
Descent Methods for Elastic Body Simulation on the GPU

Huamin Wang∗ Yin Yang∗

The Ohio State University The University of New Mexico

(a) A resting dragon (b) A stretched dragon (c) A spiral dragon

Figure 1: The dragon example. This model contains 16K vertices and 58K tetrahedra. Our elastic body simulator animates this example on
the GPU at 30.5FPS, under the Mooney-Rivlin model. Thanks to a series of techniques we developed in this paper, the simulator can robustly
handle very large time steps (such as h = 1/30s) and deformations.

Abstract

We show that many existing elastic body simulation approaches can
be interpreted as descent methods, under a nonlinear optimization
framework derived from implicit time integration. The key question
is how to find an effective descent direction with a low computation-
al cost. Based on this concept, we propose a new gradient descent
method using Jacobi preconditioning and Chebyshev acceleration.
The convergence rate of this method is comparable to that of L-
BFGS or nonlinear conjugate gradient. But unlike other methods, it
requires no dot product operation, making it suitable for GPU im-
plementation. To further improve its convergence and performance,
we develop a series of step length adjustment, initialization, and
invertible model conversion techniques, all of which are compatible
with GPU acceleration. Our experiment shows that the resulting
simulator is simple, fast, scalable, memory-efficient, and robust
against very large time steps and deformations. It can correctly
simulate the deformation behaviors of many elastic materials, as
long as their energy functions are second-order differentiable and
their Hessian matrices can be quickly evaluated. For additional
speedups, the method can also serve as a complement to other
techniques, such as multi-grid.

Keywords: Nonlinear optimization, Jacobi preconditioning, the
Chebyshev method, GPU acceleration, hyperelasticity.

Concepts: •Computing methodologies→ Physical simulation;

∗e-mail: whmin@cse.ohio-state.edu; yangy@unm.edu
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SA ’16 Technical Papers,, December 05-08, 2016, , Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2980236

1 Introduction

Solid materials often exhibit complex elastic behaviors in the real
world. While we have seen a variety of models being developed to
describe these behaviors over the past few decades, our ability to
simulate them computationally is rather limited. Early simulation
techniques often use explicit time integration, which is known for it-
s numerical instability problem. A typical solution is to use implicit
time integration instead. Given the nonlinear force-displacement
relationship of an elastic material, we can formulate implicit time
integration into a nonlinear system. Baraff and Witkin [1998]
proposed to linearize this system at the current shape and solve the
resulting linear system at each time step. Their method is equivalent
to running one iteration of Newton’s method. Alternatively, we
can linearize the system at the rest shape and solve a linear system
with a constant matrix. While this method is fast thanks to matrix
pre-factorization, the result becomes unrealistic under large defor-
mation. To address this issue, Müller and Gross [2004] factored
out the rotational component from the displacement and ended up
with solving a new linear system at each time step again. Even
if we accept formulating elastic simulation into a linear system,
we still face the challenge of solving a large and sparse system.
Unfortunately, most linear solvers are not fully compatible with
parallelization and they cannot be easily accelerated by the GPU.

In recent years, graphics researchers studied the use of geometric
constraints and developed a number of constraint-based simulation
techniques, such as strain limiting [Provot 1996; Thomaszewski
et al. 2009; Wang et al. 2010], position-based dynamics [Müller
et al. 2007; Müller 2008; Kim et al. 2012], and shape match-
ing [Müller et al. 2005; Rivers and James 2007]. While these
techniques are easy to implement and compatible with GPU accel-
eration, they offer little control on their underlying elastic models.
To solve this problem, Liu and collaborators [2013] and Bouaziz
and colleagues [2014] described geometric constraints as elastic
energies in a quadratic form. This implies that their technique,
known as projective dynamics, is not suitable for simulating generic
elastic models. The recent work by Tournier and colleagues [2015]
proposed to incorporate both elastic forces and compliant con-
straints into a single linear system. This technique is designed

http://dx.doi.org/10.1145/2980179.2980236


for highly stiff problems, where the condition number is more
important than the problem size. Additionally, it must solve a new
linear system in each time step.

We think that a good elastic body simulation method should satisfy
at least the following three requirements.

• Generality. A good method should be flexible enough
to handle most elastic models, if not all. In particular, it
should be able to simulate hyperelastic models, which use
energy density functions to describe highly nonlinear force-
displacement relationships.

• Correctness. Given sufficient computational resources,
a good method should correctly simulate the behavior of a
specified elastic model. In other words, the method is not just
a temporary one for producing visually appealing animations.
Instead, it can be more accurate for serious applications, once
hardware becomes more powerful.

• Efficiency. A good method should be fast enough for
real-time applications. It should also be compatible with
parallelization, so that it can benefit significantly from the use
of graphics hardware and computer clusters.

Although existing elastic body simulation techniques can satisfy
one or two of these requirements, none of them can satisfy all of
the three, as far as we know. To develop a fast, flexible, and correct
elastic body simulator, we made a series of technical contributions
in this paper.

• Insights. We demonstrate that many recent simulation
methods, including position-based dynamics, projective dy-
namics and its accelerated version, can be viewed as descent
methods under an energy minimization framework. The main
question here is how to find the descent direction, which
differs in these methods.

• Algorithm. We propose to couple Jacobi precondition-
ing and Chebyshev acceleration with the gradient descent
method. Our method offers a high convergence rate with a
low computational cost. To further improve the performance
of our method, we develop a number of techniques for step
length adjustment, Chebyshev parameters, and initialization.
The method is fully compatible with GPU acceleration.

• Elastic model. Many hyperelastic models were not
designed for highly compressed or even inverted cases. To
address this issue, we present a hybrid elastic model by mix-
ing hyperelastic energy with projective dynamics energy. Our
method can efficiently simulate this model, by interpolating
forces and Hessian matrices on the fly.

In summary, our descent method handles any elastic model, if: 1) its
energy function is second-order differentiable; and 2) the Hessian
matrix of its energy function can be quickly evaluated. These two
conditions can be satisfied by many elastic models, including linear
models, spring models, hinge-edge bending models [Bergou et al.
2006; Garg et al. 2007], hyperelastic models, and spline-based
models [Xu et al. 2015]. Given a sufficient number of iterations, our
method converges to exact implicit Euler integration under a given
elastic model. It is robust against divergence, even when handling
large time steps and deformations as shown in Figure 1. The whole
method is fast, scalable and has a small memory footprint. For
further speedups, it can also be combined with multi-grid methods,
many of which were designed for hexahedral lattices [Zhu et al.
2010; McAdams et al. 2011b; Dick et al. 2011; Patterson et al.
2012] at this time.

