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Figure 1: The dress example. Using the Chebyshev semi-iterative approach to accelerate projective dynamics, our simulator animates this
example with 16K vertices and 87K constraints at 37FPS. It uses a 1/30s time step and it handles large deformations, as shown in (b).

Abstract

In this paper, we study the use of the Chebyshev semi-iterative ap-
proach in projective and position-based dynamics. Although pro-
jective dynamics is fundamentally nonlinear, its convergence be-
havior is similar to that of an iterative method solving a linear sys-
tem. Because of that, we can estimate the “spectral radius” and use
it in the Chebyshev approach to accelerate the convergence by at
least one order of magnitude, when the global step is handled by the
direct solver, the Jacobi solver, or even the Gauss-Seidel solver. Our
experiment shows that the combination of the Chebyshev approach
and the direct solver runs fastest on CPU, while the combination
of the Chebyshev approach and the Jacobi solver outperforms any
other combination on GPU, as it is highly compatible with parallel
computing. Our experiment further shows position-based dynamics
can be accelerated by the Chebyshev approach as well, although the
effect is less obvious for tetrahedral meshes. The whole approach is
simple, fast, effective, GPU-friendly, and has a small memory cost.
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1 Introduction

Position-based dynamics is a popular technique for simulating de-
formable objects, and it has been widely used in many high-end
physics engines, such as PhysX, Havok Cloth, and Maya nCloth,
thanks to its simplicity. The basic idea behind position-based dy-
namics is to update vertex positions by enforcing position-based
constraints iteratively, rather than by using elastic forces. When a
vertex is involved in multiple constraints, its position can be updat-
ed either sequentially, known as the Gauss-Seidel way, or simul-
taneously through averaging, known as the Jacobi way. To imple-
ment position-based dynamics on GPU, the Jacobi way is often pre-
ferred so that the constraints can be processed in parallel. Position-
based dynamics uses the number of iterations to control how strictly
the constraints are enforced and how stiff an object behaves, so it is
free of numerical instability. However, it is difficult to formulate the
relationship between the mechanical properties of an object and the
number of iterations. In fact, position-based dynamics can cause the
stiffness behavior of an object to be affected the mesh resolution,
since its convergence rate drops as the mesh resolution increases.
To speed up the convergence, researchers proposed to enforce the
constraints in a multi-resolution fashion [Miiller 2008; Wang et al.
2010]. But building a mesh hierarchy is not simple and the result
can be even more mesh-dependent.

A new constraint-based simulation technique, known as projective
dynamics [Liu et al. 2013; Bouaziz et al. 2014] , emerged recently.
Different from position-based dynamics, projective dynamics tries
to exactly solve implicit time integration of a dynamical system,
formulated under the variational form. Specifically, it iteratively
runs two steps: a local step that projects each constraint into an ac-
ceptable state, and a global step that transfers these states to vertex
positions. While projective dynamics can be considered as a gen-
eralized version of position-based dynamics, its converged result is
physically plausible and controllable by stiffness variables. Since
the linear system involved in the global step has a constant matrix,
the original implementation of projective dynamics pre-factors the
matrix and solve the global system directly by forward and back-
ward substitutions. Previous research showed that doing this can



achieve visually acceptable results even within a few iterations. The
catch is that a direct solver cannot be easily accelerated by GPU. So
the whole method becomes less efficient, when more iterations are
needed to reduce errors and artifacts of a fast deforming object.

Since projective dynamics and position-based dynamics are similar
to linear systems in many ways, a natural question is: can we bor-
row ideas from the existing linear system solvers and get these tech-
niques accelerated? Here we are especially interested in the Cheby-
shev semi-iterative method [Golub and Van Loan 1996]. Unlike
generalized minimal residual or conjugate gradient, the Chebyshev
method has a simple recurrence form and uses no inner product, so
it is ideal for GPU acceleration. The challenge is that the Cheby-
shev method needs to know the range of the eigenvalues, which is
hard to get in practice. If this range is under- or over-estimated,
the method can converge slowly or even diverge. This problem
becomes even more sophisticated, after we realize that projective
and position-based dynamics are fundamentally nonlinear and there
exists no matrix for eigenvalue analysis.

In this work, we demonstrate how the Chebyshev semi-iterative ap-
proach can be applied to accelerate both projective dynamics and
position-based dynamics. Our contributions and conclusions are:

o Analysis. We noticed that the convergence of projective
dynamics is highly similar to that of an iterative method solv-
ing a linear system, even when projective dynamics uses a
direct solver. This is true to position-based dynamics as well,
which can be considered as using a trivial global step. Based
on these observations, we propose to estimate the “spectral
radius” of projective or position-based dynamics from its con-
vergence rate.

e Implementation. = We show that the Chebyshev approach
is easy to implement and compatible with GPU acceleration.
Given an existing projective or position-based dynamics sim-
ulator, the approach can be implemented in less than five min-
utes! The Jacobi+Chebyshev combination further allows po-
sitional and contact constraints to be easily handled in each
iteration. In contrast, the previous implementation [Bouaziz
et al. 2014] requires updating the linear system.

e Evaluation. We tested our simulator using both trian-
gular and tetrahedral meshes. Our experiment shows that
the approach can accelerate projective dynamics by at least
one order of magnitude, when the global step uses the direct
solver, the Jacobi solver, or even the Gauss-Seidel solver. The
Chebyshev approach can effectively accelerate position-based
dynamics as well, especially for triangular meshes.

