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Fig. 1. A shirred dress example with 7.3M vertices and 14.6M triangles. In such a high resolution, we claim that it is more plausible to build a mesh with
an underlying grid structure, which can benefit well from graphics hardware both computation-wise and memory-wise. Based on this idea, our system
accomplishes fast simulation of fine wrinkle details on top of the coarse mesh input with 28K vertices in (a), under one second per frame. This is almost one
order-of-magnitude faster than state-of-the-art GPU-based cloth simulators [Li et al. 2020; Wu et al. 2020].

In this paper, we study physics-based cloth simulation in a very high reso-
lution setting, presumably at submillimeter levels with millions of vertices,
to meet perceptual precision of our human eyes. State-of-the-art simula-
tion techniques, mostly developed for unstructured triangular meshes, can
hardly meet this demand due to their large computational costs and memory
footprints. We argue that in a very high resolution, it is more plausible to
use regular meshes with an underlying grid structure, which can be highly
compatible with GPU acceleration like high-resolution images. Based on
this idea, we formulate and solve the nonlinear optimization problem for
simulating high-resolution wrinkles, by a fast block-based descent method
with reduced memory accesses. We also investigate the development of the
collision handling component in our system, whose performance benefits
greatly from the grid structure. Finally, we explore various issues related to
the applications of our system, including initialization for fast convergence
and temporal coherence, gathering effects, inflation and stuffing models,
and mesh simplification. We can treat our system as a quasistatic wrinkle
synthesis tool, run it as a standalone dynamic simulator, or integrate it into a
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multi-resolution solver as an additional component. The experiment demon-
strates the capability, efficiency and flexibility of our system in producing a
variety of high-resolution wrinkles effects.
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1 INTRODUCTION
Thanks to the boost of graphics hardware, researchers have signifi-
cantly improved the runtime performance of physics-based cloth
simulation in recent years. For instance, Wu et al. [2020] demon-
strated the ability of their simulator in handling a cloth mesh with
297K vertices at 10 to 14 FPS on a single NVIDIA GeForce 2080 Ti
GPU, and Li et al. [2020] accomplished the simulation of a cloth
mesh with 825K vertices at 2.48 FPS on four NVIDIA Titan Xp GPUs.
Unfortunately, there is still a noticeable gap between the simula-
tion and the reality, in terms of fine wrinkle details as shown in
Fig. 2a and 2c. An effective way of closing this gap is to increase
the mesh resolution. But as the resolution increases, not only the
number of vertices grows, but also the simulation system stiffens.
In the past, researchers have considered the idea of adjusting the
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(a) Coarsened result (4mm) (b) Our result (0.4mm) (c) Photograph

Fig. 2. The shirred dress results rendered at millimeter and submillimeter
levels, in comparison with a photograph in (c). This figure demonstrates the
necessity of using high-resolution meshes for modeling fine wrinkles.

mesh resolution adaptively [Li and Volkov 2005; Narain et al. 2012],
but that introduces even more problems, such as the difficulty of
formulating suitable adjustment criteria and the incompatibility
with graphics hardware. In general, most of the cloth simulators are
poorly scalable1 to the mesh resolution.
In this work, we would like to address an interesting yet chal-

lenging problem: can we develop a fast physics-based system for
simulating very high-resolution cloth wrinkles on a GPU? More specif-
ically, we set the target resolution at submillimeter levels, which
is sufficient for meeting the precision of human perception from
a social distance. The use of such a system is multi-folded: it can
synthesize high-resolution wrinkles quasistatically on top of exist-
ing coarse meshes, as discussed mostly in this paper; it can work
as a standalone dynamic simulator for animation production; or it
can serve as an extra component in a multi-resolution simulator for
fine details. Fulfilling the development of such a system is not easy.
Existing cloth simulators based on state-of-the-art techniques are
just able to handle the mesh resolution at millimeter levels, in other
words, approximately 10K to 1M vertices for normal-sized clothing.
Increasing the resolution from millimeter levels to submillimeter
levels means there are two orders-of-magnitude more vertices, way
beyond the capability of existing simulation techniques.
The main idea behind our work comes from the observation

that graphics hardware has a long and successful history of high-
resolution image processing. The performances of GPU-based image
processing algorithms rely heavily on the regular grid structure of
image pixels, which is highly suitable for parallelization within
2D thread blocks. This observation motivates us to consider the
use of regular grid meshes for high-resolution cloth simulation
as well, which is not a common practice in computer graphics to
our knowledge. The reason people choose unstructured meshes
over structured meshes is simple: unstructured meshes provide
more flexibility in representing cloth boundaries, especially in a
low resolution. But since we are now dealing with high-resolution
models, the boundary issue becomes less important and we are able
to explore the full benefit of the regular grid structure.
Toward the development of our system, we make the following

technical contributions.
• Nonlinear optimization. Based on the regular grid structure
of our meshes, we derive a compact form of the nonlinear

1The simulators can still be linearly scalable to the number of vertices as long as the
resolution stays the same, for example, by expanding the cloth area.

wrinkle optimization problem, with adjustable boundary con-
ditions for sewing line effects, as shown in Fig. 6. Similar to
the performances of other simulators, the performance of our
simulator depends on both memory footprints and compu-
tational workload. While we cannot significantly reduce the
workload, we invent an effective block-based descent method
for fewer global and shared memory accesses.