2 Related Work

Early elastic body simulation techniques often use explicit time
integration schemes, which are easy to implement but require small
time steps to avoid numerical instability. To simulate cloth and thin
shells using large time steps, Baraff and Witkin [1998] advocated
the use of implicit time integration schemes. If we assume that
elastic force is a linear function of vertex displacement, the implicit
Euler scheme forms a linear system with a constant matrix, which
can be pre-factorized for fast linear solve. Since linear elastic force
is not rotation-invariant, it can cause unrealistic volume growth
when an object is under large rotation. Müller and Gross [2004]
alleviated this problem by factoring out the rotational component
in their co-rotational method. For more accurate simulation of real-
world elastic bodies, we must use nonlinear elastic force and form
the implicit scheme into a nonlinear system. A typical solution to a
nonlinear system is Newton’s method, which needs a large compu-
tational cost to evaluate the Hessian matrix and solve a linearized
system in every iteration. Teran and colleagues [2005] developed
a technique to evaluate the Hessian matrix under a hyperelastic
model, so they can use the implicit scheme to handle hyperelastic
bodies. Although the implicit scheme is more numerically stable, it
suffers from artificial damping. To overcome this issue, Kharevych
and colleagues [2006] suggested to use symplectic integrators. Hy-
brid implicit-explicit integration is another technique for reducing
artificial damping, as Bridson and collaborators [2003] and Stern
and Grinspun [2009] demonstrated. For a mass-spring system, Su
and colleagues [2013] investigated how to track and preserve the
total system energy over time. Daviet and collaborators [2011]
studied the development of a fast iterative solver for handling
Coulomb friction in hair dynamics.

The force-displacement relationship of a real-world elastic mate-
rial, such as human skin, is often highly nonlinear. This non-
linearity makes the material difficult and expensive to handle in
physics-based simulation. A simple way to generate nonlinear
effects without using an elastic model is to apply geometric con-
straints on springs [Provot 1996], or triangular and tetrahedral
elements [Thomaszewski et al. 2009; Wang et al. 2010]. Müller
and colleagues [2007; 2008; 2012] pushed this idea even further,
by using geometric constraints to replace elastic forces in a mass-
spring system. Later they extended this position-based method to
simulate fluids [Macklin and Müller 2013; Macklin et al. 2014]
and deformable bodies [Müller et al. 2014]. Similar to position-
based method, shape matching [Müller et al. 2005; Rivers and
James 2007] also uses the difference between deformed shapes and
rest shapes to simulate elastic behaviors. Instead of using geo-
metric constraints, Perez and collaborators [2013] applied energy
constraints to produce nonlinear elastic effects.

An interesting question is whether there is a connection between
an elastic model and a geometric constraint. Liu and collabora-
tors [2013] found that the elastic spring energy can be treated as a
compliant constraint. Based on this observation, they developed an
implicit mass-spring simulator, which iteratively solves a local con-
straint enforcement step and a global linear system step. Bouaziz
and colleagues [2014] formulated this method into projective dy-
namics, by defining the elastic energy of a triangular or tetrahedral
element as a constraint. The main advantage of projective dynamics
is that the matrix involved in the global step is constant, so it can be
pre-factorized for fast solve. On the GPU, Wang [2015] proposed to
solve projective dynamics by the Jacobi method and the Chebyshev
semi-iterative method, both of which are suitable for parallelization.
Recently, Tournier and colleagues [2015] presented a stable way
to solve elastic forces and compliant constraints together using a
single linear system. Their method reduces the condition number,
but increases the system size.



Algorithm 1 Descent Optimization

Initialize q(0);
for k = 0...K − 1 do

Calculate the descent direction ∆q(k); Step 1
Adjust the step length α(k); Step 2
q̄(k+1) ← q(k) + α(k)∆q(k); Step 3
q(k+1) ← Acceleration

(
q̄(k+1), q̄(k),q(k),q(k−1)); Step 4

return q(K);

3 Descent Methods

Let q ∈ R3N and v ∈ R3N be the vertex position and velocity vectors
of a nonlinear elastic body. We can use implicit time integration to
simulate the deformation of the body from time t to t + 1 as:

qt+1 = qt + hvt+1, vt+1 = vt + hM−1f(qt+1), (1)

in which M ∈ R3N×3N is the mass matrix, h is the time step, and
f ∈ R3N is the total force as a function of q. By combining the two
equations, we obtain a single nonlinear system:

M (qt+1 − qt − hvt) = h2f(qt+1). (2)

Since f(q) = −∂E(q)/∂q, where E(q) is the total potential energy
evaluated at q, we can convert the nonlinear system into an uncon-
strained nonlinear optimization problem: qt+1 = arg min ε(q),

ε(q) =
1

2h2
(q − qt − hvt)T M (q − qt − hvt) + E(q), (3)

Nonlinear optimization is often solved by descent methods, which
contain four steps in each iteration as Algorithm 1 shows. The
main difference is in how to calculate the descent direction, which
typically involves the use of the gradient: g(k) = ∇ε(q(k)).

Gradient descent. The gradient descent method simply sets the
descent direction as: ∆q(k) = −g(k), using the fact that ε(q) de-
creases the fastest locally in the negative gradient direction. While
gradient descent has a small computational cost per iteration, its
convergence rate is only linear as shown in Figure 2c. Gradient
descent can be viewed as updating q by the force, since the negative
gradient of the potential energy is the force. This is fundamentally
similar to explicit time integration. Therefore, the step length must
be small to avoid the divergence issue.

Newton’s method. To achieve quadratic convergence, Newton’s
method approximates ε(q(k)) by a quadratic function and it calcu-
lates the search direction1 as: ∆q(k) = −

(
H(k))−1g(k), where H(k)

is the Hessian matrix of ε(q) evaluated at q(k). Figure 2c shows
Newton’s method converges the fastest. However, it is too com-
putationally expensive to solve the linear system H(k)∆q(k) = −g(k)

involved in every iteration. For example, to solve a linear system in
the armadillo example shown in Figure 2, the Eigen library needs
0.77 seconds by Cholesky factorization, or 2.82 seconds by precon-
ditioned conjugate gradient with incomplete LU factorization. The
use of the Pardiso module reduces the Cholesky factorization cost to
0.13 seconds, which is still not affordable by real-time applications.
Most linear solvers cannot be easily parallelized on the GPU.

Quasi-Newton methods. Since it is too expensive to solve a
linear system or even just evaluate the Hessian matrix, a natural
idea is to approximate the Hessian matrix or its inverse. For exam-
ple, quasi-Newton methods, such as BFGS, use previous gradient

1The search direction of Newton’s method is not guaranteed to be always
descending, unless H(k) is positive definite.

