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Being able to customize sewing patterns for different human bodies without
using any pre-defined adjustment rule will not only improve the realism
of virtual humans in the entertainment industry, but also deeply affect the
fashion industry by making fast fashion and made-to-measure garments
more accessible. To meet the requirement set by the fashion industry, a
sewing pattern adjustment system must be both efficient and precise, which
unfortunately cannot be achieved by existing techniques. In this paper, we
propose to solve sewing pattern adjustment as a nonlinear optimization
problem immediately, rather than in two phases: a garment shape optimiza-
tion phase and an inverse pattern design phase as in previous systems. This
allows us to directly minimize the objective function that evaluates the fitting
quality of the garment sewn from a pattern, without any compromise caused
by the nonexistence of the solution to inverse pattern design. To improve
the efficiency of our system, we carry out systematic research on a variety
of optimization topics, including pattern parametrization, initialization, an
inexact strategy, acceleration, and CPU-GPU implementation. We verify
the usability of our system through automatic grading tests and made-to-
measure tests. Designers and pattern makers confirm that our pattern results
are able to preserve design details and their fitting qualities are acceptable.
In our computational experiment, the system further demonstrates its effi-
ciency, reliability, and flexibility of handling various pattern designs. While
our current system still needs to overcome certain limitations, we believe it
is a crucial step toward fully automatic pattern design and adjustment in
the future.
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1 INTRODUCTION
Today the multi-billion fashion industry is dominated by ready-to-
wear garments, made and sold in standardized sizes, from Size 00 to
Size 12 for example. To make a ready-to-wear garment, a pattern
maker typically develops a sewing pattern in a base size first, such
as Size 6. A pattern grader then transforms the pattern from the
base size to additional sizes, using a series of garment grading rules
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Size 2
Size 6
Size 12

(a) The sewing patterns in three standardized sizes

(b) Simulation (size 2) (c) Simulation (size 6) (d) Simulation (size 12)

(e) Real dress (size 2) (f) Real dress (size 6) (g) Real dress (size 12)

Fig. 1. The grading results of a secretary dress example. Given a base sewing
pattern (black) in (a) and its simulated garment in (c), our pattern optimiza-
tion system automatically converts the base pattern into new patterns for
making garments that fit new bodies, as shown in (b) and (d). The experiment
demonstrates that the real garments in (e) and (g) are able to preserve design
details, and the whole optimization process lasts less than two minutes for
a mesh with 66K elements.

established over the last two centuries. Compared with a ready-to-
wear garment, a made-to-measure garment reduces the inventory
cost and provides superior fit, by customizing an existing pattern
for each specific individual as needed. However, a made-to-measure
garment is much more difficult and time consuming to develop,
since the individual’s body can differ significantly and the pattern
adjustment rules for disproportionate body parts are rather sparse,
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especially for women’s garments. Even if skilled pattern makers
can formulate these rules for a specific garment, they can hardly
apply the same rules to other garments. Given the vast diversity
of fashionable garment designs, it is impractical to create all of the
rules ahead of time. This explains why the availability of made-to-
measure garments is limited in the fashion industry and why their
prices are typically higher than those of ready-to-wear ones.
In this research, we are interested in developing a rule-free au-

tomatic sewing pattern adjustment system for making garments
that fit to different body shapes. This system will not only improve
the realism of virtual humans in the human-centered entertainment
industry, but also trigger a deep impact on the future of the fashion
industry, by speeding up the pace of fast ready-to-wear fashion
and enabling mass production of made-to-measure garments. The
success of such a system relies on its precision. The measurement
difference between two consecutive standardized sizes is typically
two inches or less. This implies that the precision of a usable pattern
adjustment system must be within one inch, or 2.54cm, for each
body measurement. The requirement on the precision of a single
pattern patch can be much stricter than this. For example, pants are
made of four panel patches and the precision of each panel patch
must be within 1/4 inch, or even stricter for skinny and slim-fit
pants. No previous graphics research has studied sewing pattern
adjustment at this level of precision, as far as we know.

Another issue associated with sewing pattern adjustment, funda-
mentally as an inverse elastic design problem, is its computational
cost. One way of solving inverse elastic design is to use sequential
quadratic programming (SQP) [Skouras et al. 2014]. SQP is restricted
from using many efficient linear solvers, since its matrix is indefinite.
Finding a suitable merit function and a backtracking line search
strategy for SQP [Nocedal and Wright 2006] is also challenging in
practice. Therefore, researchers in computer graphics, mechanical
engineering, and biomechanics often prefer to solve inverse elastic
design by iteratively running two steps: a forward step that reaches
quasistatic equilibrium; and an optimization step that adjusts the
parameters. This technique has demonstrated its flexibility in solv-
ing a variety of inverse problems [Bickel et al. 2009; Lund et al. 2003;
Miguel et al. 2016], but it still needs a large computational cost. For
instance, the optimization process of a mesh with less than 10K
vertices can easily last hours, if not days [Casati et al. 2016]. An
immediate implementation of this technique would eliminate the
usability of our system, as pattern markers would rather perform
manual adjustment.

To develop a precise, efficient, and practically useful sewing pat-
tern adjustment system, we made the following contributions.

• Problem formulation. We propose to directly minimize
the objective function that evaluates the fitting quality of a
garment dressed on a target body, rather than in two phases
as did in previous systems. The objective function evaluates
the looseness, smoothness, deformation, and relative location
of the garment, by comparing it with a base garment dressed
on the base body. The function is suitable for a variety of
garments, such as bodysuits under constant stretching and
skirts with shirring.

• Optimization method. Based on the aforementioned two-
step idea, we develop a novel implementation that finishes the
optimization process of a sewing pattern with 160K triangles
in less than five minutes. The success of this implementation
is stemmed from our systematic research and analysis on pat-
tern parametrization, initialization, an inexact optimization
strategy, acceleration, and CPU-GPU implementation.

• Usability test. To evaluate the usability of our system, we
apply it to adjust commercial sewing patterns for two dress
forms and eight human bodies, and test their fits using real
garments, as shown in Fig. 1 and 16. While our system solves
the optimization problem mathematically, we do not test a
body if it is too different from the base one at this time. It is
because the industry considers petite-sized, regular-sized and
plus-sized garments as different categories, and often designs
them differently.