• Collision handling. We investigate the handling of cloth-
body and cloth self collisions, as a critical component in the
aforementioned optimization process. Due to an enormous
number of vertices in our meshes, we choose to use the pop-
ular GPU-based vertex repulsion method. We then focus our
research on fast vertex proximity search, again relying on the
regular grid structure.

• Application-related topics. To make our system practically
useful, we study a variety of topics related to its potential ap-
plications. This includes the initialization approaches for fast
convergence and temporal coherence, interactive modifica-
tion to the reference mesh for gathering effects, inflation and
stuffing models for multi-layered effects without modeling
multiple layers, and quadtree-based mesh simplification for
reducing the mesh size.

We implement our physics-based simulation system entirely on a
GPU. We evaluate its main usage as a quasistatic high-resolution
wrinkle synthesis tool for existing coarse meshes as shown in Fig. 1,
but we also test its capability of functioning as a standalone dynamic
simulator as discussed in Subsection 7.6. Our experiment shows the
system is almost one order-of-magnitude faster than state-of-the-art
generic cloth simulators, flexible enough to produce wrinkles for
gathering and inflation effects as shown in Fig. 13, and adaptive to
various simulation and synthesis tasks.

2 PREVIOUS WORK

Physics-based cloth simulation. Physics-based cloth simulation
has been a fascinating topic for graphics researchers and developers
for decades, thanks to its potential in entertainment and fashion
applications. Since the seminal work by Terzopoulos et al. [1987],
researchers have studied a variety of elastic models for represent-
ing cloth dynamics, including mass-spring models [Choi and Ko
2002; Liu et al. 2013], finite element models [Baraff and Witkin 1998;
Narain et al. 2012] and yarn-based models [Cirio et al. 2014; Kaldor
et al. 2010]. Regardless of these models, cloth simulation is always
haunted by a major issue: the computational cost. The early effort
made by researchers is to adopt implicit time integrators [Narain
et al. 2012; Volino et al. 2009], instead of explicit ones [Bridson et al.
2003; Selle et al. 2009], so that a simulator can take large time steps
with numerical stability. To stably simulate cloth with stiff behaviors,
researchers have also explored the idea of replacing cloth elasticity
by position-based techniques, such as strain limiting [Provot 1995;
Thomaszewski et al. 2009; Wang et al. 2010b] and position-based
dynamics [Müller 2008; Müller et al. 2014]. Liu et al. [2013] and
Bouaziz et al. [2014] noticed the relationship between cloth elas-
ticity and position-based techniques, and used that to build a new
technique known as projective dynamics. Narain et al. [2016] and

ACM Trans. Graph., Vol. 1, No. 1, Article 169. Publication date: April 2021.



GPU-Based Simulation of Cloth Wrinkles at Submillimeter Levels • 169:3

xtcu
rr

en
t f

ra
m

e

argmin

resampling initialization

elasticity collision+ inflation+ + …

nonlinear optimization simplification

−

yt x x(0)

from the previous frame

to the next frame

Fig. 3. The pipeline of our system as a quasistatic wrinkle synthesis tool. Given a coarse unstructured mesh input y𝑡 , the system resamples the reference
space by a regular grid to build a high-resolution cloth mesh x̄. It then runs an initialization step to estimate wrinkles on the mesh, and solves a nonlinear
optimization problem to generate wrinkle details. The system can also simplify the high-resolution output into a compact form for further processing.

Wang [2015] pointed out projective dynamics is basically a special
optimization method solving the nonlinear cloth simulation prob-
lem. While this discovery alone does not resolve any computational
issue, it opens the door to the development of many GPU-based
cloth simulators [Fratarcangeli et al. 2016; Wang and Yang 2016;
Wang et al. 2018; Wu et al. 2020] with large time steps.