In summary, we present a simple, fast, and effective approach for
accelerating projective and position-based dynamics, based on the
Chebyshev semi-iterative method. This approach requires a small
memory cost and it can handle large time steps and deformations,
as shown in Figure 1. It is highly compatible with GPU acceleration
and it can work together with other acceleration approaches as well,
such as multi-resolution techniques.

2 Related Work

The simulation of deformable objects, such as cloth and soft tis-
sues, has been an important research topic in computer graph-
ics for decades, since the early work by Terzopoulos and col-
leagues [1987]. The key problem here is how to integrate elastic
forces over time. To account for the nonlinearity of the elastic force
in real-world deformable objects, researchers have developed var-
ious hyperelastic models to derive the force from the gradient of
the elastic potential energy. Doing this makes explicit time inte-
grators more vulnerable to numerical instability, especially when
the stiffness and the time steps are large. Proposed by Baraff and

Witkin [1998], one solution is to use an implicit Euler integrator,
by linearizing the dynamical system into a linear system. However,
implicit time integrators have the artificial damping issue. To over-
come this issue, Kharevych and colleagues [2006] suggested the
use of symplectic integrators, and Bridson and collaborators [2003]
and Stern and Grinspun [2009] developed hybrid implicit-explicit
integrators. Su and colleagues [2013] proposed to track and pre-
serve the total energy explicitly.

Since numerical instability is related to the stiffness and many ob-
jects become stiffer under larger deformations, a natural way to
address numerical instability is to prevent objects from large defor-
mations by constraints, not forces. This idea was initially explored
by Provost [1996] on mass-spring systems, and later extended to
handle triangular and tetrahedral elements [Thomaszewski et al.
2009; Wang et al. 2010]. Miiller and colleagues [2007; 2008]
pushed this strain limiting idea even further, so they can replace e-
lastic forces completely by constraints in dynamic simulation. This
technique, known as position-based dynamics, was later used to
simulate particle-based fluids [Macklin and Miiller 2013; Macklin
et al. 2014] and volumetric elements [Miiller et al. 2014] as well.
To simulate inextensible clothing by position-based dynamics, Kim
and colleagues [2012] used unilateral distance constraints to con-
nect cloth vertices with body vertices. Similar to position-based
dynamics, the shape matching technique [Miiller et al. 2005; Rivers
and James 2007], replaces elastic forces by the difference between
deformed shapes and goal shapes. If cloth is completely inextensi-
ble, it can also be simulated by constrained Lagrangian mechanics,
as Goldenthal and collaborators [2007] showed.

One limitation of position-based dynamics is that it controls the
stiffness of an object indirectly by the number of iterations, which
can vary dramatically from one mesh to another. Under the
optimization-based implicit Euler framework developed by Mar-
tin and colleagues [2011] for graphics purposes, Liu and collab-
orators [2013] discovered that implicit time integration of a mass-
spring system can be approximated by iteratively solving a local
constraint enforcement step and a global linear system step. Bouaz-
iz and colleagues [2014] later formulated this idea into projective
dynamics, and they studied its use in the simulation of triangular
and tetrahedral elements. While projective dynamics can be treated
as a generalized version of position-based dynamics, it has better
physical meanings: the converged result is the same as the exact
solution to a dynamical system under implicit Euler integration,
which is independent of the mesh tessellation and the number of
iterations.

3 Background

In this section, we will review some background knowledge about
iterative solvers for linear systems, including the Chebyshev semi-
iterative method. A linear system can be formulated as: Ax = b, in
which A € RV is a matrix, b € RY is a given vector, and x € RY
is the unknown vector that needs to be found. When A is large and
sparse, iterative methods are often favored over direct methods, to
avoid matrices from being filled by new nonzeros during the solving
process. Based on the splitting idea: A = B — C, standard iterative
methods, such as Jacobi and Gauss-Seidel, have the form:

x®D =B (Cx® +b). )
It is straightforward to see that when these methods converge, they
provide the solution to the linear system: x** = x¥ = x = A~'b,

since Bx = Cx + b. If we split B'b into B-"'Ax = x - B~!Cx, we
can convert Equation 1 into:

el = x*D _x = B'C(x¥ - x) = B~'Ce®, @)



in which e® is the error vector at the k-th iteration. Let the eigen-
value decomposition of B~!C be QAQ™!, where A is the eigenvalue
matrix. We can reformulate the error vector at the k-th iteration as:

¥ = (B7C) e = QA'Q e 3)

This means that these iterative methods converge linearly and their
convergence rates depend on the largest eigenvalue magnitude,
known as the spectral radius: p(B~'C). To ensure the convergence,
we must have: p(B™'C) < 1.