Our experiment shows that our system is fast, reliable, easy-to-use,
GPU-friendly, and memory-efficient. Our pattern makers confirm
that the patterns adjusted by our system are balanced and the re-
sulting garments fit target bodies well within an acceptable error
threshold. Both the accuracy and the efficiency of our system have
space for improvement, by using better human models, physics-
based simulators, and optimization methods in the future.

2 OTHER RELATED WORK
Cloth simulation. Fast and accurate cloth simulation is highly

useful in computer animation and computer-aided fashion modeling.
While cloth dynamics can be integrated over time explicitly [Brid-
son et al. 2003], most cloth simulators in computer graphics [Narain
et al. 2012; Volino et al. 2009] today use implicit integration to avoid
the numerical instability issue. Depending on how the elasticity
of cloth is modeled, a cloth simulator can be spring-based [Choi
and Ko 2002; Liu et al. 2013], continuum-based [Baraff and Witkin
1998; Narain et al. 2012], or yarn-based [Cirio et al. 2014; Kaldor
et al. 2010]. Researchers also investigated the use of position-based
constraints [Macklin et al. 2014; Müller 2008] to replace elastic
forces. Recently, Liu and colleagues [2013] and Bouaziz and col-
laborators [2014] developed a projective dynamics method for fast
simulation of cloth, which can be interpreted as preconditioned
gradient descent [Wang 2015; Wang and Yang 2016] or the alternat-
ing direction method of multipliers (ADMM) [Narain et al. 2016].
Besides the elasticity of cloth, researchers have also studied a wide
range of other research topics, including inextensibility [Goldenthal
et al. 2007], elasticity measurement [Miguel et al. 2012; Wang et al.
2011], hysteresis [Miguel et al. 2013], and collision handling [Brid-
son et al. 2003; Tang et al. 2016]. While this work relies heavily
on the cloth simulation technology, it is relatively independent of
any specific simulator and it will benefit from the advance of cloth
simulation techniques in the future.

Garment and pattern design. Graphics researchers have in-
vestigated garment design for decades, but most of their works
were focused on dressed characters [Guan et al. 2012] and did not
involve the use of a sewing pattern. On the other hand, existing
fashion CAD softwares, such as Optitex and Marvelous designer,
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allows users to design 3D garments by interactively modifying 2D
sewing patterns only. To achieve a specific design or fitting goal in
3D, users must perform trial and error in 2D over time. Umetani
and colleagues [2011] proposed to predict the needed pattern ad-
justment for a specific design goal, by precomputing a sensitivity
matrix that linearizes the relationship between pattern parameters
and garment features. A more common practice adopted by existing
co-design systems [Brouet et al. 2012; Decaudin et al. 2006; Meng
et al. 2012; Wang et al. 2005] is to design 3D garments first, and
then apply off-the-shelf surface parametrization methods to flatten
garments into sewing patterns. Since such a geometric strategy fails
to consider the draping effect, the resulting sewing pattern often
cannot recover the originally designed garment precisely, as Bartle
and colleagues [2016] demonstrated. Their solution is a fixed point
optimization method that tries to calculate the sewing pattern in-
versely from the garment, in which quasistatic simulation is treated
as a black box. As discussed next in Section 3, this inverse pattern
design problem may not have an exact solution. This fact was also
pointed out by Casati and collaborators [2016]. Different from our
work, their research was focused on estimating the 3D reference
shape of a garment with frictional contacts and their problem is
difficult in its own way.

3 PROBLEM OVERVIEW
Let θ ∈ RB be a set of parameters controlling the shape of a sewing
pattern, and Simϕ (θ ) : RB → R3N be a simulation function gener-
ating the N vertex positions of a 3D quasistatic garment, dressed
on a target body represented by a signed distance field ϕ. Pattern
adjustment can be defined as the minimization of an objective func-
tion:

θ = arg min f
(
Simϕ (θ ),θ ,ϕ, Simϕ̄ (θ̄ ), θ̄ , ϕ̄

)
, (1)

in which θ̄ controls the base pattern and ϕ̄ represents the base body.
Intuitively, the objective function evaluates the fitting quality of θ ,
by treating the base size as a reference. This optimization problem
is complicated, since the objective function depends on not only θ ,
but also the simulated garment in the quasistatic state: Simϕ (θ ). To
simplify this problem, existing techniques often choose to introduce
an intermediate variable x = Simϕ (θ ) ∈ R

3N and solve the problem
in two phases. In the first phase, the 3D garment is transferred from
body ϕ̄ to body ϕ:

x = arg min f
(
x,θ ,ϕ, Simϕ̄ (θ̄ ), θ̄ , ϕ̄

)
, (2)

and in the second phase, θ is calculated to satisfy:

Simϕ (θ ) = x, (3)

which is known as an inverse pattern design problem. A common
practice adopted in the past is to ignore fabric elasticity and solve
the second phase by flattening each 3D garment patch into a 2D pat-
tern piece. To address elastic deformation of fabrics during inverse
pattern design, Bartle and colleagues [2016] invented a fixed point
method for direct 3D garment editing. While their method produces
more plausible sewing patterns, a fundamental issue related to the
two-phase approach remains: Equation 3 may not have an exact
solution. An intuitive example is a sagging flag, which cannot stand
up in its quasistatic state no matter how we optimize its reference
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Fig. 2. The outcome of a two-phase approach in the Carmen skirt example.
The plot shows handling pattern adjustment in two phases is not optimal,
since inverse pattern design may not have a solution and it ignores the
objective function outlined in Phase 1. Here we use our system to solve
inverse pattern design, by minimizing the positional cost only.

shape. Therefore, the solution to Phase 2 fails to meet the same
minimization goal achieved by Phase 1 and it is only sub-optimal,
as Fig. 2 shows.
In this paper, we choose to solve the constrained optimization

problem in Equation 1 immediately, without any compromise caused
by the two phases. To begin with, we will introduce the formula-
tions of the simulator Simϕ (θ ), the parameters θ , and the objective
function f in Section 4, 5, and 6. After that, we will present our
optimization system in Section 7, built upon the state-of-the-art
research on GPU-based simulation and optimization. Results and
evaluations will be provided in Section 8.

4 QUASISTATIC SIMULATION
Quasistatic simulation of a 3D garment, i.e., Simϕ (θ ), is a major
component in our system. While quasistatic simulation has been
extensively studied in computer graphics for decades, our simulator
must meet two unique requirements. First, the tangent stiffness
matrix of the total force exerted on the garment must be evaluable
and invertible. Second, the simulator must be fast and stable.