Besides the cloth dynamics solver, collision handling of cloth,
especially self collision handling, is another major contributor to
the overall simulation cost. Most of the existing collision handling
techniques, including both continuous [Bridson et al. 2002; Harmon
et al. 2008; Provot 1997] and discrete ones [Baraff et al. 2003; Buffet
et al. 2019; Volino and Magnenat-Thalmann 2006], depend heavily
on sequential and reduction operations. Parallelizing and acceler-
ating these techniques on GPUs [Lauterbach et al. 2010; Tang et al.
2016, 2018] is possible but difficult, and the accelerated performance
still has room for improvement. Meanwhile, GPU-based cloth sim-
ulators [Fratarcangeli et al. 2016; Macklin et al. 2014; Stam 2009]
often choose to use the vertex repulsion method, which is simple,
efficient, but risky, due to no strict protection against penetrations.
Wu et al. [2020] solved this issue by the use of dual state vectors
and two collision phases, at the expense of extra computational
workload and implementation effort.

In summary, graphics researchers have made substantial progress
in physics-based cloth simulation lately, but state-of-the-art sim-
ulators are still barely capable of achieving real-time simulation
performance even at millimeter levels, with approximately 10K to
1M vertices. We also note that previous simulators [Choi and Ko
2002; Selle et al. 2009] typically do not differentiate regular grid
meshes too much from unstructured meshes, in terms of their al-
gorithms. Villard et al. [2005] applied the adaptive remeshing idea
to regular gird meshes. Goldenthal et al. [2007] chose grid meshes
to address the locking issue in inextensibility enforcement. Tang
et al. [2013] and Schmitt et al. [2013] used regular grid meshes to
simplify matrix and connectivity representations. Pall et al. [2018]
adopted red-black ordering of a quadrilateral mesh for fast Gauss-
Seidel projective dynamics. As far as we know, no research has
extensively explored the computational benefit of the regular grid
structure in cloth simulation yet.

Data-driven wrinkle synthesis. Since cloth simulation is so
expensive as the mesh resolution increases, a natural idea is to syn-
thesize fine wrinkles on top of the coarse mesh input generated by

simulation, sculpturing or skinning. Early techniques [Kim et al.
2013; Wang et al. 2010a; Xu et al. 2014] based on this idea are of-
ten known as data-driven, i.e., predicting wrinkles and secondary
effects from a large data set, even on different deforming human
bodies [Guan et al. 2012; Pons-Moll et al. 2017]. In recent years,
researchers [Chentanez et al. 2020; Jin et al. 2020; Lähner et al. 2018]
started becoming interested in using data to train deep neural net-
works for wrinkle synthesis. Some researchers [Neophytou and
Hilton 2014; Patel et al. 2020; Santesteban et al. 2019; Vidaurre et al.
2020; Yang et al. 2018] have explored an even more ambitious idea:
using deep neural networks to infer the whole clothing shapes with
wrinkles. In general, these non-physics-based wrinkle synthesis
techniques are good at interpolation, but not at extrapolation. To
produce plausible results, they often need an enormous volume of
data to cover the rich and complex clothing shape space, which poses
many challenges in data acquisition. The acquisition issue becomes
even more intractable, once we start to consider high-resolution
data at submillimeter levels. Our system can work as a powerful
data generation engine for future research in this field.

3 OVERVIEW
In most part of this paper, we will consider the main use of our
physics-based simulation system to be an offline quasistatic wrinkle
synthesis tool for existing coarse mesh inputs, similar to [Bergou
et al. 2007; Müller and Chentanez 2010]. The key strength of this
tool is that it places little restriction on the coarse mesh input and
it allows an arbitrarily large time gap Δ𝑡 between two consecutive
frames. In our experiment, we perform wrinkle synthesis on each
rendered frame selected from every three simulated frames for a
faster playback speed. In other words, the time gap is three times
the actual time step used by coarse simulation.

Fig. 3 illustrates the pipeline of our current system. The input to
this system is a coarse unstructured triangular mesh y𝑡 at time 𝑡 ,
either simulated by a physics-based engine or keyframed by artists,
with non-overlapping patches in the reference space. To construct
the high-resolution mesh for wrinkle synthesis, we first overlay a
high-resolution 2D grid on top of the reference patches, detect every
grid vertex inside of the patches, and find the coarse patch triangle
containing it. We then use barycentric interpolation to resample the
position of every interior grid vertex in the deformed space. These
vertices form a resampled mesh in both the deformed space and the
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(a) Planar (b) Bending (odd) (c) Bending (even)

Fig. 4. Mesh tessellations used by planar and bending elastic models. Dif-
ferent from the tessellation used by planar elasticity in (a), the tessellation
used by bending elasticity is interleaved to avoid biased bending resistance
as shown in (b) and (c).

reference space. For simplicity, we name the originally resampled
mesh in the deformed space the original mesh and we denote its
stacked vertex positional vector by x̄ ∈ R3𝑁 , in which 𝑁 is the
number of vertices. The system then runs an initialization step to
transfer wrinkles from the result x𝑡−Δ𝑡 at the previous frame to x̄ at
the current frame, which produces an initialization x(0) . Given the
initialization, the system solves a nonlinear optimization problem in
the synthesis step to address a series of objectives, including elastic-
ity, collision and inflation. The optimized result is a high-resolution
mesh with synthesized wrinkle details. Finally, to make the output
mesh size suitable for sharing, rendering and future processing, the
system provides a quadtree-based mesh simplification step.