3.1 The Chebyshev Semi-lterative Method

Given the results produced by the iterative formula in Equation 1:
x@, xD  x® we would like to obtain a better result from their
linear combinations, which has the following form:

k

y® = Z Viux, )

Jj=0

in which v;; are the blending coefficients to be determined. If the
results are good already: x©@ = x¥ = .. = x® = x, we must have
y® = x. So we require the following constraint:

k
Dvie=1. )

=0

The question is how to reduce the error of y*®. Using Equation 5
and 2, we can formulate the error y*® — x into:

k .
vie (X7 =x) = > v (B7'C) €@ = puB 0, (6)
0

k
J=0 J=

k .
in which pi(x) = 3 vjxx/ is a polynomial function. So to reduce the
j=0

error, we must reduce Hpk(B’lC)H2 = mlax |pr(4)], in which 4; can

be any eigenvalue of B-'C. Suppose that all of the eigenvalues are
real. If we know all of the eigenvalues and if k is sufficiently large,
we can construct the polynomial function in a way that p;(1;) = 0
for any A;. Unfortunately, it is difficult to know the eigenvalues,
when the linear system is large and varying. Instead, if we know
the spectral radius p suchthat -1 < —p <4, <. <A <p <1, we
can ask p;(x) to be minimized for all x € [—p, p]:

pi(x) = argmin { max [pi(x)l . (7
—p<x<p

The unique solution to Equation 7 is given by:

_ C(x/p)
C(1/p)’

in which Cy(x) is the Chebyshev polynomial with the recurrence
relation: Cyiq(x) = 2xCr(x) — Cr_1(x), with Cy(x) = 1 and C(x) =
x. It is trivial to see that p,(1) = 1, satisfying Equation 5. For
any x € [—1,1], |Ci(x)| < 1, but for any x ¢ [—1, 1], |Cr(x)| grows
rapidly when k& — oo. So pi(x) diminishes quickly for any x €
[-p.p], when k — oo.

pi(x) (8)

To reduce the computational and memory cost, we can avoid calcu-
lating y® by its definition in Equation 4. Instead, we use Equation 8
to formulate the recurrence relation of py(x) as:

Pis1(X)Cri (ﬁ) = %Ck (ﬁ) = Ci (ﬁ)

= 25,06 (1) - paw (2 (Y -ca (1), @

which can be reorganized into:

2(3)

Cror (1) (oo (0) = per () =

(xep(x) = pr—1(x)) . (10)

After replacing x by B-'C and multiplying both sides of Equa-
tion 10 by @, we get:

1
Coa () (047 =5) = S (B0 - x) -y ).
an
Using the fact that -B~'Cx+x = B~'(B—C)x = B™'b, we can now
obtain the following update function:

vy = (B*‘ (Cy(k) + b) _ y<k’l)) +y* D, (12)
where 1
) B T (13)
PCh+1 77)

In Equation 12, B™! (Cy(k) + b) is essentially one iterative solve step
described in Equation 1. By definition, we can further get:
2Cy 2Cy 4

P(%Ck—ck—l) ) P(%Ck— W+Ck) ) 4Pl

(14)

Wiyl =

This allows us to more efficiently compute w, given the initial con-
ditions w; = 1 and w, = el
Golub and Varga [1961] extensively analyzed the Chebyshev semi-
iterative method. They pointed out that although the Chebyshev
method looks similar to weighted Jacobi and successive over-
relaxation (SOR), it converges much faster. This is because the
Chebyshev method changes the factor w in each iteration and it
uses y*1, not y®,

Real eigenvalues. The previous analysis is based on the as-
sumption that all eigenvalues of B~'C are real. Although this is not
true in general, if A is a symmetric matrix with positive diagonal
entries and B~ C is created by Jacobi, the eigenvalues must be real.
Let A and v be an eigenvalue and its eigenvector of B~'C: B~'Cv =
Av. We have B-2CB~2(B2v) = B2 AB~2(B2v) = A(B?v). So A is
also the eigenvalue of B-2CB-:. Since B is the diagonal matrix of

A and its diagonal elements are all positive, B2 must be real. So

B 2CB~? is real symmetric and A is real. Therefore, we can use
the Chebyshev method to accelerate Jacobi iterations immediately.

Strengths and weaknesses. The biggest advantage of the
Chebyshev semi-iterative method is its simplicity. Compared with
Krylov subspace iterative methods, such as generalized minimum
residual and conjugate gradient, the Chebyshev method has a short
recurrence form and it does not use inner products, so it is ideal for
parallel computing. Unfortunately, it is known that the Chebyshev
method does not converge as fast as Krylov subspace methods do.

The Chebyshev method also requires' the spectral radius p, which is
often estimated numerically. Let p be the estimated spectral radius.
The Chebyshev method converges differently when p varies from
0 to 1. When p = 0, the method is reduced to a standard iterative
solver and it offers no acceleration. When p varies from O to p,
the convergence rate is gradually improved. Once p grows above
p, the method still converges but oscillation happens. Eventually,
the method diverges as p becomes close to 1. We will explore this
convergence property for estimating p later in Subsection 5.1.

UIf we know an even tighter range of the eigenvalues: A; € [a,f], the
Chebyshev method can be adjusted to converge faster, as described in [Gol-
ub and Van Loan 1996; Gutknecht and Roéllin 2002].