4.1 Simulation Model
To meet the first requirement, we propose to ignore cloth-body
friction and self collision of cloth. We believe it is a reasonable
assumption for sewing pattern adjustment, since we prefer garments
to drape naturally and relaxedly into a unique configuration. We
note that ignoring self collision does not prevent the system from
handling multi-layered garments, such as the pants example in
Fig. 14, as long as self collision does not greatly affect the draped
garment shape.
The key idea behind our simulation model is to handle cloth-

body collision by a collision potential energy, not projection. This
naturally avoids the discontinuity problem of sewing pattern op-
timization, occurred in [Casati et al. 2016]. Let x ∈ R3N be the
vertices of a 3D garment. Its quasistatic state satisfies:

x = arg min

{
E(x) + F (x) +G(x) −

∑
i

µ log(ϕ(xi ))

}
, (4)

in which E(x) is the elastic potential energy, F (x) is the sticking
energy, G(x) is the gravitational energy, and µ is a log barrier pa-
rameter. The purpose of the sticking energy is to fix certain vertices
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(a) Before re-initialization (b) After re-initialization

Fig. 3. A dent caused by a local minimum of the secretary dress example.
While we can remove it by re-initializing quasistatic simulation, we found
it to be often unnecessary as its impact on the overall shape is small.

at given locations, accounting for the existence of belts and pins.
The elastic energy contains the elastic planar energy, modeled by
a mass-spring system and the elastic bending energy, modeled by
the quadratic model [Bergou et al. 2006]. Let {si , sj } be the vertices
of spring s , either belonging to two patches if s is a sewing spring.
or the same patch if s is a patch edge. We define the elastic spring
energy as:{

ESs (x) =
Y sewing

2


xi − xj

2

, if s is sewing,
ESs (x) =

Y patch

2∥pi−pj ∥
(

xi − xj

 − rs 

pi − pj

)2 , otherwise,

(5)
whereY sewing andY patch are constant Young’smoduli, pi and pj are
vertex positions in the pattern, and rs is a scaling factor for shirring
effects, such as those in the Carmen skirt example. According to
Equation 4, the collision force at vertex i is: µ∇ϕ(xi )/ϕ(xi ), which
behaves like a barrier at ϕ(xi ) = 0 as µ converges to zero. In our
system, we set µ = 0.01 as constant for simplicity. The collision
energy model fails if ϕ(xi ) < 0. In that case, we project xi onto the
body surface instead.

While we prefer the quasistatic state to be unique, it is often not,
due to the local minima. We typically observe this issue as dents
being stuck during the parameter optimization process, as shown
in Fig. 3a. This issue can be resolved by re-initializing quasistatic
simulation, or using larger bending forces. Since most of these
dents are small and we apply strong regularization as discussed
in Subsection 5.1, we do not specifically address the issue in our
current system.

4.2 Simulation Method
We explore several ways to solve Equation 4. First, we test Newton’s
method and we find that it cannot converge as fast as we expected,
as shown in Fig. 4. The main reason is because the collision is highly
nonlinear, which makes quadratic approximation ineffective. Next
we test the primal-dual idea, which has proven to be efficient in
dynamic simulation of a stiff system [Tournier et al. 2015]. To do
so, we introduce two dual variable vectors: λC ∈ RN for modeling
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Fig. 4. The convergence of different simulation methods. Quasistatic simu-
lation of a virtual garment can be computationally expensive, due to high
nonlinearity and stiffness of cloth-body collision and cloth planar deforma-
tion. This experiment shows that our GPU-based simulator performs the
best, within a short period of computational time.

stiff collision and λS ∈ RS for modeling stiff springs, in which S the
number of springs. The resulting nonlinear system becomes:
−∇(EB + F +G) −

∑
s
λSs∇



xsi − xs j

 +∑
i
λCi ∇ϕ(xi ) = 0,

∀s, −


xsi − xs j

 + (rs + λSs /Y ) 

psi − ps j

 = 0,

∀i, ϕ(xi )λCi − µ = 0,
(6)

where EB is the elastic bending energy. By applying Newton’s
method to Equation 6, we obtain the primal-dual search direction
for x, λS, and λC in every iteration. Unfortunately, Fig. 4 shows
the primal-dual method performs worse, since it needs a small step
length to preserve λCi > 0. In the end, we choose to implement our
quasistatic simulator based on the gradient descent method, with
Jacobi preconditioning and Chebyshev acceleration [Wang and Yang
2016]. After GPU parallelization, our simulator takes 78ms to finish
one iteration in the Carmen skirt example, nearly half of which
is used for cloth-body collision. In comparison, Newton’s method
and the primal-dual method finish one iteration in 0.47s and 2.09s,
respectively.

5 PARAMETRIZATION AND REGULARIZATION
The next design choice in our system is the parameters controlling
the pattern shape: θ ∈ RB . Naturally, we can set the parameters as
all of its 2D vertices: p ∈ R2N . However, only boundary vertices
in this parametrization controls the shape, while interior vertices
are merely spatial samples. If the parametrization includes all of
the vertices, the pattern interior can contain self-intersection or
sample distribution change caused by overfitting, as shown in Fig. 5a.
Pattern optimization also suffers more from the local minimum issue,
due to a large parameter space. For these reasons, we propose to
parameterize the sewing pattern by its boundary vertices.
Suppose that the boundary vertices pB of a sewing pattern has

been given. We determine the interior vertices pI by minimizing
the difference of vertex displacement:

pI = arg min
1
2





[LI LB
] [ pI − p̄I

pB − p̄B

]



2
, (7)

where LI ∈ R(2N−B)×(2N−B) and LB ∈ R(2N−B)×B are the compo-
nents of the hinge-edge-based Laplacian operator matrix [Bergou
et al. 2006] evaluated from the base pattern p̄. The analytic solution
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(a) Parametrization by all vertices (b) Parametrization by boundary vertices

Fig. 5. The optimization results of using two parametrizations. When the
system selects all of the vertices to parametrize a pattern, it tends to distort
the pattern interior, unless it uses strong smooth regularization. In contrast,
the parametrization by boundary vertices is free of this issue.

to this problem is:

pI = p̄I −
(
LI

)−1
LB

(
pB − p̄B

)
, (8)

using the fact that LI is symmetric positive definite. Since LI and LB
are constant, we pre-factorize LI and precompute LB for fast runtime
computation. We note that this parametrization is fundamentally
equivalent to the positive mean value coordinates method [Joshi
et al. 2007]. But instead of calculating the coordinates explicitly,
we define the interpolation process procedurally, as the parameter
space is still relatively large. Fig. 5b shows that the parametrization
avoids the vertex distribution change and the overfitting issue.