(a) Ground truth (b) Our result

 M=1
 M=2
 M=4
 M=8
 M=16
 M=32

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Time (ms)
0 20 40 60 80

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Iterations
0 20 60 80 10040

 Gradient Descent
 Gradient Descent (Preconditioned)
 L-BFGS, m=8
 L-BFGS, m=8 (Preconditioned)
 Nonlinear CG
 Nonlinear CG (Preconditioned)
 Gradient Descent (Accelerated)
 Ours
 Newton's

m
m

Iterations
0 20 60 80 10040

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

 Projective Dynamics (larger step length)
 Projective Dynamics (same step length)
 Ours

Frames
0 20 40 60 10080

 Constant Position
 Constant Velocity
 Constant Acceleration
 Optimized Step Length

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

(c) The convergence plot

Figure 2: The outcomes of descent methods applied to the ar-
madillo example. Thanks to preconditioning and momentum-based
acceleration, our method converges as fast as nonlinear conjugate
gradient and it needs a much smaller GPU cost. Our result in (b)
is visually indistinguishable from the ground truth in (a) generated
by Newton’s method. In the plot, we define the relative error as(
ε(q(k))− ε(q∗)

)
/
(
ε(q(k))− ε(q(0))

)
, where q(k) is the result in the k-th

iteration and q∗ is the ground truth.

vectors to approximate the inverse Hessian matrix directly. To avoid
storing a dense inverse matrix, L-BFGS defines the approximation
by m gradient vectors, each of which provides rank-one updates to
the inverse matrix sequentially. While L-BFGS converges slower
than Newton’s method, it has better performance thanks to its
reduced cost per iteration. Unfortunately, the sequential nature of
L-BFGS makes it difficult to run on the GPU, unless the problem is
subject to box constraints [Fei et al. 2014].

Nonlinear conjugate gradient (CG). The nonlinear conjugate
gradient method generalizes the conjugate gradient method to
nonlinear optimization problems. Based on the Fletcher–Reeves
formula, it calculates the descent direction as:

∆q(k) = −g(k) + z(k)

z(k−1) ∆q(k−1), z(k) = g(k) · g(k). (4)

Nonlinear CG is highly similar to L-BFGS with m = 1. The
reason it converges slightly faster than L-BFGS in our experiment is
because we use the exact Hessian matrix to estimate the step length.
Intuitively, this is identical to conjugate gradient, except that the
residual vector, i.e., the gradient, is recalculated in every iteration.
Nonlinear CG is much more friendly with GPU acceleration than
quasi-Newton methods. But it still requires multiple dot product
operations, which restrict its performance on the GPU.



 M=1
 M=2
 M=4
 M=8
 M=16
 M=3210-1

10-2

100
R

el
at

iv
e 

Er
ro

r

Time (ms)
0 20 40 60 80

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Iterations
0 20 60 80 10040

 Gradient Descent
 Gradient Descent (Preconditioned)
 L-BFGS, m=8
 L-BFGS, m=8 (Preconditioned)
 Nonlinear CG
 Nonlinear CG (Preconditioned)
 Gradient Descent (Accelerated)
 Ours
 Newton's

m
m

Iterations
0 20 60 80 10040

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

 Projective Dynamics (larger step length)
 Projective Dynamics (same step length)
 Ours

Frames
0 20 40 60 10080

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

M
M
M
M
M
M

 Constant Position
 Constant Velocity
 Constant Acceleration
 Optimized Step

Figure 3: The convergence of our method within 96 iterations,
when using different M values to delay matrix evaluation. This plot
shows that the method can reach the same residual error, regardless
of M. Therefore we can use a larger M to reduce the matrix
evaluation cost and improve the system performance.

4 Our Descent Method

In this section, we will describe the technique used in our descent
method. We will also evaluate their performance and compare them
with alternatives.

4.1 Descent Direction

The idea behind our method is inspired by preconditioned conjugate
gradient. To achieve faster convergence, preconditioning converts
the optimization problem into a well conditioned one:

q̄ = arg min ε
(
P−1/2q̄

)
, for q̄ = P1/2q, (5)

where P is the preconditioner matrix. Mathematically, doing this
is equivalent2 to replacing g(k) by P−1g(k) in Equation 4. Among all
of the preconditioners, we favor the Jacobi preconditioner the most,
since it is easy to implement and friendly with GPU acceleration.
When an optimization problem is quadratic, conjugate gradient de-
fines the Jacobi preconditioner as a constant matrix: P = diag(H),
where H is the constant Hessian matrix. To solve a general non-
linear optimization problem, if the Hessian matrix can be quickly
evaluated in every iteration, we can treat P

(
q(k)) = diag(H(k)) as

the Jacobi preconditioner for nonlinear CG, which now varies from
iteration to iteration. Such a Jacobi preconditioner significantly
improves the convergence rate of nonlinear CG, as Figure 2c shows.

This Jacobi preconditioner can be effectively applied to L-BFGS
and gradient descent as well. Preconditioning in L-BFGS is es-
sentially defining diag−1(H(k)) as the initial inverse Hessian esti-
mate. Meanwhile, preconditioned gradient descent simply defines
its new descent direction as: ∆q(k) = −diag−1(H(k))g(k). While
preconditioned gradient descent does not converge as fast as other
preconditioned methods, it owns a unique property: its convergence
rate can be well improved by momentum-based techniques. Based
on this observation, we propose to formulate our basic method
as accelerated, Jacobi preconditioned gradient descent. Figure 2
demonstrates that the convergence rate of our method is comparable
to that of preconditioned nonlinear CG, and our result is visually
similar to the ground truth after 96 iterations.

Why is our method special? While both Jacobi precondition-
ing and momentum-based acceleration are popular techniques, it is
uncommon to see them working with gradient descent for solving
general nonlinear optimization problems. There are reasons for
this. The use of Jacobi preconditioning destroys the advantage

2The calculation of z(k) should be updated as: z(k) = g(k) · P−1g(k).

 M=1
 M=2
 M=4
 M=8
 M=16
 M=3210-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Time (ms)
0 20 40 60 80

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Iterations
0 20 60 80 10040

 Gradient Descent
 Gradient Descent (Preconditioned)
 L-BFGS, m=8
 L-BFGS, m=8 (Preconditioned)
 Nonlinear CG
 Nonlinear CG (Preconditioned)
 Gradient Descent (Accelerated)
 Ours
 Newton's

m
m

Iterations
0 20 60 80 10040

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

 Projective Dynamics (larger step length)
 Projective Dynamics (same step length)
 Ours

Frames
0 20 40 60 10080

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

M
M
M
M
M
M

 Constant Position
 Constant Velocity
 Constant Acceleration
 Optimized Step

Figure 4: The convergence of our method and projective dynamics.
Although projective dynamics can use a large step length, it cannot
converge as fast as our method.

of gradient descent in requiring zero Hessian matrix estimation.
Meanwhile, Chebyshev acceleration is effective only when the
problem is mildly nonlinear [Gutknecht and Röllin 2002]. Fortu-
nately, our method works well with elastic body simulation, both
quasi-statically and dynamically.

Convergence and performance. The calculation of our de-
scent direction has two obvious advantages. First, the diagonal
entries of the Hessian matrix are typically positive. As a result,
diag−1(H(k)) is positive definite and ∆q(k) · g(k) < 0. Within a
bounded deformation space, the Hessian matrix of ε(q) is also
bounded: H � BI. We have:

ε
(
q(k) + α(k)∆q(k)) ≤ ε(q(k)) + α(k)∆q(k) · g(k) +

B
2

∥∥∥α(k)∆q(k)
∥∥∥2

2
. (6)

This means there must exist a sufficiently small step length α(k) that
ensures the energy decrease and eliminates the divergence issue.
Second, both the Jacobi preconditioner and gradient descent are
computationally inexpensive and suitable for parallelization. In
particular, it requires zero reduction operation.