4 Projective Dynamics

Given a 3D dynamical system with N vertices, we can simulate its
movement from the #-th time instant to the 7+1-th time instant by
implicit time integration [Baraft and Witkin 1998]:

Qo1 = Qe+ IV, Vg =V + hMille, (15)

where q € R* and v € R3" are stacked position and velocity vec-
tors, M € R*¥3N ig the mass matrix, / is the time step, and f € R3V
is the total force. Assuming that f,,; = £i,,(qs+1) + fexi, in which the
internal elastic force f;, is a function of q and the external force f.y,
is constant, we reformulate Equation 15 into a nonlinear system:

M(q1 —q;—hv) = n (Fine(qrs1) + fext) - (16)

One solution to Equation 16 is to use the Newton’s method:

M (q“V = q, = hv,) = 1 (£m(q@®) + K@) (@*" = q¥) + fon),

a7
in which q© = q, and K(q®) = 0f;,/9x is the stiffness matrix
evaluated at q. Although the Newton’s method converges fast,
its iterations are computationally expensive and its overall perfor-
mance is often far from satisfactory. If we just use a single iteration
as proposed by Baraff and Witkin [1998], the result will not be ac-
curate, but at least visually plausible for some applications.

A different way of handling implicit time integration is to convert it
into an energy minimization problem:

. o1 1
q:+1 = arg min e(q) = arg min ﬁnM% (@-s)IP+E@, (18)
q q

in which E(q) is the internal potential energy at q, and s, = q,+hv,+
M 'f.,, is the expected position vector without internal forces. It
is straightforward to see that the critical point of Equation 18 is
identical to Equation 16. In other words, solving Equation 18 is
equivalent to solving Equation 16. Projective dynamics [Liu et al.
2013; Bouaziz et al. 2014] assumes that the internal energy is the
sum of the constraint energies and each constraint energy has a
quadratic form:

1
2h?

where w, is a positive weight of constraint ¢, p. is the projection
of q into the energy-free space defined by ¢, and A, and A, are
two constant matrices specifying the relationship between q and p..
For example, if ¢ is a spring, A.q and A p, give the displacement
vectors of the two vertices, and the internal energy is equivalent to
the spring potential energy. Based on this model, projective dy-
namics iteratively minimizes e(q) in two steps: in a local step, it
projects the current q into p. for every constraint c; in a global step,
it treats p. as constant and finds the next q that minimizes e(q). Liu
and colleagues [2013] demonstrates that projective dynamics using
spring constraints is equivalent to an implicit mass-spring system.

e(q) = Aq-Apl, (19

1 2 We
M (@ =s)IF + ) =

4.1 The Global Solve

An important question regarding projective dynamics is how to
solve the global step. Liu and colleagues [2013] and Bouaziz
and collaborators [2014] found that the linear system resulted from
Ve(q) = 0 has a constant matrix A:

M M "
Aq= [ﬁ + prIAc] a= 58+ ) wAlAp.,  (Q0)

which means A can be pre-factored for fast direct solve in every it-
eration. If each time step contains only a small number of iterations,

S

(a) Direct (10)  (b) Direct (50) (c) Direct (100) (d) Newton (20)

2y

(e) Jacobi (400) (f) Jacobi (4000) (g) OR (4000) (h) Ours (400)

Figure 2: Projective dynamics results produced by using different
solvers. The numbers in the brackets are the numbers of iterations.
The direct solver can still cause curly edge artifacts after 100 itera-
tions, as (c) shows. Meanwhile, the Jacobi solver converges slowly,
even when it is accelerated by over-relaxations in (g). In contrast,
the result generated by our Jacobi+Chebyshev method after 400
iterations in (h) is highly similar to the ground truth, which is sim-
ulated by the Newton’s method shown in (d).

we can solve projective dynamics efficiently in real time. However,
a few iterations are often insufficient for the local step to stabilize
its results, when an object undergoes large and fast deformation.
This issue is especially noticeable in mass-spring systems, where
the displacement vectors change dramatically within one time step.
For example, Figure 2a shows that 10 iterations are insufficient to
remove the curly edge artifact near the bottom of a swinging table-
cloth, which does not exist in the ground truth provided by the New-
ton’s method in Figure 2d. This artifact becomes less noticeable,
but still exists after we increase the number of iterations from 10 to
100, as Figure 2c shows. Unfortunately, we cannot afford running
the direct solve too many times, since it is still relatively expensive
and it cannot be easily accelerated by GPU.

From a different perspective, we may consider the cause of the
aforementioned issue to be the unneeded accuracy of the direct
solver. Without rounding errors, the direct solver finds the exact
solution to the linear system in Equation 20. But such accuracy is
unnecessary and the computational cost is wasted, once the local
step modifies the linear system in the next iteration. One idea is to
replace the direct solver by one Jacobi iteration, which is cheap and
compatible with GPU acceleration. But projective dynamics will
converge slowly as shown in Figure 2e and 2f. The over-relaxation
method cannot make much difference, as Figure 2g shows. So to
achieve the same accuracy, the Jacobi solver often ends up with
spending even more computational time.