The key challenge in the development of our system comes from
the sheer size of our high-resolution mesh. By default, our system
uses a 4,096×4,096 grid and sets the grid cell size between 0.4 and
0.6mm for highly detailed wrinkles. This means the number of
vertices, 𝑁 , can be as large as 16M, and it is typically between
6M and 8M as shown in Table 1. Most of the existing simulation
techniques have difficulty in handling so many vertices at such a
high resolution level. Fortunately, since the mesh is built from a
regular grid, we can explore the grid structure to optimize memory
accesses and to reduce computational costs.

We note that the aforementioned pipeline provides only one use
of our system. In subsection 7.6, we will show that our system is
capable of working as a standalone dynamic simulator, by introduc-
ing additional terms into the optimization objective. Similarly, we
can modify our system to become a component integrable into a
multi-resolution simulator, such as geometric and algebraic multi-
grids [Lee et al. 2010; Oh et al. 2008; Tamstorf et al. 2015] and non-
linear multigrid with the full approximation scheme (FAS) [Wang
et al. 2018].

4 NONLINEAR OPTIMIZATION
To begin with, we consider the simulation of cloth wrinkles as an
unconstrained nonlinear optimization problem:

x = arg min 𝐹 (x), (1)

in which x ∈ R3𝑁 is the stacked positional vector of 𝑁 vertices and
𝐹 (x) is the objective function. For simplicity, we consider 𝐹 (x) to
include only elastic potentials in this section, which turns Eq. 1 into
a quasistatic simulation problem. We will discuss more potentials
for various effects and dynamic simulation in other sections.
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Fig. 5. The initially resampled mesh contains only the grid vertices (in dark)
inside of the patches (in purple), as shown in (a). To simulate sewing line
details, we enrich the boundaries with ghost grid vertices (in gray), whose
3D positions are calculated to form a specified angle with the patch interior.

4.1 Elastic Potentials
Given the original mesh constructed from a 2D regular grid, we
build planar elasticity upon the positional relationship between
each vertex and its six neighbors, as shown in Fig. 4a. Currently, our
system supports two planar elastic models: the mass-spring model
and the triangular finite element model. Under the mass-spring
model, we calculate the rest lengths of the six edges for each vertex
and store them as half floats into a list. Under the triangular finite
element model, we store the six rest edge vectors into a list and use
them to calculate the deformations of the six triangles.
To handle bending elasticity, our current system uses the qua-

dratic bending model [Bergou et al. 2006], which relies on the rela-
tionship among the four vertices of two adjacent triangles. Although
we can use the same triangle tessellation as in Fig. 4a, we choose
not do so because it can cause biased bending resistance. Instead,
we choose an interleaved tessellation as shown in Fig. 4b and 4c, in
which an odd vertex is related to its twelve neighbors while an even
vertex is related to its eight neighbors. We calculate the quadratic
bending weights of these neighbors and store them as half floats
into a list for every vertex.

If the mesh is unmodified in its reference configuration, the afore-
mentioned lists storing elastic constants are the same for all of the
vertices and there is no need to assign different lists to different
vertices as in [Tang et al. 2013]. Instead we allow the same lists to
be shared in the constant memory, resulting in significantly lower
memory access costs. Having said that, we will show how a user
can interactively modify the reference mesh in Subsection 6.2. In
the modified regions, elastic constant lists are no longer the same
and must be stored in the global memory.

4.2 Boundary Conditions
We consider two types of boundary conditions at cloth patch bound-
aries: open and closed.
According to the resampling procedure in Section 3, all of the

patch boundaries are initially open: the mesh contains only those
grid vertices inside of the patches, as shown in Fig. 5a. As a result,
grid vertices near open boundaries do not have enough neighbors
for the elastic models in Subsection 4.1. Instead of modifying elastic
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(a) 𝜃 = 0 (b) 𝜃 = 𝜋/4 (c) 𝜃 = 𝜋/2

Fig. 6. The sewing lines formed by closed patch boundaries with different
angle values. A greater angle value tends to produce curvy and bumpy
boundaries, as shown in (c).

constant lists, we use the same lists and assume that non-existing
neighbors are identical to the central vertex in the kernel function.
We found this to be faster than using multiple versions of elastic
constant lists.