The use of the Jacobi preconditioner demands the evaluation of the
Hessian matrix. This can become a computational bottleneck if it is
done in every iteration. Fortunately, we found that it is acceptable
to evaluate the Hessian matrix once every M iterations and use the
last matrix for the preconditioner. Conceptually, this strategy is
similar to high-order Newton-like methods that skip derivative eval-
uation [Cordero et al. 2010]. Figure 3 demonstrates that doing this
has little effect on the convergence rate, but significantly reduces the
computational cost per iteration, when M ≤ 32. We choose not to
make M even bigger, since it is unnecessary and it may slow down
the convergence rate, especially if the object moves fast under large
deformation.

Comparison to projective dynamics. The recent projective
dynamics technique [Liu et al. 2013; Bouaziz et al. 2014] solves
the optimization problem by interleaving a local constraint step and
a global solve step. If we view the local step as calculating the
gradient and the global step as calculating the descent direction,
we can interpret projective dynamics as preconditioned gradient
descent as well. Here the preconditioner matrix is constant, so
it can be pre-factorized for fast solve in every iteration. But
this is not the only advantage of projective dynamics. Bouaziz
and collaborators [2014] pointed out that projective dynamics is
guaranteed to converge by setting α(k) ≡ 1, if the elastic energy
of every element has a quadratic form ‖Aq − Bp(q)‖2, where A and
B are two constant matrices and p(q) is the geometric projection of
q according to that element. Therefore, projective dynamics does
not need to adjust the step length in every iteration.



Projective dynamics was originally not suitable for GPU accel-
eration. Wang [2015] addressed this problem by removing off-
diagonal entries of the preconditioner matrix. In this regard, that
method is highly related to our method. Since both methods can
handle mass-spring systems, we compare their convergence rates as
shown in Figure 4. When both methods use the same step length:
α(k) ≡ 0.5, our method converges significantly faster. This is not
a surprise, given the fact that our method uses the diagonal of the
exact Hessian matrix and Newton’s method converges faster than
original projective dynamics. The strength of projective dynamics
allows it to use α(k) ≡ 1. But even so, it is still not comparable to
our method. Interestingly, we do not observe substantial difference
in animation results of the two methods. We guess this is because
the stiffness in this example is too large. As a result, small energy
difference cannot cause noticeable difference in vertex positions.

Comparison to a single linear solve. Figure 2 may leave
us an impression that it is always acceptable to solve just one
Newton’s iteration, as did in many existing simulators [Baraff and
Witkin 1998; Dick et al. 2011]. Mathematically, it is equivalent to
approximating the energy by a quadratic function and solving the
resulting linear system. In that case, our method is simplified to the
accelerated Jacobi method. Doing this has a clear advantage: the
gradient does not need to be reevaluated in every iteration, which
can be costly for tetrahedral elements. However, Newton’s method
may diverge, especially if the time step is large and the initialization
is bad. This problem can be lessened by using a small step length.
But then it becomes pointless to waste computational resources
within one Newton’s iteration. In contrast, gradient descent still
converges reasonably well under the same situation. Because of
that, we decide not to rely on quadratic approximation, i.e., one
Newton’s iteration.

Comparison to nonlinear CG. The biggest competitor of our
method is actually nonlinear CG. Figure 2c shows that the two
methods have similar convergence rates. The real difference in their
performance is determined by the computational cost per iteration.
While the two methods have similar performance on the CPU, our
method runs three to four times faster than nonlinear CG on the
GPU. This is because nonlinear CG must perform at least two dot
product operations, each of which takes 0.41ms in the armadillo
example using the CUDA thrust library. In contrast, the cost of our
method is largely due to gradient evaluation, which takes 0.17ms
per iteration and is also needed by nonlinear CG.

Similar to our method, nonlinear CG must use a smaller step length
when the energy function becomes highly nonlinear. But unlike
our method, it does not need momentum-based acceleration or
parameter tuning. In the future, if parallel architecture can allow dot
products to be quickly calculated, we may prefer to to use nonlinear
CG instead.

4.2 Step Length Adjustment

Given the search direction ∆q(k), the next question is how to calcu-
late a suitable step length α(k). A simple yet effective approach,
known as backtracking line search, gradually reduces the step
length, until the first Wolfe condition gets satisfied:

ε
(
q(k) + α(k)∆q(k)) < ε(q(k)) + c(k)α(k)∆q(k) · g(k), (7)

in which c is a control parameter. The Wolfe condition is straight-
forward to evaluate on the CPU. However, it becomes problematic
on the GPU, due to expensive energy summation and dot product
operations. To reduce the computational cost, we propose to elim-
inate the dot product by setting c = 0. Intuitively, it means we just
search for the largest α(k) that ensures monotonic energy decrease:

ε
(
q(k) +α(k)∆q(k)) < ε(q(k)). We also choose to adjust the step length

every eight iterations. Doing this reduces the total number of energy
evaluations, although it causes more wasted iterations during the
backtracking process.

Our simulator explores the continuity of α between two successive
time steps. Specifically, it initializes the step length at time t + 1
as α = αt/γ, in which αt is the ending step length at time t. After
that, the simulator gradually reduces α by α := γα, until the Wolfe
condition gets satisfied. In our experiment, we use γ = 0.7. When
the step length is too small, our method converges slowly and it is
not worthwhile to spend more iterations. Therefore, if the Wolfe
condition still cannot be satisfied after the step length reaches a
minimum value, we end the time step and start the next one.

4.3 Momentum-based Acceleration

An important strength of our method is that it benefits from the use
of momentum-based acceleration techniques, such as the Cheby-
shev semi-iterative method [Golub and Van Loan 1996] and the
Nesterov’s method [Nesterov 2004]. Here the term “momentum”
refers to the result change between the last two iterations, not the
actual physical momentum. Since the result change can be calcu-
lated independently for every vertex, momentum-based techniques
are naturally compatible with parallel computing.

The two methods differ in how they define and weight the result
change. The weight used by the Chebyshev method is calculated
from the gradient decrease rate, which can be tuned for different
problems as shown in [Wang 2015]. On the other hand, the
control parameter used by the Nesterov’s method is related to the
strong convexity of the Hessian matrix. Since this parameter is
not easy to find, it is often set to zero for simplicity. Because of
such a difference, the Chebyshev method typically outperforms the
Nesterov’s method, as shown in Figure 5. Our experiment shows
that the Chebyshev method is also more reliable, as long as the
gradient decrease rate is underestimated. In contrast, the Nes-
terov’s method may need multiple restarts to avoid the divergence
issue [O’donoghue and Candès 2015].