5.1 Regularization
Once we parameterize the sewing pattern by its boundary vertices,
we formulate regularization terms on boundary vertices as well.
Here we implement two regularization terms. The fixing regulariza-
tion term penalizes the changes of boundary vertices:

Rfix = δ fix

2
∑
i
∥pi − p̄i ∥2 , (9)

in which i is a boundary vertex and δfix is a regularization strength
coefficient. The actual use of Rfix is to ensure that the Hessian of
the total regularization is positive definite, a property desired by
preconditioning as discussed in Section 7. Meanwhile, the bending
regularization term tries to preserve the shape of the boundary
curve:

Rcur = δ cur

2
∑
i
wi



pj + pk − 2pi − Ti (p̄j + p̄k − 2p̄i )


2
, (10)

in which δcur determines the regularization strength, j and k are
the two vertices adjacent to boundary vertex i , wi controls the
importance of vertex i , and Ti is an affine transformation matrix
used for removing rotation and uniform scaling, as shown in Fig. 6.
We typically use a smallerwi if i is a corner vertex (in blue), so that
the angle between two curves can be more adjustable.
The two aforementioned regularization terms do not need any

user intervention. Some other regularization terms, such the preser-
vation of patch symmetry and right corner angles, may become
necessary in the future, especially if the target body differs signifi-
cantly from the base body. We will allow the system to accept these
regularization terms as part of user interaction.

pj−pi
pk−pi Ti(pj−pi) Ti(pk−pi)

(a) The original pattern

pj−pi
pk−pi Ti(pj−pi) Ti(pk−pi)

(b) The adjusted pattern

Fig. 6. Bending regularization. This regularization term tries to minimize
the difference between the current edge vectors (in red) and the original
edge vectors (in black), after being transformed by Ti .
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Fig. 7. The percentage of each cost term with respect to the initial objective,
before and after optimization. This result is reported from the Carmen
skirt example, which uses a strong smoothness cost coefficient to preserve
designed skirt wrinkles.

6 COST FUNCTIONS
We define the objective f as the sum of regularization functions
and cost functions. The cost functions evaluate the fitting quality
of x worn by ϕ, given x̄ = Simϕ̄ (θ̄ ) worn by ϕ̄ as a reference. Our
system includes four cost functions and their contributions in the
Carmen skirt example are displayed in Fig. 7. The user controls
the strength of each cost function by a coefficient, which can be
intuitively decided by the nature of a garment. For instance, the
bodysuit uses little distance or smoothness cost, since it is supposed
to fit tightly.

Distance cost. We use a distance cost function to compare the
looseness of garment x with the looseness of x̄ on a per-vertex basis.
Let xi and x̄i be the positions of the same vertex i , and ϕ and ϕ̄ be
the signed distance functions of the two bodies. We define this cost
as:

Cdis = δ dis

2
∑
i

��ϕ(xi ) − ϕ̄(x̄i )��2 , (11)

where δdis controls the cost magnitude. Since the distance is subject
to many factors other than the looseness, we typically choose a small
δdis to lessen its influence in the total objective.

Smoothness cost. The smoothness cost function is used to test
whether the surface of x has the same smoothness as the surface
of x̄. Our implementation of this function is based on the discrete
hinge-edge bending model under an isometric deformation assump-
tion [Garg et al. 2007]. Let {ei, ej, ek, el} be the four vertices in the
local neighborhood of a hinge edge e ∈ p̄. We formulate this cost
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1.0

1.1

(a) Before optimization (b) After optimization (c) Reference

Fig. 8. Stretching ratios of the bodysuit example. By optimization, our
system reduces the difference between the deformation of the bodysuit
sewn from the adjusted pattern and worn by the target body, as shown in
(b), and that of a bodysuit sewn from the base pattern and worn by the base
body, as shown in (c).

function as:

Csmo = δ smo

2
∑
e
(∥Lex∥ − se ∥Le x̄∥)2 ,

Lex = Leixei + Le jxe j + Lekxek + Lelxel ,
(12)

in which δsmo is a magnitude coefficient, and Le is an edge smooth-
ing kernel matrix defined by four constants Lei , Le j , Lek , and
Lel . Here we use se to indicate whether both surfaces are con-
vex/concave, or not. By using the dot product between the kernel
edge product and the surface normal to determine if a surface is
convex or concave, we calculate se as:

se =
(Lex · ne )(Le x̄ · n̄e )
|(Lex · ne )(Le x̄ · n̄e )|

, (13)

where ne and n̄e are the surface normals of e , defined as the average
of the two triangle normals.

Stretching cost. When worn by the human body, garments
made of elastic fabrics are often under constant stretching. The
bodysuit in Fig. 8 is one such example. We want garment x to keep
the same stretching ratio as x̄ on a per-edge basis. Let {xei , xe j }
and {pei , pe j } be the two vertex positions of the same edge e in the
garment and the pattern. The stretching cost function is:

Cstr = δ str

2
∑
e

��� ∥xei−xe j ∥
∥pei−pe j ∥

−
∥x̄ei−x̄e j ∥
∥p̄ei−p̄e j ∥

���2 , (14)

in which δstr is a coefficient controlling the cost magnitude. Fig. 8
demonstrates the effect of this cost on a bodysuit example. Here the
color indicates the stretching ratio magnitude of local edges.