We can turn a patch boundary into a closed one, by procedurally
generating a narrow band of ghost vertices surrounding it. Doing
this not only addresses the missing neighbor issue, but also enables
the creation of sewing line details caused by different sewing meth-
ods. Specifically, for each ghost vertex r𝑔 within the narrow band
in the 2D reference space, we calculate its local coordinates2 with
respect to the local space of its closest interior vertex r𝑖 :

𝑎𝑡 = (r𝑔 − r𝑖 ) · t(r𝑖 ), 𝑎𝑠 = (r𝑔 − r𝑖 ) · s(r𝑖 ), (2)

where t(r𝑖 ) and s(r𝑖 ) are the tangent and the binormal at r𝑖 . We then
compute the new vertex position x𝑔 in 3D, which forms a specified
angle 𝜃 at the closest interior vertex x𝑖 , as Fig. 5b shows:

x𝑔 = x𝑖 + cos𝜃
(
𝑎𝑡 t(x𝑖 ) + 𝑎𝑠s(x𝑖 )

)
− sin𝜃

√︃
𝑎2
𝑡 + 𝑎2

𝑠n(x𝑖 ), (3)

in which n(x𝑖 ), t(x𝑖 ) and s(x𝑖 ) are the normal, the tangent and
the binormal at x𝑖 . In our system, a user can either specify ghost
vertices only once before wrinkle optimization, which makes the
sewing lines unmovable, or update them from time to time. Fig. 6
shows the simulated results with different angle values.
We note that if patch boundaries at a sewing line are open, or if

patch boundaries at a sewing line are closed with updated ghost
vertices, wemust apply position-based constraints on corresponding
boundary vertices during wrinkle optimization, to keep patches
stitched together.

4.3 A Block-Based Descent Method
The main challenge involved in the development of our system is
how to solve the optimization problem in Eq. 1. Fig. 7a shows that
gradient descent preconditioned by diagonal Hessian [Wang and
Yang 2016], serving as our baseline method, converges slowly as
expected. We can apply two immediate improvements on gradient
descent. First, we can adopt Chebyshev acceleration [Wang 2015],
which improves the convergence rate as Fig. 7a shows. Second, we
can use shared memory within each non-overlapping GPU thread
block, naturally created from grid partitioning. However the exper-
iment reveals that the use of shared memory increases the speed

2Theoretically, 𝑎𝑡 should be zero if r𝑖 is the exact closest point on the continuous patch
boundary. But since r𝑖 , t(r𝑖 ) and s(r𝑖 ) are all discretely calculated, 𝑎𝑡 may be not zero.
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Fig. 7. Convergence rates and speeds of different methods. Compared
with the (preconditioned) gradient, the search direction calculated by
our block-based approach reduces the optimization objective more effec-
tively with a low computational overhead. Based on this approach, our
block-based descent method outperforms gradient descent as shown in
(a) and (b), both with Chebyshev acceleration. Our approach can also
work as a preconditioner for improving the performance of nonlinear
PCG. By default, we use the shirred dress example for convergence anal-
ysis in this paper. We define the relative error in the 𝑘-th iteration as:(
𝐹 (x(𝑘 ) ) − 𝐹 (x∗)

)
/
(
𝐹 (x(𝑘 ) ) − 𝐹 (x∗)

)
, in which x∗ is the exact solution

estimated after a large number of iterations.

by only four percent. The reason shared memory fails to greatly
improve the performance is because each block needs to load its part
from global memory into shared memory in every single iteration,
which compromises the benefit of shared memory. In contrast, if
the block is able to cover all of the vertices, we can load shared
memory once for all and execute the iterations inside of the kernel
function. This practice is feasible only when the number of vertices3
is small [NVIDIA 2021].

While we are unable to load millions of vertices into shared mem-
ory at once, we are intrigued by an interesting question: what if we
run 𝐿 inner iterations just for the threads in the same non-overlapping
GPU block, so that these iterations can reuse the shared memory data
being loaded only once? This idea is closely related to domain de-
composition techniques [Widlund and Toselli 2004], especially the
nonlinear additive Schwarz method [Brune et al. 2015]. Since we
treat non-overlapping blocks as subdomains, we name this idea the
block-based approach and we combine it with gradient descent to
form a block-based descent method. Basically, the method updates
all of the blocks in parallel, and the update of each block involves

3The total amount of shared memory per block is 49,152 bytes on an NVIDIA GeForce
GTX 2080 Ti GPU, which is enough for storing 4,096 vertex positions at most.
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𝐿 inner gradient descent iterations. Let x𝐵 be the stacked vertex
vector of block 𝐵, as a sub-vector of x = {. . . , x𝐵−1, x𝐵, x𝐵+1, . . . }.
The update of x𝐵 in the 𝑙-th inner iteration is:

x[𝑙+1]
𝐵

= x[𝑙 ]
𝐵
− 𝛼P−1

𝐵

(
x[𝑙 ]
𝐵

)
g𝐵

(
x[𝑙 ]
𝐵

)
, (4)

in which 𝛼 is the step size, P𝐵 (x𝐵) = P𝐵
(
. . . , x[0]

𝐵−1, x𝐵, x
[0]
𝐵+1, . . .