We note that neither of the techniques was designed for general
descent methods. The Chebyshev method was initially developed
for linear solvers, while the Nesterov’s method was proposed for
speeding up the gradient descent method. Since our method is
highly related to linear solvers3 and gradient descent, it can be ef-
fectively accelerated by momentum-based acceleration techniques.
Neither L-BFGS nor nonlinear CG can be accelerated by these
techniques, as far as our experiment shows.

Adaptive parameters. When Wang [2015] adopted the Cheby-
shev method for accelerating projective dynamics, he defined the
gradient decrease rate ρ as a constant:

ρ ≈
∥∥∥∇ε(qk+1)

∥∥∥/∥∥∥∇ε(qk)
∥∥∥. (8)

This is a reasonable practice, since the rate is related to the spectral
radius of the global matrix, which stays the same through the whole
simulation process. The simulation of generic elastic materials,
however, can exhibit more complex convergence behaviors. If a
constant ρ is still used, it must be kept at the minimum level to
avoid oscillation or even divergence issues, especially in the first
few iterations. To make Chebyshev acceleration more effective,
we propose to use a varying ρ instead. Specifically, we divide the
iterations into P phases and assign each phase with its own ρ. We
can then perform the transition from one phase to another by simply

3Our method can be viewed as solving the linear system in each New-
ton’s iteration by only one iteration of the Jacobi method.



 No Acceleration
 Nesterov Acceleration
 Chebyshev Acceleration, P=2
 Chebyshev Acceleration, P=4

 Neo-Hookean
 Mooney-Rivlin
 Fung
 St. Venant-Kirchhoff

Stretch Ratio
-100% 100% 300%200%

0.5

1.5

1.0

2.0

-0.5

-1.0

Fo
rc

e 

Force Evaluation
(24ms, 74%)

Matrix Evaluation
(4ms, 11%)

Projective Dynamics: Tetrahedra
(3ms, 9%)

Projective Dynamics: Springs
(2ms, 6%)

Iterations
0 20 60 80 10040

10-1

10-2

100
R

el
at

iv
e 

Er
ro

r

P
P

Figure 5: The convergence of our method with different accelera-
tion techniques. By using multiple phases, the Chebyshev method
can more effectively accelerate the convergence process.

restarting the Chebyshev method. The question is: how can we tune
the phases and their parameters? Our idea is to change the length
and the parameter of a phase each time, and then test whether that
helps the algorithm reduce the residual error in pre-simulation. We
slightly increase or decrease ρ each time by:

ρnew = 1 − (1 ± ε)(1 − ρ), (9)

where ε is typically set to 0.05. We accept the change that causes the
most significant error decrease, and then start another tuning cycle.
The tuning process terminates once the error cannot be reduced any
further. Figure 5 compares the convergence rates of our method, by
using two and four Chebyshev phases respectively.

4.4 Initialization

The initialization of q(0) is also an important component in our
algorithm. It helps the descent method reduce the total energy
to a low level, after a fixed number of iterations. Intuitively, the
initialization works as a prediction on the solution qt+1. Here we
test four different prediction approaches. The first three assume
that vertex positions, velocities, and accelerations are constant,
respectively: qt+1 ≈ q(0) = qt; qt+1 ≈ q(0) = qt + hvt; qt+1 ≈

q(0) = qt + hvt + ηh(vt − vt−1). We use the parameter η to damp
the acceleration effect, which is typically set to 0.2. The fourth
approach assumes that vertices move in the vt direction with an
unknown step distance d: q(0) = qt + dvt. We then optimize d by
minimizing a quadratic approximation of ε(qt + dvt):

d = arg min
d

{
ε(qt) + (dvt) · ∇ε(qt) +

1
2

(dvt) ·H(qt)(dvt)
}
, (10)

which can be solved as a simple linear equation. This is similar to
how the conjugate gradient method determines the optimal step in
a search direction.

Figure 6 compares the effects of the four approaches on the con-
vergence of our method, over a precomputed sequence with 100
frames. It shows that the optimized step approach does not out-
perform the constant acceleration approach in most cases, even
though it is the most sophisticated one. Because of this, our system
chooses the constant acceleration approach to initialize q(0) by
default. We note that Figure 6 illustrates the errors during a single
frame only. These errors can be accumulated over time, causing
slightly larger differences in animation results. These differences
are often manifested as small artificial damping artifacts, as shown
in our experiment.

 M=1
 M=2
 M=4
 M=8
 M=16
 M=3210-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Time (ms)
0 20 40 60 80

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Iterations
0 20 60 80 10040

 Gradient Descent
 Gradient Descent (Preconditioned)
 L-BFGS, m=8
 L-BFGS, m=8 (Preconditioned)
 Nonlinear CG
 Nonlinear CG (Preconditioned)
 Gradient Descent (Accelerated)
 Ours
 Newton's

m
m

Iterations
0 20 60 80 10040

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

 Projective Dynamics (larger step length)
 Projective Dynamics (same step length)
 Ours

Frames
0 20 40 60 10080

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

M
M
M
M
M
M

 Constant Position
 Constant Velocity
 Constant Acceleration
 Optimized Step

Figure 6: The convergence of our method using different initial-
ization approaches. This plot shows that the constant acceleration
approach works the best in most cases.

5 Nonlinear Elastic Models

Our new descent method can handle any elastic model, if: 1) its
energy function is second-order differentiable; and 2) the Hessian
matrix of its energy function can be quickly evaluated. These two
conditions are satisfied by many elastic models, including spring
model under Hooke’s law, hinge-edge bending models [Bergou
et al. 2006; Garg et al. 2007], hyperelastic models, and spline-
based models [Xu et al. 2015]. In this section, we would like to
specifically discuss hyperelastic models, some of which are not
suitable for immediate use in simulation.

5.1 Hyperelasticity

Hyperelastic models are developed by researchers in mechanical
engineering and computational physics to model complex force-
displacement relationships of real-world materials. The energy
density function of an isotropic hyperelastic material is typically
defined by the three invariants of the right Cauchy-Green deforma-
tion tensor C = FTF:

I = tr
(
C
)
, II = tr

(
C2), III = det

(
C
)
. (11)

Here F is the deformation gradient. For example, the St. Venant-
Kirchhoff model has the following strain energy density function:

W =
s0

2
(I − 3)2 +

s1

4
(II − 2I + 3), (12)

where s0 and s1 are the two elastic moduli controlling the resis-
tance to deformation, also known as the Lamé parameters. The
compressible neo-Hookean model [Ogden 1997] defines its strain
energy density function as:

W = s0
(
III−1/3 · I − 3

)
+ s1

(
III−1/2 − 1

)
, (13)

in which s0 is the shear modulus and s1 is the bulk modulus. Many
hyperelastic models can be considered as extensions of the neo-
Hookean model. For example, the compressible Mooney-Rivlin
model for rubber-like materials uses the following strain energy
density function [Macosko 1994]:

W = s0
(
III−1/3 ·I−3

)
+s1

(
III−1/2−1

)
+s2

(
1
2 III−2/3(I2−II)−3

)
. (14)

To model the growing stiffness of soft tissues, the isotropic Fung
model [Fung 1993] adds an exponential term:

W = s0
(
III−1/3 · I −3

)
+ s1

(
III−1/2 −1

)
+ s2

(
es3(III−1/3 ·I−3) −1

)
, (15)

in which s3 controls the speed of the exponential growth.