4.2 Position-based Dynamics

Liu and colleagues [2013] and Bouaziz and collaborators [2014]
pointed out that the original implementation of position-based dy-
namics [Miiller et al. 2007] can be considered as a simplified ver-
sion of projective dynamics, by setting ATA, = ATA. = I, ignoring
the first term in e(q), and using one Gauss-Seidel iteration to solve
the global step. If we replace the Gauss-Seidel iteration by a Jacobi
iteration, the local step calculates the expected positions of a vertex
according to the constraints, and the global step uses their weighted
average to update the vertex position. This is basically equivalent
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Figure 3: The convergence behaviors of the Jacobi method and
projective dynamics, without Chebyshev acceleration. This exam-
ple shows that the convergence of projective dynamics behaves sim-
ilarly to that of the Jacobi method solving the linear system in one
global step. Here « is the stiffness variable controlling the weight
we in Equation 20. The error in (a) is the error magnitude of the
linear system, and the error in (b) is the error magnitude of the
dynamical system in Equation 16.

to the Jacobi implementation of position-based dynamics, proposed
by Macklin and colleagues [2014]. In general, position-based dy-
namics converges slower than projective dynamics, even when both
of them use Jacobi iterations. This is because projective dynamics
can use non-diagonal entries in A, and A, to propagate the influence
of the constraints faster.

5 The Chebyshev Approach

In this section, we will investigate the extension of the Chebyshev
method from linear systems to projective dynamics. We will also
discuss the use of the Chebyshev approach in position-based dy-
namics in Subsection 5.3.

5.1 Chebyshev for Projective Dynamics

Let us first reconsider the idea of replacing one direct solve by one
Jacobi iteration in each global step of projective dynamics, as pro-
posed in Subsection 4.1. In that case, each projective dynamics
iteration contains a local step and a Jacobi iteration. Since the re-
sult of the local step is typically stabilized within a few iterations,
the linear system in the global step is almost unchanged afterward-
s. So it is not surprising to see that the convergence of projective
dynamics is similar to that of the Jacobi method solving the linear
system in a single global step, as shown in Figure 3. Based on this
observation, we propose a Chebyshev semi-iterative approach for
projective dynamics, which simply replaces one Jacobi iteration in
Equation 12 by one projective dynamics iteration. Figure 4a shows
this approach effectively accelerates the convergence of projective
dynamics, when the global step is solved by one Jacobi iteration.

Interestingly, Figure 4a shows the approach also works when the
global step is solved by the direct method or the Gauss-Seidel
method. We believe this is because projective dynamics converges
in similar patterns, regardless of the methods used to solve the glob-
al step. Note that divergence can occur when using the Chebyshev
method to immediately accelerate Gauss-Seidel iterations, because
the iterative matrix B~'C may have complex eigenvalues as Golub
and Van Loan [1996] pointed out. We found that the same issue
happens to projective dynamics, when the global step is solved by
one Gauss-Seidel iteration. Our solution is to solve the global step
by two Gauss-Seidel iterations, once in the forward order and once
in the backward order. By doing so, the joint iterative matrix has
real eigenvalues and our Chebyshev approach is effective again.
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Figure 4: The performance of projective dynamics on the table-
cloth example, using different methods. The Chebyshev approach
can accelerate projective dynamics that uses any of the three meth-
ods: the direct method, the Gauss-Seidel method, or the Jacobi
method. Among them, the Jacobi method benefits most from the
Chebyshev approach, since it is more compatible with GPU accel-
eration as shown in (b).

The choice of p. The coefficient p was originally defined in Sec-
tion 3.1 as the spectral radius of the iterative matrix B~'C, when we
use the Chebyshev method to solve a linear system. But for projec-
tive dynamics, we cannot define p in this way, since the combina-
tion of the local step and the global step is fundamentally nonlinear.
One may think that p is related to the iterative method solving the
linear system in the global step. But that cannot explain why the
Chebyshev approach still works when the global step is solved by
the direct method.

Fortunately, due to the similarity between the convergence of pro-
jective dynamics and that of a linear solver, we treat p as constant
for each simulation problem and we estimate p by pre-simulation
in two steps. Let K be the total number of projective dynamics it-

erations. We first initialize p by ||e(K)||2/||e(K’”||2, where the error is

defined” as e® = Ve(q®). This is similar to how the power method
estimates the spectral radius for a standard iterative method. After
that, we manually adjust p and run the simulation by the Cheby-
shev approach multiple times, to find the optimal p that maximizes
the convergence rate. Similar to the Chebyshev method for linear
systems, our Chebyshev approach causes oscillation when p is over-
estimated. So if oscillation occurs, we know p is too large and we
reduce it accordingly.

We can safely assume that p is constant through the whole simu-
lation process, since the choice of p is insensitive to the simula-
tion state q as shown in all of our simulation examples. In fact,

2Qur error definition is different from the one used in [Bouaziz et al.
2014], which measures the energy difference from the ground truth q*:
e(q) — e(q*). We will use our definition in the rest of this paper.
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Figure 5: The effect of under-relaxation (UR) on the armadillo ex-
ample. This plot shows that under-relaxation has limited influence
on the convergence of the Chebyshev approach, when y = 0.9.

p is relatively insensitive to small changes made to the system as
well. These changes are typically needed by positional or collision
constraints, or local remeshing processes. Therefore, we can make
these changes immediately during simulation, without changing p.
Our experiment does demonstrate a strong relationship between p
and the stiffness of an object. When the stiffness increases, projec-
tive dynamics converges more slowly as shown in Figure 3b. So p
needs to be larger to make the Chebyshev approach more effective.
Our experiment also reveals that p depends on the total number of
iterations K. Projective dynamics typically converges fast in the
first few iterations. After that, the convergence rate gradually drops
as Figure 4 shows. So we must make p larger, when K increases.

