(t̂0)|+

|G0i j(t̂0) −G0i j(t0)| +G0i j(t0) − F0i j(tF
0) ≤ 725B2ε

1
2 .

(34)

For any t ∈ [t0, t̂0], using the fact that |G0i j(t)−G0i j(t0)| ≤ 688B2ε
1
2 ,

we can treat t as t̂0 and still get F0i j(t) − F0i j(tF
0) ≤ 725B2ε

1
2 . If

t ∈ [tF
0 , t0], we can treat t as t0, which is supposed to be the local

minimum of G0i j(t) closest to tF
0 (within [tF

0 , t0]). So we still have

F0i j(t)− F0i j(tF
0) ≤ 725B2ε

1
2 . Together, we know F0i j(t)− F0i j(tF

0) ≤
725B2ε

1
2 is true for any t ∈ [tF

0 , t̂0].