(a) A deformed box

l = 1

l = 0

(b) Interpolants visualized in red

Figure 7: A deformed box and its interpolants. For the St. Venant-
Kirchhoff model, we set λ+ = 0.5 to address its low resistance
against compression. Even so, only a small number of elements
need to use invertible model conversion.

Invertible model conversion. A practical problem associated
with the use of hyperelastic models is that they are not designed
for highly compressed or inverted cases. As a result, a simulated
hyperelastic body can become unnecessarily stiff, or even stuck
in an inverted shape. A common solution to this problem is to
set a limit on the compression rate or the stress, as described by
Irving and colleagues [2004]. Since such a limit will cause C2

discontinuity in the deformation energy, we choose not to do so
in our system.

Our solution is to use projective dynamics instead. Bouaziz and
colleagues [2014] proved that projective dynamics is numerically
robust, even against inverted cases. Its basic form uses the follow-
ing energy density function:

Wproj =
∑3

i=1
(λi − 1)2, (16)

in which λ1, λ2, and λ3 are the three principal stretches, i.e., the
singular values of the deformation gradient. Our basic idea is to
gradually convert a hyperelastic model into projective dynamics,
when an element gets highly compressed. Let [λ− = 0.05, λ+ =
0.15] be the typical stretch interval for model conversion to happen
in our experiment. For every element t in the k-th iteration, we
define an interpolant l(k)

t as:

l(k)
t = min

(
1,max

(
0, l(k−1)

t − L,max
i

(
λ+ − λi

)
/
(
λ+ − λ−

)))
, (17)

where l(0)
t is set to 0 and L is typically set to 0.05. The reason we use

the l(k−1)
t − L term in Equation 17 is to prevent the interpolant from

being rapidly changed between two time steps, which can cause
oscillation artifacts in animation. We then formulate the hybrid
elastic energy density of the element in the k-th iteration as:

Whybrid
t =

(
1 − l(k)

t

)
Wt + l(k)

t Wproj
t , (18)

where Wt is the hyperelastic energy density of element t. According
to Equation 18, we calculate the total contribution of element t to
the Jacobi preconditioner as:

Pt
(
q(k)) = diag

((
1 − l(k)

t
)
H(k)

t + l(k)
t AT

t At

)
, (19)

where H(k)
t is the Hessian matrix of Wt and AT

t At is the constant ma-
trix of element t used by projective dynamics. It is straightforward
to implement model conversion described in Equation 19, thanks
to the structural similarity between our algorithm and GPU-based

CPU GPU GPU
Name #vert #ele Cost Cost FPS

Dragon (Fig. 1) 16K 58K 1.35s 32.8ms 30.5
Armadillo (Fig. 2) 15K 55K 1.28s 31.4ms 31.8

Box (Fig. 7) 14K 72K 1.47s 37.6ms 26.6
Dress (Fig. 4) 15K 44K 0.29s 26.6ms 37.6

Double helix (Fig. 9) 13K 41K 0.98s 27.5ms 36.4
Double helix (Fig. 9) 24K 82K 1.91s 38.5ms 26.0
Double helix (Fig. 9) 48K 158K 3.86s 65.4ms 15.3
Double helix (Fig. 9) 96K 316K 7.78s 122ms 8.2

Table 1: Statistics and timings of our examples. By default, the
CPU costs are evaluated with OpenMP enabled.

‐3

‐2

‐1

0

1

1 2 3 4

CPU (single core)
CPU (OpenMP)
GPU

102

100

104

Ti
m

e 
(m

s)

103

101

Force 
Evaluation

Matrix
Evaluation

Step Length
Adjustment

The Rest

16

2

8 5

262633

210
106

420
1120

5550

Figure 8: The costs of the computational steps under three different
implementations. This plot illustrates that the force evaluation step
is the most expensive one.

projective dynamics developed by Wang [2015]. We note that the
interpolant is defined for every element. This allows most elements
to maintain the original hyperelastic model, even when we use a
larger λ+ as Figure 7 shows.

6 Implementation and Results

We implemented and tested our system on both the CPU and
the GPU. Our CPU implementation used the Eigen library
(eigen.tuxfamily.org) and OpenMP. The CPU tests ran on an Intel
i7-4790K 4.0GHz quad-core processor. The GPU tests ran on an
NVIDIA GeForce GTX TITAN X graphics card with 3,072 cores.
Although many parameters are used in our system, most of them
are related to the performance or the result quality, not the stability.
The only exception is the Chebyshev parameters, which can be
automatically tuned as described in Subsection 4.3. The statistics
and the timings of our examples are provided in Table 1. All of our
tetrahedral mesh examples use h = 1/30s as the time step and run
96 iterations per time step. The dress example also uses h = 1/30s
as the time step, but it divides each time step into 8 substeps and
executes 40 iterations per substep. It handles cloth-body collision
at the end of each substep.

GPU implementation. In our GPU implementation, we handle
each iteration in two steps. In the first step, we evaluate the forces
and the matrices of every element. We apply the fast method
proposed by McAdams and colleagues [2011a] for singular value
decomposition. We provide two ways to evaluate the Hessian
matrix of an elastic model: the co-rotational scheme using strain
invariants [Teran et al. 2005] and the spline-based scheme using
principal stretches [Xu et al. 2015], the latter of which is slightly
more complex but flexibly handles generic orthotropic models.
Since our algorithm needs only the diagonal entries of the Hessian
matrix, we can avoid the evaluation of the whole matrix and reduce
the computational cost. Once we obtain the forces and the matri-



(a) Using 41K tetrahedra (b) Using 82K tetrahedra

(c) Using 158K tetrahedra (d) Using 316K tetrahedra

Figure 9: The double helix example. This example indicates
that our method can handle high-resolution meshes without overly
stretching artifacts. All of the cases use 96 iterations per time step.

ces, we distribute them to the four vertices using atomic CUDA
operations. In the second step, we calculate the descent direction,
adjust the step length, and update vertex positions by Chebyshev
acceleration. Our step length adjustment scheme needs the total
energy, which is computed by a CUDA thrust reduction operation.

Both air damping and viscous damping can be easily integrated into
our system. Let the air damping force be:

fair(q) = −
c
h

(q − qt), (20)

in which c is the air damping coefficient. The corresponding
damping energy is − c

2h ‖q − qt‖
2 and its Hessian matrix is − c

h I.
Viscous damping can be implemented in a similar way, by taking
the adjacency into consideration. Both air damping and viscous
damping can make the Hessian matrix more diagonally dominant
and reduce the condition number of the optimization problem. To
fully demonstrate the stability of our system, we turned damping
off in our experiment. The observed energy loss is mainly caused
by implicit time integration.