Performance evaluation. Figure 4 compares the performance
of projective dynamics using different methods. The Newton’s
method converges fastest, but its iterations are too expensive to
make its overall performance attractive, as Figure 4a shows. On
CPU, projective dynamics using the direct method runs fastest. The
use of Gauss-Seidel iterations allows projective dynamics to run s-
lightly faster than the use of Jacobi iterations as expected, and over-
relaxation (OR) has little effect on the performance. The Chebyshev
approach accelerates projective dynamics that uses any of the three
methods, among which the direct+Chebyshev method is the fastest.

On GPU, the Jacobi+Chebyshev method outperforms any other
method as Figure 4b shows, since it is naturally compatible with
parallel computing. In contrast, forward and backward substitu-
tions involved in the direct method are more expensive to run on
GPU than on CPU, as they are largely sequential. To implement
the direct method, we use the eigen library on CPU and the cu-
SOLVER library on GPU. The pre-computed factorization is done
by Cholesky decomposition with permutation. The GPU imple-
mentation of the direct method was tested on NVIDIA Tesla K40c.

5.2 Convergence and Robustness

It is uncommon to see divergence caused solely by the Chebyshev
approach in practice, since we would notice oscillations first during
the parameter tuning process and we can always lower p to fix the
issue. However, there is one small problem due to the use of a
constant p. Projective dynamics typically converges fast in the first
few iterations, and its convergence rate drops after that. This means
when the total number of iterations is large, p must be smaller than
it should be, to avoid oscillation or even divergence in the first few
iterations. To address this problem, we simply delay the start of
the Chebyshev approach, by setting w; = w; = ... = ws = 1. In
our experiment, we typically use S = 10 for the Jacobi+Chebyshev
method. A more suitable strategy is to use different p for different
iterations, but doing so makes p difficult to estimate and we need to
study this further in the future.

To ensure the convergence of the Jacobi method, we must have:
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Figure 6: The convergence of position-based dynamics, using Ja-
cobi iterations. This example shows that the acceleration effect of
the Chebyshev approach is more significant on triangular meshes
as shown in (a) than on tetrahedral meshes as shown in (b).

p(B~'C) < 1. This is automatically satisfied by spring constraints,
since their matrix A is diagonally dominant. Unfortunately, this
may not be true for other constraints, and the Jacobi method will
not be able to solve the linear system involved in the global step.
Interestingly, this does not immediately lead to the failure of pro-
jective dynamics, when it solves the global step by only one Jacobi
iteration. In fact, our experiment shows the divergence issue occurs,
only when the mesh contains small elements or experiences very
large stress. We also found that the divergence issue can be reduced
by inserting an under-relaxation step before the Chebyshev update:

0" = w0 (y (@ - q%) +q© - q* ") +4*, @D

in which ¢%*V is the result produced by one Jacobi iteration and
vy € [0.6,0.9] is the under-relaxation coefficient. This under-
relaxation step has little influence on the convergence rate as shown
in Figure 5. Note that under-relaxation cannot fully eliminate the
divergence issue. An ultimate solution is to make the matrix diago-
nally dominant by using a smaller time step, but that increases the
computational cost of the whole system. It is possible that strain
limiting can address this issue, by preventing elements from being
significantly deformed.

5.3 Chebyshev for Position-based Dynamics

Since position-based dynamics can be considered as a simplified
version of projective dynamics as shown in Subsection 4.2, one may
think that it can be naturally accelerated by the Chebyshev approach
as well. Our research shows the actual situation is complicated.

Let i be a vertex and Aq; . be its position movement suggested by
constraint c. We calculate its actual position update in each iteration
by a relaxation coefficient a:

g =g +a ) Aq. (22)

We prefer using Equation 22 over the averaging scheme proposed
by Macklin and colleagues [2014], since it is momentum preserving
and slightly more robust against divergence. Given the same a, if no
divergence occurs, using the Chebyshev approach always results in
faster convergence than not using the Chebyshev approach, as our
experiment shows. The problem is that the Chebyshev approach
makes the algorithm more vulnerable to divergence, so smaller « is
needed for better stability. When simulating triangular meshes, we
found the difference in « is not significant: @ = 0.3 for not using the
Chebyshev approach®, and & = 0.25 for using the Chebyshev ap-
proach. So the acceleration provided by the Chebyshev approach is
still obvious, as Figure 6a shows. But when simulating tetrahedral

3If we assume that a vertex has six neighbors, @ = 0.3 is equivalent to
setting the over-relaxation coefficient to 1.8 in [Macklin et al. 2014].



(a) Before the Chebyshev approach (b) After the Chebyshev approach

Figure 7: The armadillo example simulated by position-based dy-
namics. In this example, position-based dynamics is more unstable
after it gets accelerated by the Chebyshev approach. To avoid di-
vergence, a smaller under-relaxation coefficient must be used and
the resulting acceleration becomes less noticeable.