Positional cost. Finally, we would like to maintain the relative
position of every garment vertex with respect to the human body. To
do so, we first perform a deformation transfer of x̄ from being worn
by ϕ̄ to being worn by ϕ. Let ti0 be the triangle of the base body
mesh closest to x̄i . We can use its vertex-triangle distance and its
barycentric coordinates to determine its transferred vertex position
x̃i0. The problem with this transfer though is the discontinuity,
when ti0 jumps from one local minimum to another, as shown in
Fig. 9a. To solve this problem, we use the second local minimum
triangle ti1 and we calculate the final transferred vertex position as:

x̃i =
(
0.5 + min(di0−di1,2B)

4B

)
x̃i0 +

(
0.5 − min(di0−di1,2B)

4B

)
x̃i1, (15)

(a) Simple deformation transfer (b) Our deformation transfer

Fig. 9. The deformation transfer results. Simply transferring each cloth
vertex by the deformation of its closest body triangle will cause discontinuity,
due to the local minima on the legs and the torso as the bottom of this
secretary dress shows. Our method lessens the problem by providing a
smoothing transition between two local minima, as shown in (b).

in which di0 and di1 are the distances to the two triangles, and B is
a transition bandwidth. Fig. 9b shows the transferred garment using
Equation 15 lessens the discontinuity problem. Once we obtain x̃i ,
we formulate this cost function as:

Cpos = δ pos

2
∑
i
ui ∥xi − x̃i ∥2 , (16)

in which δpos controls the overall magnitude and ui controls the
contribution of vertex i . We typically make ui greater if vertex i is
on the boundary of a pattern patch, to emphasize the importance of
seams and boundaries on the garment appearance.

7 OPTIMIZATION METHOD
Given the simulator, the parametrization, and the objective func-
tion in Section 4, 5 and 6, we now need to solve the minimization
problem:

θ = arg min f
(
Simϕ (θ ),θ ,ϕ, Simϕ̄ (θ̄ ), θ̄ , ϕ̄

)
, (17)

in which θ is the only variable and f = Rfix + Rcur + Cdis +

Csmo +Cstr +Cpos. Similar to [Casati et al. 2016], we construct our
optimization method as a gradient-based line search method using
two iterative steps. In the first step, the method performs quasistatic
simulation to compute x = Simϕ (θ ), the garment sewn from pattern
θ and worn by body ϕ. In the second step, it calculates the gradient
of the objective function and uses that to guide the update of the
pattern parameters θ . The method repeats the two steps until the
objective cannot be further reduced. Our focus here is on the second
step.

By definition, we consider f as a function of x and θ , in which x
itself is a function of θ . The gradient of the objective f is:(

df
dθ

)T
=

(
∂p
∂θ

)T (
∂ f

∂x
∂x
∂p
+
∂ f

∂p

)T
, (18)

where ∂ f /∂x and ∂ f /∂p are directly obtainable from the definition
of f , and ∂p/∂θ is given by Equation 8 for θ = pB. To further
establish the relationship between x and p, we use the condition
that x has reached quasistatic equilibrium: f(p, x) = 0, in which

ACM Trans. Graph., Vol. 37, No. 4, Article 53. Publication date: August 2018.



Rule-Free Sewing Pattern Adjustment with Precision and Efficiency • 53:7

Algorithm 1: Sewing Pattern Adjustment
Input: The base body ϕ̄, the base pattern θ̄ , the new body ϕ
Output: The pattern parameters θ
x̄← Simϕ̄ (θ̄ );
x̃← Transfer(x̄, ϕ̄,ϕ);
θ (0) ← Initialize(θ̄ , x̄, x̃);
x(0) ← Simϕ (θ

(0));
P← Preconditioner;
Initialize S and s;
for k = 1...∞ do

θ (k ) ← θ (k−1) − sP−1Grad
(
x(k−1),θ (k−1)

)
;

if k mod M = 0 then
x(k ) ← Simϕ (θ

(k ));
if f (x(k ),θ (k )) > f (x(k−M ),θ (k−M )) then

k ← k −M ;
Increase S and decrease s;
Continue;

end
else

Decrease S and increase s;
end

end
else

x(k ) ← Simϕ (θ
(k ), S);

end
end
return θ (k+1);

f ∈ R3N is the stacked force. According to the implicit function
theorem, we have:

∂x
∂p
= −

(
∂f
∂x

)−1 (
∂f
∂p

)
, (19)

under the assumption that the tangent stiffness matrix ∂f/∂x is
invertible. We note that we do not need to explicitly evaluate ∂x/∂p
or ∂p/∂pB, since doing so requiresmatrix inversion. Insteadwe solve
two linear systems in every gradient calculation. This technique is
commonly known as the adjoint method.
While the basic methodology of our optimization system is not

new and it has been explored in many areas, the real challenge is
how to implement it with sufficient efficiency. The efficiency is of
particular importance to the usefulness of our system, since users,
i.e., pattern makers, may still need to tune strength coefficients for
optimal pattern outcomes. In this section, we study the performance
improvement of our system from four perspectives: initialization,
an inexact strategy, acceleration, and CPU-GPU implementation.

Initialization. Like other iterative methods, our system re-
quires a good initial guess to reach its solution fast. A naïve idea
is to simply treat the base pattern as the initialization, but that of-
ten generates a large initial objective. Instead, we propose to treat
the transferred garment x̃ as a fixed quasistatic state x, and run
an incomplete optimization process with the stretching cost and
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Fig. 10. The convergence of our system when choosing different S , the
number of simulation iterations per outer iteration. In general, the system
performs faster as S decreases, before divergence happens. Here the relative
error is defined as (f − f ∗)/(f 0 − f ∗), where f is the current objective, f 0

is the initial objective, and f ∗ is the final objective after sufficient outer
iterations.

the regularization only. Since x ≡ x̃ is fixed, this process avoids
∂x/∂p and it can be finished in only a few seconds. The resulting
initial pattern reduces the stretching cost and the positional cost
reasonably well, which are the two dominant ones in the objective
function. In our experiment, the objective generated by this initial
pattern is only one sixth to one tenth of the objective given by the
base pattern.

An inexact strategy. The two-step optimization approach can
be computationally expensive, if it reaches quasistatic equilibrium
exactly in every outer (optimization) iteration as did in [Casati et al.
2016]. To reduce the computational cost without slowing down the
convergence rate much, we propose to approximate the quasistatic
state by using a smaller S , the number of simulation iterations per
outer iteration, as shown in Fig. 10. This inexact idea has been
investigated for solving inverse problems using a primal-dual for-
mulation [Haber et al. 2004; Quirynen et al. 2017] before. To achieve
better performance, we use a primal formulation and wemust specif-
ically address the balance between the efficiency and the divergence
risk. Our solution is to adaptively adjust the accuracy of quasistatic
simulation by long-range backtracking search [Nocedal and Wright
2006]. Specifically, afterM inexact outer iterations, e.g.,M = 32, we
run one exact outer iteration with sufficient simulation accuracy. If
the total cost fails to drop since the last exact iteration, we increase
the accuracy of quasistatic simulation, decrease the step length, and
relaunch the optimization from the last exact outer iteration. In the
worst case, our inexact two-step approach is reduced to the exact
approach, which is a standard line search method. Therefore, our
approach is guaranteed to converge, even if the objective increases
temporarily due to inexactness.