Our system can handle collisions in two ways. It can model
collisions by repulsive potential energies and add them into the total
energy. Alternatively, it can treat collisions as position constraints
and enforce them at the end of each time step. Although the second
approach requires smaller steps, it can simulate static frictions
more appropriately. Therefore, we choose it to handle cloth-body
collisions in the dress example.

Performance evaluation. Figure 8 shows that our algorithm is
not attractive without parallelization. Its total computational cost is
dominated by the force evaluation step, which is needed in every
single iteration. In contrast, the matrix evaluation step is much
less expensive, since it is performed once every M = 32 iterations
as discussed in Subsection 4.1. Enabling OpenMP effectively
reduces the computational costs on the CPU, but the algorithm is
still not fast enough for real-time applications, even though our
implementation has space for further optimization. Fortunately, the
algorithm runs significantly faster on the GPU, thanks to the use of
thousands of GPU threads as demonstrated in Figure 8.

To reveal the scalability of our algorithm, we simulate a double
helix example at four resolutions. Table 1 shows that the com-
putational cost is almost linearly proportional to the number of
tetrahedra as expected. The high-resolution result in Figure 9d
does not exhibit any overly stretching artifact, which is a common
issue in position-based dynamics. Nevertheless, if computational
resources permit, we still recommend the use of more iterations

(a) Neo-Hookean (b) Mooney-Rivlin (c) Fung (d) StVK

(e) Neo-Hookean (f) Mooney-Rivlin (g) Fung (h) StVK

(i) Neo-Hookean (j) Mooney-Rivlin (k) Fung (l) StVK

Figure 10: The box example. Our simulator can robustly and effi-
ciently simulate the stretching, compression, and twisting behaviors
of a box, under different hyperelastic models.

for high-resolution meshes, to reduce residual errors and artificial
damping artifacts.

Model analysis. To evaluate the simulated behaviors of different
hyperelastic models, we design a box example where the bottom
face is fixed and the top face is loaded by stretching, compression,
or twisting forces, as shown in Figure 10. Here we use the same
s0 and s1 for the neo-Hookean model, the Mooney-Rivlin model,
and the Fung model. As a result, the Mooney-Rivlin model and
the Fung model behave stiffer than the neo-Hookean model, due to
additional terms in their strain energy density functions. From our
experiment, we found that the St. Venant-Kirchhoff model is the
most difficult one to handle, because of its low resistance against
compression. Although we can address this problem by using a
larger λ+ to perform invertible model conversion earlier, it is still
difficult to tune the stiffness parameter of projective dynamics, since
low stiffness cannot fix inverted elements while high stiffness can
cause oscillation between the two models. An alternative solution is
to use the isotropic strain limiting technique [Thomaszewski et al.
2009; Wang et al. 2010]. In that case, more iterations or smaller
time steps are needed, as shown in our experiment.

Figure 11 demonstrates the relationship between the stretch ratio of
a box and the uplifting force applied on the top face. The nature of
our simulator guarantees that its quasistatic result is consistent with
the stress-strain relationship specified by the underlying hyperelas-
tic model. In particular, the stiffness of the Fung model grows more
rapidly than that of the neo-Hookean model or the Mooney-Rivlin
model. Meanwhile, the force is approximately a cubic function of
the stretch ratio under the St. Venant-Kirchhoff model, as expected.

Limitations. Our method can effectively handle high stiffness
and high nonlinearity, at the expense of a lower convergence rate.
If the method does not use enough iterations, it can cause various



 Neo-Hookean
 Mooney-Rivlin
 Fung
 St. Venant-Kirchhoff

10-2

10-3

R
el

at
iv

e 
Er

ro
r

Frames
0 20 40 60 10010-4

80

 Single Phase
 Three Phases

Iterations
0 16 32 48 64

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Stretch Ratio
-100% 100% 300%200%

0.5

1.5

1.0

2.0

-0.5

-1.0

Fo
rc

e 

 Constant Position
 Constant Velocity
 Constant Acceleration
 Optimized Distance

Force Evaluation
(24ms, 74%)

Matrix Evaluation
(4ms, 11%)

Projective Dynamics: Tetrahedra
(3ms, 74%)

Projective Dynamics: Springs
(2ms, 74%)

Figure 11: The force-displacement curves generated by the box
example. These curves are consistent with the stress-strain rela-
tionships of the underlying hyperelastic models.

artifacts. For example, if bending elasticity is significantly stiffer
than planar elasticity, it can cause cloth to be overly stretched.
Meanwhile, if stiff elastic energy dominates gravitational energy, it
can cause deformable bodies to fall slowly. Certain elastic models,
such as the St. Venant-Kirchhoff model, do not offer sufficient
resistance against compression. In that case, the method will have
difficulty in avoiding inverted elements and oscillation artifacts
at the same time. The initialization approach under the constant
acceleration assumption can also cause small oscillation artifacts,
if the parameter η is not sufficiently small. The whole idea behind
our method is based on the implicit time integration scheme, so
it suffers from the artificial damping issue. Finally, we still need
additional mechanisms for self collision detection.

7 Conclusions and Future Work

In this paper, we show how to improve the gradient descent method
by Jacobi preconditioning and Chebyshev acceleration, for solving
the nonlinear optimization problem involved in elastic body simula-
tion. While the convergence rate of our method is similar to that of
nonlinear conjugate gradient, it requires zero dot product operation.
This characteristics allows it to run efficiently and robustly on the
GPU, after applying step length adjustment, initialization, model
conversion techniques.

Since force evaluation is the bottleneck of our simulator, we will
investigate possible ways to reduce its cost, especially the cost spent
on singular value decomposition. We are also interested in finding
better ways to handle step lengths and inverted elements. Potential
solutions should have minimal impact on the simulation perfor-
mance. Another interesting research direction we plan to explore
is to couple our method with multi-grid techniques. The design
of our method does not prevent it from using other parallelizable
preconditioners. In particular, we would like to know whether the
method can work with multi-color Gauss-Seidel preconditioners as
well. Finally, we will study the use of our idea in solving other
simulation problems, such as material and shape design.

Acknowledgments

This work was partly funded by NSF grants CHS-1524992, CHS-
1464306, and CNS-1637092. The first author would also like
to thank Adobe Research and NVIDIA Research for additional
equipment and funding supports.

References

Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In
Proceedings of the 25th annual conference on Computer graph-
ics and interactive techniques, ACM, New York, NY, USA,
SIGGRAPH ’98, 43–54.

Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., and Grinspun,
E. 2006. A quadratic bending model for inextensible surfaces.
In Proceedings of SGP, 227–230.

Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. 2014.
Projective dynamics: Fusing constraint projections for fast sim-
ulation. ACM Trans. Graph. (SIGGRAPH) 33, 4 (July), 154:1–
154:11.

Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of
clothing with folds and wrinkles. In Proceedings of SCA, 28–
36.