Algorithm 1 Chebyshev_PD_Solve(q,, v;, p, h, K)

qO « s, « q, + hv, + M 'f.;
fork=0..K—-1do
for each constraint ¢ do
p. = Local_Solve(c, q®);
q*Y « Jacobi_Solve(s;, q®, pi, p2, ...);
if kK < S then Wil < ],
if k = S then wy,; < 2/2 - p?);
if k > S then wy,; «— 4/(4 — p*wy);
q* = Wiy (7 (q(kn) - q<k>) +qP - q<k—1>) +q%D;

Qi1 q(K);
Vier < (@1 — Q) /1

meshes, @ must be much smaller to avoid divergence: @ = 0.045
for not using the Chebyshev approach and @ = 0.0025 for using the
Chebyshev approach. Overall, the simulation is still accelerated,
but the effect is less evident as shown in Figure 6b and 7.

We believe these phenomena are largely due to the fact that the
linear system in the global step is trivially solved in an iteration,
when position-based dynamics assumes AJA. = ATA. = I. Asa
result, the convergence of position-based dynamics does not behave
so closely to the convergence of an iterative method, and it cannot
always benefit a lot from the Chebyshev approach.

6 Implementation
The pseudo code of our system is given in Algorithm 1.

Constraints and their energies. We use two types of con-
straints to simulate triangular meshes: the spring constraint for ev-
ery edge, and the hinge-edge constraint for every edge adjacent to
two triangles. We define the energy of a spring constraint by the
spring potential energy and the energy of a hinge-edge constraint
by the quadratic bending energy [Bergou et al. 2006], assuming that
the mesh is initially flat. Since the bending energy is a quadratic
function of q, its energy Hessian matrix can be directly inserted
into the linear system and it needs no local step.

We use tetrahedral constraints to simulate tetrahedral meshes and
we define the elastic energy of a tetrahedron as: xvol(c) ||F. — Rcllﬁ,

(a) Deformed shape

(b) Recovered shape

Figure 8: The fishnet example. Our simulator can robustly recover
the rest shape of an elastic fishnet in (b), after it got deformed by
user interaction shown in (a).

where « is the stiffness, vol(c) is the volume before deformation,
F. is the deformation gradient, and R, is the rotational component
of F.. To implement this energy in projective dynamics, we define
A, as the matrix that converts q into the deformation gradient F,
in the Voigt form. We directly formulate A.p, as the Voigt form of
R., so we do not define A, explicitly. Let F, = RCQCACQI be the
decomposition of F,, such that Q. is an orthogonal matrix and A, is
a diagonal matrix containing the principal stretches 4;, 4», and A3.
The elastic energy density function is proportional to:

Aca - Acpe|” = IIFe —RIE =& T = > (- 17 (23)

i

Our experiment shows that this hyperelastic model is sufficient to
produce many interesting elastic behaviors.

Polar decomposition. To simulate tetrahedral meshes, we need
polar decomposition to extract the rotational component R from the
deformation gradient F: F = RS, in which S is a symmetric matrix
known as the stretch tensor. A typical way of obtaining R is to
perform singular value decomposition (SVD) on F = UZVT and
calculate R as: R = UV'. Unfortunately, SVD is too computa-
tionally expensive and it can easily become the bottleneck of our
algorithm. We also tested several iterative methods [Bouby et al.
2005; Rivers and James 2007], which turned out to be either too
expensive or too unstable. Our final implementation is based on
the direct approach proposed by Franca [1989]. Their idea is to
calculate the three principal invariants of S from FTF first, and then
use them to derive S. We note that their original method can be
easily modified to handle inverted elements as well, by using the
determinant of F to decide the sign of the third invariant.

Positional and contact constraints. Similar to [Bouaziz et al.
2014], we handle positional constraints by using stiff springs to
connect vertices and their desired positions. Although we can in-
troduce collision constraints into the system as Bouaziz and col-
leagues [2014] did, we found it is easier to simply enforce them at
the end of each iteration. To efficiently detect cloth-body collisions
in the dress example shown in Figure 1, we model the female body
by a signed distance field. We found that it is difficult to handle
static friction correctly in each iteration, since the vertex position
change does not have sufficient physical meaning. So in this ex-
ample, we break each time step into eight sub-steps and handle
collisions and frictions at the end of each sub-step.

7 Results and Discussions

(Please see the supplementary video for animation examples.) We
integrated the Chebyshev approach into our simulators and tested
their performances on both CPU and GPU. Our CPU test runs on
an Intel i5-2500K processor using a single core. Our GPU test runs



Name #vert | #ele # Direct (CPU) o Jacobi (CPU) Jacobi (GPU)
constraints | #iter Cost FPS #iter Cost FPS | #iter Cost FPS
Tablecloth (Fig. 2) | 10K | 20K | 30K+30K 10 60.9ms 16 | 0.9999 | 400 | 760ms 1.3 400 | 26.3ms | 38
Dress (Fig. 1) 16K | 29K | 43K+44K 10 151ms 7 0.9992 | 192 | 646ms | 1.5 192 | 27.0ms | 37
Armadillo (Fig. 7) | 15K | 55K 55K 10 76.8ms 13 | 0.9992 64 1.34s 0.7 64 20.8ms | 48
Fishnet (Fig. 8) 20K | 64K 64K 10 92.9ms 11 0.9996 64 1.53s 0.7 64 26.7ms | 38