)
is

the positive definite preconditioner matrix of block 𝐵, and g𝐵 (x𝐵) =
∇𝐵𝐹

(
. . . , x[0]

𝐵−1, x𝐵, x
[0]
𝐵+1, . . .

)
is the gradient of block 𝐵. In our ex-

periment, the preconditioner is the diagonal of the Hessian matrix.
Alg. 1 provides the pseudo code of this method. For simplicity, we

omit the details related to Chebyshev acceleration, which effectively
accelerates both inner and outer iterations. Here the block width is
𝑊 and the width of the shared memory data is𝑊 + 4, because the
update of each vertex needs the vertices in the 2-ring neighborhood
according to Subsection 4.1.
To understand why the block-based descent method works, let

us consider its difference from gradient descent. Assuming that the
gradient and the Hessian are continuous, we know if:

x[𝑙 ]
𝐵

= x[0]
𝐵
− 𝑙𝛼P−1

𝐵

(
x[0]
𝐵

)
g𝐵

(
x[0]
𝐵

)
+𝑂 (𝛼2), (5)

then 
P−1
𝐵

(
x[𝑙 ]
𝐵

)
= P−1

𝐵

(
x[0]
𝐵

)
+𝑂 (𝛼),

g𝐵
(
x[𝑙 ]
𝐵

)
= g𝐵

(
x[0]
𝐵

)
+𝑂 (𝛼),

(6)

which leads to

x[𝑙+1]
𝐵

= x[0]
𝐵
− (𝑙 + 1)𝛼P−1

𝐵

(
x[0]
𝐵

)
g𝐵

(
x[0]
𝐵

)
+𝑂 (𝛼2). (7)

Together, the overall update of x after applying 𝐿 inner iterations to
all of the blocks is:

x[𝐿] = x[0] − 𝐿𝛼P−1
diag

(
x[0]

)
g
(
x[0]

)
+𝑂 (𝛼2). (8)

in which Pdiag (x) = diag
(
. . . , P𝐵 (x) , . . .

)
is the positive definite

block-based preconditioner matrix. When 𝛼 is sufficiently small,
−P−1

diag

(
x[0]

)
g
(
x[0]

)
+𝑂 (𝛼) must be a valid descent direction and

the method must be convergent. In reality, 𝑂 (𝛼) is not always the
trouble. Since we obtain the search direction from 𝐿 inner iterations,
we expect it to outperform the (preconditioned) gradient, but be out-
performed by the joint direction from 𝐿 (preconditioned) gradient
descent updates, as shown in Fig. 7a.

An important question is how to decide 𝐿 and 𝛼 . We want a large
𝐿 to minimize the transfer from global memory to shared memory,
but we cannot make 𝐿 too large, or the error will force 𝛼 to decrease
by step size adjustment. If we compare our search direction with the
direction from 𝐿 gradient descent updates, we see that the difference
is due to block boundaries. This suggests 𝐿 to be proportional to the
block width𝑊 . In our experiment, when𝑊 = 8, 𝐿 = 8 without inner
Chebyshev acceleration or 𝐿 = 4 with inner Chebyshev acceleration,
we can use 𝛼 = 0.4 in most of the examples without triggering step
size adjustment.

4.3.1 Reduced shared memory accesses. So far we have discussed
the use of inner iterations to reduce global-shared memory transfer,
for maximizing the benefit of shared memory. An interesting follow-
up question is: can we further reduce shared memory accesses in

ALGORITHM 1: A Block-Based Descent Method
Input: The original mesh x̄, the block width𝑊 , the number of outer

iterations 𝐾 , the number of inner iterations 𝐿.
x(0) ←Initialize(x̄, ...);
for 𝑘 = 0...𝐾 − 1 do

for each non-overlapping thread block 𝐵 do
__shared__ X[𝑊 +4][𝑊 +4];
Global_to_Share_Transfer(X, x(𝑘 ) , B,𝑊 );
__syncthreads();
x[0]
𝐵
← X[2:𝑊 +1][2:𝑊 +1];

for 𝑙 = 0...𝐿 − 1 do
x[𝑙+1]
𝐵

← x[𝑙 ]
𝐵
− 𝛼P−1

𝐵
(X)g𝐵 (X) ;