Cordero, A., Hueso, J. L., Martı́nez, E., and Torregrosa, J. R.
2010. New modifications of Potra-Pták’s method with optimal
fourth and eighth orders of convergence. J. Comput. Appl. Math.
234, 10 (Sept.), 2969–2976.

Daviet, G., Bertails-Descoubes, F., and Boissieux, L. 2011. A
hybrid iterative solver for robustly capturing Coulomb friction
in hair dynamics. ACM Trans. Graph. (SIGGRAPH Asia) 30, 6
(Dec.), 139:1–139:12.

Dick, C., Georgii, J., and Westermann, R. 2011. A real-time
multigrid finite hexahedra method for elasticity simulation using
CUDA. Simulation Modelling Practice and Theory 19, 2, 801–
816.

Fei, Y., Rong, G., Wang, B., and Wang, W. 2014. Parallel L-BFGS-
B algorithm on GPU. Comput. Graph. 40 (May), 1–9.

Fung, Y.-C. 1993. Biomechanics: Mechanical properties of living
tissues. Springer-Verlag.

Garg, A., Grinspun, E., Wardetzky, M., and Zorin, D. 2007. Cubic
shells. In Proceedings of SCA, 91–98.

Golub, G. H., and Van Loan, C. F. 1996. Matrix computations (3rd
Ed.). Johns Hopkins University Press, Baltimore, MD, USA.

Gutknecht, M. H., and Röllin, S. 2002. The Chebyshev iteration
revisited. Parallel Computing, 28, 263–283.

Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite ele-
ments for robust simulation of large deformation. In Proceedings
of SCA, 131–140.

Kharevych, L., Yang, W., Tong, Y., Kanso, E., Marsden, J. E.,
Schröder, P., and Desbrun, M. 2006. Geometric, variational
integrators for computer animation. In Proceedings of SCA, 43–
51.

Kim, T.-Y., Chentanez, N., and Müller-Fischer, M. 2012. Long
range attachments - A method to simulate inextensible clothing
in computer games. In Proceedings of SCA, 305–310.

Liu, T., Bargteil, A. W., O’Brien, J. F., and Kavan, L. 2013.
Fast simulation of mass-spring systems. ACM Trans. Graph.
(SIGGRAPH Asia) 32, 6 (Nov.), 214:1–214:7.

Macklin, M., and Müller, M. 2013. Position based fluids. ACM
Trans. Graph. (SIGGRAPH) 32, 4 (July), 104:1–104:12.

Macklin, M., Müller, M., Chentanez, N., and Kim, T.-Y. 2014.
Unified particle physics for real-time applications. ACM Trans.
Graph. (SIGGRAPH) 33, 4 (July), 153:1–153:12.



Macosko, C. W. 1994. Rheology: Principles, measurement and
applications. VCH Publishers.

McAdams, A., Selle, A., Tamstorf, R., Teran, J., and Sifakis,
E. 2011. Computing the singular value decomposition of 3x3
matrices with minimal branching and elementary floating point
operations. Technical report, University of Wisconsin - Madison.

McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran,
J., and Sifakis, E. 2011. Efficient elasticity for character skinning
with contact and collisions. ACM Trans. Graph. (SIGGRAPH)
30, 4 (July), 37:1–37:12.

Müller, M., and Gross, M. 2004. Interactive virtual materials. In
Proceedings of Graphics Interface, 239–246.

Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005.
Meshless deformations based on shape matching. ACM Trans.
Graph. (SIGGRAPH) 24, 3 (July), 471–478.

Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007.
Position based dynamics. J. Vis. Comun. Image Represent. 18, 2
(Apr.), 109–118.

Müller, M., Chentanez, N., Kim, T., and Macklin, M. 2014. Strain
based dynamics. In Proceedings of SCA, 21–23.

Müller, M. 2008. Hierarchical position based dynamics. In
Proceedings of VRIPHYS, 1–10.

Nesterov, Y. 2004. Introductory lectures on convex optimization:
A basic course. Applied optimization. Kluwer Academic Publ.,
Boston, Dordrecht, London.

O’donoghue, B., and Candès, E. 2015. Adaptive restart for
accelerated gradient schemes. Found. Comput. Math. 15, 3
(June), 715–732.

Ogden, R. W. 1997. Non-linear elastic deformations. Dover Civil
and Mechanical Engineering. Dover Publications, Inc.

Patterson, T., Mitchell, N., and Sifakis, E. 2012. Simulation of
complex nonlinear elastic bodies using lattice deformers. ACM
Trans. Graph. (SIGGRAPH Asia) 31, 6 (Nov.), 197:1–197:10.

Perez, J., Perez, A. G., and Otaduy, M. A. 2013. Simulation of
hyperelastic materials using energy constraints. In Proceedings
of the XXIII CEIG (Spanish Conference on Computer Graphics).

Provot, X. 1996. Deformation constraints in a mass-spring model
to describe rigid cloth behavior. In Proceedings of Graphics
Interface, 147–154.

Rivers, A. R., and James, D. L. 2007. FastLSM: Fast lattice shape
matching for robust real-time deformation. ACM Trans. Graph.
(SIGGRAPH) 26, 3 (July).

Stern, A., and Grinspun, E. 2009. Implicit-explicit variational
integration of highly oscillatory problems. Multiscale Model.
Simul. 7, 4, 1779–1794.

Su, J., Sheth, R., and Fedkiw, R. 2013. Energy conservation
for the simulation of deformable bodies. IEEE Transactions on
Visualization and Computer Graphics 19, 2 (Feb.), 189–200.

Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust
quasistatic finite elements and flesh simulation. In Proceedings
of SCA, 181–190.

Thomaszewski, B., Pabst, S., and Strasser, W. 2009. Continuum-
based strain limiting. Computer Graphics Forum (Eurographics)
28, 2, 569–576.

Tournier, M., Nesme, M., Gilles, B., and Faure, F. 2015. Stable
constrained dynamics. ACM Trans. Graph. (SIGGRAPH) 34, 4
(July), 132:1–132:10.

Wang, H., O’Brien, J., and Ramamoorthi, R. 2010. Multi-
resolution isotropic strain limiting. ACM Trans. Graph. (SIG-
GRAPH Asia) 29, 6 (Dec.), 156:1–156:10.

Wang, H. 2015. A Chebyshev semi-iterative approach for accelerat-
ing projective and position-based dynamics. ACM Trans. Graph.
(SIGGRAPH Asia) 34, 6 (Oct.), 246:1–246:9.

Xu, H., Sin, F., Zhu, Y., and Barbič, J. 2015. Nonlinear material de-
sign using principal stretches. ACM Trans. Graph. (SIGGRAPH)
34, 4 (July), 75:1–75:11.

Zhu, Y., Sifakis, E., Teran, J., and Brandt, A. 2010. An efficient
multigrid method for the simulation of high-resolution elastic
solids. ACM Trans. Graph. 29, 2 (Apr.), 16:1–16:18.