Table 1: Statistics and timings of the examples. We did not test the use of the direct method on GPU for all of the examples, since the direct
solve is typically slower on GPU than on CPU. To make our comparisons fair, the CPU timings of the direct method do not contain the costs

of the local steps, which can be accelerated by GPU.

on an NVIDIA GeForce GTX 970 card, except for the timings in
Figure 4. The computational cost of the system depends on the
number of constraints and the number of vertices involved in each
constraint, rather than the total number of vertices. For example,
tetrahedral constraints are more expensive than spring constraints,
as each tetrahedral constraint needs four vertices. In average, the
local step that enforces all of the constraints consumes 20 to 50
percent of the dynamic simulation cost on GPU. Note that our GPU
implementation does not use atomic operations to transfer results
back to vertices in the local step, as did in [Macklin et al. 2014].
Instead, it collects the enforced results for every vertex in the global
step. So the cost of the global step is dominated by memory access.
Table 1 lists the statistics and the timings of our examples. All of
the examples use & = 1/30s as the time step. Figure 8 shows a
fishnet example simulated by our Chebyshev approach.

In Table 1, we use 10 iterations to solve projective dynamics that
uses the direct method, as suggested in [Bouaziz et al. 2014]. But 10
iterations is typically not enough for projective dynamics to reach
a small error, especially if an object undergoes large and fast defor-
mation. We do not recommend to couple the direct method with the
Chebyshev approach in the first 10 iterations, for robustness reasons
discussed in Subsection 5.2. Therefore, we need more iterations
and computational time, if we want more accurate results from the
use of the direct method.

Comparisons to conjugate gradient. An interesting question
is whether projective dynamics can be accelerated by conjugate
gradient as well. So we implement the nonlinear preconditioned
conjugate gradient method as Algorithm 2 shows. Here we just
use one sub-iteration to solve the linear search step, since the result
often becomes worse when more sub-iterations are used. Figure 9
shows that regardless of the preconditioner, the convergence rate of
the conjugate gradient approach cannot be higher than that of the
Chebyshev approach in both examples. Since one conjugate gra-
dient iteration is more computationally expensive than one Cheby-
shev iteration on both CPU and GPU, the overall performance of
the conjugate gradient approach must be lower and we do not rec-
ommend its use in practice.

Strengths and weaknesses. While the Chebyshev approach
effectively accelerates projective dynamics that uses a variety of
linear system solvers, we would like to advocate the combination
of the Chebyshev approach and Jacobi iterations for several reason-
s. First, it is straightforward to implement and it does not require
additional linear solver libraries. Second, it is compatible with GPU
acceleration and it has a small memory cost. Finally, the Chebyshev
approach is relatively insensitive to small system changes. In con-
trast, the direct method needs to re-factorize the matrix every time
the system gets changed, which requires a large computational cost.

That being said, the convergence criterion of the Jacobi method
compromises the robustness of projective dynamics for tetrahedral
meshes. Since divergence happens only when the mesh is in low
quality or under large stress as our experiment shows, it would be
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Figure 9: The comparisons between the Chebyshev approach and
the conjugate gradient approach. In both examples, the conjugate
gradient approach using the Jacobi preconditioner cannot converge
faster than the Chebyshev approach, as shown in (a) and (c). This
is also true when the conjugate gradient approach uses the direct
solver as the preconditioner, as shown in (b) and (d).

interesting to know whether we can use failsafe methods (such as s-
train limiting) to avoid divergence in these cases accordingly. While
we can now simulate the dynamics fast, we still cannot efficiently
handle self-collisions on GPU yet. In our current implementation,
the computational cost of self-collision handling is nearly twice of
the dynamic simulation cost.

8 Conclusions and Future Work

In this work, we show that the convergence of projective dynamics
is similar to that of an iterative method solving a linear system,
even when projective dynamics solves its global step by the direct
method. Because of this, projective dynamics can be efficiently
accelerated by the Chebyshev approach. Our experiment indicates
that it is a good practice to combine the Chebyshev approach with
Jacobi iterations for projective dynamics running on GPU. Position-
based dynamics can be accelerated by the Chebyshev approach as
well, although the effect is less significant for tetrahedral meshes.

Our immediate plan is to make the system more robust, by finding
better ways to address the divergence issue caused by the use of
Jacobi iterations. We are also interested in making projective dy-
namics suitable for simulating hyperelastic models, and we would
like to know how the Chebyshev approach behaves if the dynamical
system becomes even more nonlinear. So far our research consid-
ered deformable bodies only. We plan to further explore the use of



Algorithm 2 PCG_PD_Solve(q,, V;, p, h, K)

qQ —s, — q; + hv, + PM
fork=0..K-1do
for each constraint ¢ do
p. = Local_Solve(c, q®);
réh — —Ve(q®, p.);
If ||r(k“>||§ < & then break;
2%*D « Precondition_Solver(r+D);
if k=0 then
Pl kD,
else
— (Z(k+1) . r("”))/(z(k) . r(k));
P 76+D 4 gpib.
a — (p(k+l) . r(1<+I))/(p(k+1) . Ap(k+1));
x &0 x®) 4 qph;
qr+1 < q(K)§
Vel < Q1 —q0) /15

> Line search

projective dynamics and the Chebyshev approach in other simula-
tion problems, such as particle-based fluid simulation.
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