Acceleration. Although we can use the calculated gradient to
update the pattern parameters directly, we prefer not to do so, since
gradient descent is known to have a low convergence rate. This is
because the gradient often cannot act as a good search direction,
which prevents the update from taking larger step lengths.

To speed up the convergence rate, a typical way is to multiply the
gradient by the inverse of a positive definite preconditioning matrix
P. Given the cost functions defined in a nonlinear least squares
fashion, we formulate the objective into: f (θ ) = 1

2v
Tv + R(θ ), in
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(a) Simulation (size 2, front) (b) Simulation (size 2, side) (c) Simulation (size 2, back) (d) Simulation (size 12, front) (e) Simulation (size 12, side) (f) Simulation (size 12, back)

(g) Real skirt (size 2, front) (h) Real skirt (size 2, side) (i) Real skirt (size 2, back) (j) Real skirt (size 12, front) (k) Real skirt (size 12, side) (l) Real skirt (size 12, back)

Fig. 11. The automatic grading results of a Carmen skirt example. Our system can flexibly handle complex patterns designed to create garments with shirring,
as demonstrated on the left side of this Carmen skirt.
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Fig. 12. The convergence of different optimization methods. Our method
uses the approximate Hessian of the regularization terms as the precon-
ditioner. Compared with plain gradient descent, our method has a faster
convergence rate; and compared with Gauss-Newton, our method uses a
small preconditioning cost per iteration.

which v is a stacked cost vector and R(θ ) contains all of the regular-
ization terms. For simplicity, we consider the positional cost only,
in which case v is a function of x. When P is the Hessian matrix of
the objective f :

P =
∂

∂θ

(
∂v
∂x
∂x
∂θ

)T
v +

(
∂v
∂x
∂x
∂θ

)T (
∂v
∂x
∂x
∂θ

)
+
∂

∂θ

(
∂R

∂θ

)T
, (20)

the method becomes Newton’s method. The main issue with New-
ton’s method is that it is extremely complicated to evaluate the first
term in Equation 20, especially due to the bending force. In practice,
researchers often ignore the first term and choose to use the Gauss-
Newton method or its variations, such as Levenberg-Marquardt. To
avoid the calculation of (∂f/∂x)−1 in the second term, Bickel and
colleagues [2009] evaluated (∂v/∂x)(∂x/∂θi ) separately for every

parameter θi , each of which requires solving a linear system with
matrix ∂f/∂x. While this matrix can be factorized only once per
iteration, the evaluation of the second term still takes approximately
58 seconds for the Carmen skirt example in Fig. 11, as demonstrated
in our experiment. Unfortunately, the use of the second term fails to
significantly improve the convergence rate and worsens the overall
performance, as shown in Fig. 12. This is not surprising, given the
fact that strong regularization used in our system makes the norm
of the third term at least 1,000 times greater than that of the second
term. In the end, we choose to ignore the first two terms and use
the third term only, which is the Hessian of R. To further reduce the
computational cost, we treat the rightmost term in Equation 10 as
constant and derive the approximate Hessian as the preconditioner
P, similar to the local/global geometric approach [Brouet et al. 2012;
Liu et al. 2008] and projective dynamics [Bouaziz et al. 2014; Liu et al.
2013]. Since the resulting matrix is constant, we pre-factorize it for
fast runtime computation. Fig. 12 shows our method outperforms
plain gradient descent and Gauss-Newton.
Besides preconditioning, we also implemented L-BFGS acceler-

ation. Although it can accelerate the convergence occasionally, it
introduces instability into the search direction, which can trigger
more frequent long-range backtracking steps. Overall, we think its
benefit is limited and we suggest not to use it. We note that L-BFGS
acceleration has an unpleasant side effect: pattern patches often
become rotated after optimization, as exhibited in our experiment.
These rotations must be removed for orientation-specific patterns.

CPU-GPU Implementation. We implement our system on a
hybrid CPU-GPU architecture. Specifically, the system performs
quasistatic simulation, iterative linear solver, and Jacobian matrix
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Table 1. Statistics and timings of our examples. Here the timings do not include precomputation or initialization time, which is typically a few seconds. The
cost strength coefficients are provided for δ fix, δ cur, δ dis, δ smo, δ str, δ pos, respectively.

Example Name
(#Vert., #Tri., #Patches )

Target
Body

Strength
Coefficients (1/m2)

Objective
Reduction

Maximum
Displacement

Opt. Time
per Iteration

Time
per Iteration

# of
Iterations

Total
Time

Secretary Dress
(34K, 66K, 8)

Size 2
Size 12

100, 106

1, 0.05, 1, 100
37.7%
16.6%

2.4mm
5.4mm 0.267s 0.451s 256 115s

Bodysuit
(22K, 42K, 9)

Size 2
Size 12

100, 106

0.01, 5 × 10−5, 5, 100
72.6%
43.0%

1.2mm
6.3mm 0.149s 0.284s 256 72.7s

Carmen Skirt
(30K, 59K, 4)

Size 2
Size 12

100, 106

0.01, 0.01, 1, 100
70.0%
18.8%

9.9mm
20.8mm 0.290s 0.446s 512 228s

Alana Jumpsuit
(58K, 110K, 19)

Alex
Jenny

100, 106

1, 0.05, 1, 100
32.8%
31.2%

17.4mm
33.5mm 0.502s 0.800s 256 201s

Pants
(85K, 163K, 29)

Jiang
Zhou

100, 106

1, 0.05, 1, 100
43.7%
22.8%

14.3mm
14.6mm 0.663s 1.147s 256 294s

evaluation on the GPU, while the rest on the CPU. Our simulator
and our iterative linear solver are based on the Jacobi method with
Chebyshev acceleration, which are highly parallelizable on the GPU.
A special feature of our system implementation is about the Ja-

cobian matrix of the force with respective to the sewing pattern:
∂f/∂p. It includes the Jacobian matrix of the gravitational force,
the Jacobian matrix of the spring force, and the Jacobian matrix
of the bending force. Unlike ∂f/∂x, this matrix is asymmetric and
much more complicated to evaluate. Fortunately, since the use of
this matrix is to perform a matrix-vector product with the adjoint
state, we can avoid explicit evaluation of this matrix and implement
the matrix-vector product procedure even more conveniently on the
GPU. In the Carmen skirt example, the Jacobian matrix evaluation
takes 150ms and the matrix-free product takes 73ms on the CPU. In
comparison, the matrix-free product takes only 3ms on the GPU.