X[2:𝑊 +1][2:𝑊 +1]← x[𝑙+1]
𝐵

;
__syncthreads();

end
temp𝐵 ← X[2:𝑊 +1][2:𝑊 +1];

end
x(𝑘+1) ← temp;

end
return x(𝐾 ) ;

every inner iteration? Our answer to this question comes from the
observation that out of the twelve (or eight) neighbors needed for
each vertex update, the six (or two) solely related to bending are
outside of the 1-ring neighborhood and their contributions are small,
as shown in Subsection 4.1. Therefore, we propose to use their old
positions at the beginning of the kernel function and formulate this
technique as follows:

∇𝑖𝐹bend
(
x[𝑙 ]
𝐵

)
=

∑︁
𝑗∉N𝑖

𝑤𝑖 𝑗x
[0]
𝑗
+

∑︁
𝑗 ∈N𝑖

𝑤𝑖 𝑗x
[𝑙 ]
𝑗
−
∑︁
𝑗

𝑤𝑖 𝑗x
[𝑙 ]
𝑖

, (9)

in which ∇𝑖𝐹bend is the gradient of the bending potential 𝐹bend at
vertex 𝑖 ,𝑤𝑖 𝑗 is the quadratic bending weight between vertex 𝑖 and
𝑗 , and N𝑖 is the 1-ring neighborhood. Since the leftmost term of
Eq. 9 is constant in all of the inner iterations, we precompute it
at beginning of the kernel with only six (or two) shared memory
accesses. A little bit to our surprise, this technique improves both
the convergence rate and the cost per iteration, although the overall
improvement is not so significant as shown in Fig. 7.

4.3.2 Nonlinear preconditioned conjugate gradient (PCG). We
can also view our block-based approach as a preconditioner for
other optimization methods, such as nonlinear preconditioned con-
jugate gradient. Fig. 7 shows such a block-based nonlinear PCG
method outperforms the original nonlinear PCG method, both pre-
conditioned by diagonal Hessian. Fig. 7 also shows nonlinear PCG
runs slower than accelerated gradient descent, without and with the
block-based approach, for two reasons. First, nonlinear PCG needs
frequent restart to eliminate the divergence risk, especially in the
first few iterations. In our experiment, we restart nonlinear PCG ev-
ery 14 outer iterations. Second, nonlinear PCG needs one reduction
per outer iteration, which causes 50 percent more cost. We note that
these problems can possibly be addressed by more sophisticated
schemes, but they are beyond the scope of this research.
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(a) Without cloth-body collision handling (b) With cloth-body collision handling

Fig. 8. The mini dress example without and with cloth-body collision han-
dling. Our system applies a fast way to handle cloth-body collisions, by
using a half plane to approximate the local body around each cloth vertex.

5 COLLISION HANDLING
In this section, we will introduce the next important component:
collision handling. Collision handling is notoriously known for its
large cost, even for low-resolutionmeshes. Since we are dealing with
meshes with millions of vertices, we do not have the luxury of using
existing techniques developed for unstructured meshes. Instead we
must explore the advantage of the underlying grid structure and
find a balance between the efficiency and the accuracy.

5.1 Cloth-Body Collision Handling
Many existing GPU-based cloth simulators handle cloth-body col-
lisions as a projection step at the end of every iteration, typically
by the level set method. We would like to use the projection step
at the end of every inner iteration as well, but we cannot afford
running the level set method for millions of vertices. Instead we
approximate the local body surface near x𝑖 as a plane specified by
x̂𝑖 and n̂𝑖 =

(
x(0)
𝑖
− x̂𝑖

) /

x(0)
𝑖
− x̂𝑖



, in which x̂𝑖 is the projection of

x(0)
𝑖

on the body surface by the level set method. We then formulate
the projection step as:

x𝑖 ← x𝑖 +max
(
− (x𝑖 − x̂𝑖

)
· n̂𝑖 , 0

)
n̂𝑖 . (10)

Under the assumption that vertices do not slide much during wrin-
kle optimization, our method has demonstrated its effectiveness as
shown by the mini dress example in Fig. 8. Under the same assump-
tion, we can further eliminate the projection step and its cost for any
vertex originally far from the body, i.e.,

(
x(0)
𝑖
− x̂𝑖

)
· n̂𝑖 ≫ 0. We note

that since n̂𝑖 and x̂𝑖 · n̂𝑖 are constant in Eq. 10, we can precompute
them to lessen the memory access cost.