8 RESULTS
Our system uses the Intel MKL PARDISO library for CPU computa-
tion and the CUDA library for GPU computation. Our experiment
was performed on an Intel Core i7-5820K 3.3GHz processor and
an NVIDIA GeForce GTX TITAN X Graphics Card. Table 1 sum-
marizes the statistics and the timings of our examples. It shows
that the system is able to sufficiently reduce the objective within
256 to 512 iterations. The overall objective reduction ratio is highly
example-specific and it depends on the quality of the initialization.
In general, the initialization is more effective for slim-fit and second-
skin garments, such as the bodysuit example shown in Fig. 17. The
initialization is also more effective when the target body is slimmer
than the base body.
We treat the Size 6 female form made by alvanon® as our base

body by default. Given the measurements of a human body, we
use our in-house human body deformation software to generate
the corresponding human body mesh. This software solves a non-
linear optimization problem, whose objective is to minimize body
deformation and the difference between body landmarks and the
measurements at the same time. Given the body mesh, we convert
it into a signed distance field for fast cloth-body collision handling,
as discussed in Section 4. The resolution of the signed distance field
is 2.5mm in our experiment.
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Fig. 13. The outcomes of the fixed point method and our method. Unlike
the fixed point method, our method does not stagnate and it is able to
converge, given sufficient computational time.

We use several fabrics in our grading and made-to-measure tests,
to be discussed later in Subsection 8.3 and 8.4. The white semi-
transparent fabric, shown in Fig. 1, is cotton woven fabric used by
pattern makers for regular test purposes. The thick fabric used in the
pants example in Fig. 14 is the actual woven fabric for production.
Finally, the white fabric used in the bodysuit example in Fig. 17 is
made of spandex and it can stretch by approximately 20 percent.

8.1 Comparison to a Fixed Point Method
The strength of the fixed point method [Bartle et al. 2016] is that
it can treat the simulator as a black box. On the other hand, its
weaknesses are also obvious: it is developed for solving the inverse
pattern design problem (in Equation 3) and it misses the objective,
if the problem does not have a solution. To compare the fixed point
method with our method, we implement it on a mass-spring system
as well and we tune our system to minimize the positional cost only,
as did before in Section 3. Fig. 13 shows the fixed point method
reduces the objective rapidly in the first few iterations, but then it
stagnates. We find stagnation occurs, no matter whether the inverse
problem has an exact solution or not. In contrast, as a line search
method, ourmethod converges after a sufficient number of iterations.
We note that our method should be able to reduce the objective even
further, if it treats all of the vertices as the parameters, like the fixed
point method does.
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Jiang
Size 6
Zhou

(a) The sewing patterns

(b) Simulation (front) (c) Simulation (side) (d) Simulation (back)

(e) Real pants (front) (f) Real pants (side) (g) Real pants (back)

Fig. 14. The made-to-measure results of a pants example. In this example,
the pants are made of multiple fabric layers and the sewing pattern contains
29 patches. By ignoring self collision, our system produces the sewing pattern
that matches the body of Zhou.

8.2 A Multi-Layered Case
Many garments are made of multiple fabric layers. Even a simple
pants example shown in Fig. 14 contains an outer layer and an inner
layer, and its pockets are made by two additional layers. As shown in
Table 1, this example contains 29 pattern patches. Under the assump-
tion that self intersection among these layers have limited influence
on patch shapes and garment seams, we ignore self intersection in
simulation and optimization, as mentioned in Subsection 4.1. Fig 14
shows our system is able to optimize the sewing pattern in this
multi-layered example, and the resulting fitting quality is plausible,
according to pattern makers and the individual.
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Fig. 15. The maximum differences between automatically and manually
graded secretary dress patterns in Size 10, 12, and 14. This plot shows that,
in general, our method is more precise than the fixed point method.

An interesting ideawe have not explored yet is to optimize pattern
patches in batches. The outer layer of a garment is often stiffer and
it determines the overall garment shape more. This suggests that we
can optimize outer patches first, and then optimize inner patches
with the outer layer being fixed. We expect this idea to improve
both the result quality and the system performance.

8.3 Grading Tests
Our first real-world experiment is to test whether the system can
perform automatic grading to generate sewing patterns for other
standardized bodies. In this experiment, we use the standard forms
made by Alvanon®, whose measurements are accessible from the
Alvanon website [2018]. Since these bodies are standardized with
similar proportions, our grading results look promising and plausi-
ble, as shown in Fig. 1, 11, and 17.
To quantitatively evaluate our results, we compare them with

manually graded patterns using the distances between pattern land-
marks. Manually graded patterns are created by standard grading
rules and verified by human body tests, so they are sufficiently
precise. Fig. 15 shows that the maximum differences between auto-
matically andmanually graded results are less than 1.5cm. Therefore,
our results are also precise. In comparison, the results generated by
the fixed point method [Bartle et al. 2016] differ more significantly
from manual results. We note that manual results contain manmade
errors as well and they should not be simply treated as the ground
truth. But at least, the experiment indicates the precision of our
system is more reliable and acceptable for garment production.

One issue we noticed from the experiment that the system tends
to magnify existing artifacts in the base pattern, especially when
the target body is larger than the base body. For instance, a curvy
seam on the base garment will become more curvy on the adjusted
garment. This is because the system cannot identify artifacts and it
preserves them as design features instead. To avoid this problem,
we must develop the base pattern to meet a higher standard.

8.4 Made-to-Measure Tests
In the next experiment, we evaluate the ability of our system to
customize patterns for people with various body shapes and pro-
portions. This experiment involves two sewing pattern designs and
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(a) Base garment (b) Alex (ours) (c) Alex (rule-based) (d) Jenny (ours) (e) Jenny (rule-based) (f) Liu (ours) (g) Liu (rule-based)

Fig. 16. The made-to-measure results of the jumpsuit example. Compared with a rule-based system, our new system produces more plausible and consistent
jumpsuit patterns for people with different body shapes and proportions.

Table 2. Part of the fitting results of the jumpsuit example. This table shows
that our system suffers fewer minor and major fitting issues than our previ-
ous rule-based system. Major issues are highlighted in bold.

Name Our System Rule-based System

Alex

Small cuffs Long and tight sleeves
Excessive front rise Tight thighs (cannot sit)

Cannot move arms easily
Curved pants seams Curved pants seams
Excessive back top Excessive back top

Jenny

Small cuffs Long and tight sleeves
Cannot move arms easily

Curved pants seams Curved pants seams
Excessive back top Excessive back top

Liu

High arm drops Tight waist
Excessive hip Too long sleeves

Excessive back top
Loose chest
Short front top
Wrong shoulder slope

eight individuals, whose bodies are measured by hand with a 1/4
inch precision. Some of the individuals, such as Alex, have dispro-
portionate body shapes and struggle to find tightly fit garments in
the market. To perform sewing pattern adjustment, we use both our
system and a rule-based system, the latter of which requires pattern
makers to manually specify a number of rules, i.e., the relationships
between body measurements and pattern landmarks.

First, our patternmakers confirm that the pattern results produced
by both systems are balanced and free of noticeable errors. Next we
ask the individuals to wear the garments, as shown in Fig. 14 and 16,
and we evaluate the fitting quality together with the pattern makers,
the designers, and the individuals. Part of our results are shown in
Table 2. In general, the rule-based system suffers from many major
issues, such as long and tight sleeves, excessive wrinkles on the back,
and short rise that may even prevent the individual from wearing

the garment. These issues can be quickly identified by the pattern
makers and the designers, without feedbacks from the individuals.
Overall, the rule-based system is not satisfactory, as the rules overly
simplify the body-pattern relationship and fail to address many
important body shape aspects. In comparison, our system provides
better fits and our results are free of major issues. Our results do still
contain several minor issues, which we believe are largely caused
by insufficient body measurements, as listed below.

• Armholes. The fitting quality near the shoulders relies
on many measurements, including shoulder width, bicep,
shoulder slope, armhole circumference, and armhole drop.
Currently, our system considers shoulder width and bicep.

• Crotch. The fitting quality near the crotch affects the
sitting comfort. It can be affected by high hip, low hip, front
rise, and back rise. Currently, we use high hip and the total
rise only.

• Cuff, knee, and calf. The quality near the aforemen-
tioned regions requires not only more measurements, but
also more details on the body shape. It is also related to an
individual’s standing, sitting, and walking habits.

We would like to emphasize that our made-to-measurement ex-
periment is much more ambitious than it should be. In practice,
we can apply standard grading rules to obtain the standard-sized
pattern closest to the body first, and then perform customized pat-
tern adjustment from there. Since standard grading rules have been
well justified for standard-sized bodies, doing this should produce
better pattern results than our current practice does, which starts
the adjustment directly from the base pattern in Size 6.

8.5 Limitations
The greatest limitation of our pattern adjustment system is that it
depends heavily on the accuracy of the human body model. Hand
measurements have errors, and they can be inconsistent when they
are measured by different people. A natural solution is to build
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(a) Simulation (size 2, front) (b) Simulation (size 2, back) (c) Simulation (size 12, front) (d) Simulation (size 12, back)

(e) Bodysuit (size 2, front) (f) Bodysuit (size 2, back) (g) Bodysuit (size 12, front) (h) Bodysuit (size 12, back)

Fig. 17. The grading results of a bodysuit example. Unlike other garments, a bodysuit is designed to fit the body tightly and its fabric patches are constantly
stretched, when it is worn by the body.

the human body model from 3D scan. The problem though is that
the scanned waist is often larger than it should be, since the belly
tends to be more relaxed during the scanning process. An alterna-
tive solution is to use smart bodysuits with stretch sensors, such
as the ZOZOSUIT [2018]. While it addresses the waist issue, it can
be difficult to measure the chest with accuracy. Having said that,
3D scan and smart bodysuits are still advantageous for their consis-
tency and they can become more useful in the future, once they are
strengthened by measurement corrections.
So far, our system is developed for human bodies with limited

differences from the base body. If body differences are large, sewing
patterns may need to be significantly modified with remeshing. The
system does not consider complex fabric material properties. In
reality, pattern makers often develop different sewing patterns for
the same garment made of different fabrics. We are not sure how
significant the material factor is yet. Like many other line search
methods, our system suffers from the local minimum issue. This
issue is demonstrated when different initializations lead to different
results with similar objectives sometimes. Our system relies on its
simulator and it suffers from the same issues as the simulator does,
such as the locking issue. The simulator and the system are suitable
for single-layered garments and simple multi-layered garments. We
expect the modeling, simulation, and optimization of complex multi-
layered garments, such as multi-layered wedding dresses, to be
much more difficult. Our system does not consider the consistency
of fabric textures along seams, and it may cause fabric textures
to become mismatched after optimization. To address this issue,

we must introduce texture-specific regularization terms. Currently,
we ask pattern makers to manually create annotations and seam
allowances, both of which are required for production.

9 CONCLUSIONS AND FUTURE WORK
In this paper, we present a novel and practical system that cus-
tomizes sewing patterns for a new target human body, without any
user-specified rule. This is achieved by using a series of generic cost
functions to describe the fitting quality of a garment and formulat-
ing pattern adjustment into a parameter optimization problem. Our
work reveals that many nonlinear optimization ideas are applicable
to the development of this system, and our experiment confirms its
effectiveness and efficiency in handling various pattern designs.
We are interested in using more accurate elastic models in our

simulator, once elasticity measurement of cloth becomes more pre-
cise and accessible. To do so, we can simply replace the elastic energy
in Equation 5 by a hyperelastic strain energy. The stretching cost
function can be modified to use a continuum-based model as well,
if we replace stretching ratios by deformation gradients.
In the near future, we plan to address the imminent issues re-

lated to garment production, such as annotation, seam allowance,
fabric material, and additional regularization and cost functions.
We then would like to study pattern adjustment for more body
types, especially plus-sized bodies. To put our system into practical
use, we need more system evaluations and fitting tests. In the long
term, we plan to investigate automatic sewing pattern development
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and adjustment from designs, rather than base patterns. If success-
fully deployed, such a technique will greatly shorten the production
process from design to manufacturing.
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