5.2 Cloth Self Collision Handling
Similar to other GPU-based simulators, our simulator uses the vertex
repulsionmethod to push two vertices apart, if they are too close and
they are not in each other’s 1-ring neighborhood. Mathematically,
we describe this as an additional potential to 𝐹 (x):

𝐹 self𝑖 𝑗 (x) =
𝜅self

2
max

(
𝑅self −



x𝑖 − x𝑗 

 , 0)2
, (11)

for any 𝑖 and 𝑗 satisfying 𝑖 ∉ N𝑗 and 𝑗 ∉ N𝑖 , in which 𝜅self is
the collision strength coefficient and 𝑅self is the collision distance
threshold. The vertex repulsionmethod is known for two limitations.
First, it cannot resolve existing self intersections. Second, it cannot
strictly prevent self collisions, especially when vertices move too
fast or triangles stretch too much. Fortunately, these limitations are
not so problematic in our system as shown in Fig. 10, under the
assumption that the coarse mesh input is intersection-free and the
step size is sufficiently small.

5.3 Proximity Search

Fig. 9. Collision blocks. The
central block (in gray) forms
block pairs with other colored
blocks, including itself, if their
bounding spheres intersect.

The bottleneck of the vertex repulsion
method is to find those vertices close
to each other, i.e., proximity search.
To perform fast proximity search over
millions of vertices, we design a novel
GPU-basedmethod specifically for our
structured meshes. Our key idea is
to use collision blocks, rather than
vertices, as the basic elements of a
spatial-partitioning grid, so that we
can reduce the workload of spatial-
partitioning to a tractable level. In our
system, we define collision blocks as
non-overlapping squares of 4×4 ver-
tices. We calculate the bounding spheres of collision blocks, and
construct the spatial-partitioning grid with its cell size equal to the
maximal bounding sphere radius. In this way, we can easily perform
broad-phase culling by checking every two blocks in adjacent grid
cells, and store those block pairs with intersecting bounding spheres
into a list. One issue is that the list can be too long to build by atomic
operations on a GPU, given the fact that neighboring pairs are likely
to have intersecting bounding spheres and there are millions of such
pairs. To address this issue, we classify the pairs into two categories
as shown in Fig. 9:
• A block forms a long-range pair with another block (in or-
ange), if their bounding volumes intersect and they are not
neighbors.
• A block forms a short-range pair with another block (in blue),
if they are neighbors. We view a block as its own neighbor,
so it forms a short-range pair with itself as well.

During broad-phase culling, we consider only long-range pairs and
we store them into the list. Compared with the number of short-
range pairs, the number of long-range pairs is much smaller, typi-
cally under 10K in our experiment4.
4Long-range pairs can be much more common in more complex collision cases, such
as multi-layered clothing. But they should still be fewer than short-range pairs.
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(a) Without cloth self collision handling (b) With cloth self collision handling

(c) Closeup (top) (d) Closeup (bottom) (e) Closeup (top) (f) Closeup (bottom)

Fig. 10. The body-con dress example without and with applying cloth self
collision handling. Specifically designed for regular grid meshes, our GPU-
friendly vertex repulsion method allows our system to protect its results
from self intersections, as shown in (b), (d) and (f).

After broad-phase culling, we use two kernel functions to detect
any two vertices whose distance is below the collision threshold
𝑅self . The first kernel function tests every two vertices from the two
blocks in each long-range pair, while the second kernel function
tests every two vertices from each block and its neighbor, i.e., a
short-range pair. Since the proximity relationship is mutual, we
launch the second kernel for only half of each block’s neighbors,
including those dark blue ones in Fig. 9 and itself, which cuts the
cost of the second kernel by half. We store each detected vertex pair
into the proximity lists of the two vertices and use these proximity
lists to provide collision handling in the optimization process.

6 APPLICATION-RELATED TOPICS
Given the basic system outlined in Section 4 and 5, we would like
to discuss the remaining issues involved in the system pipeline in
Fig. 3 next. These issues include initialization for fast convergence
and temporal coherence (in Subsection 6.1), gathering effects (in
Subsection 6.2), inflation effects (in Subsection 6.3) and GPU-based
mesh simplification (in Subsection 6.4).

6.1 Initialization
In this subsection, we will discuss the initialization approaches for
the wrinkle optimization process. A good initialization x(0) serves
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Fig. 11. The convergence behaviors of the wrinkle optimization process,
without and with using the temporal wrinkle transfer approach. The figure
shows that the use of this approach allows the optimization to reach a
smaller residual error after the same number of iterations.

two purposes: to help the optimization reach its convergence fast;
and to achieve temporal coherence when the system handles a
sequence of simulated coarse meshes.

6.1.1 Temporal wrinkle transfer. When the system handles a
simulated coarse animation sequence, it is natural to consider trans-
ferring synthesized wrinkles from the previous frame to the current
frame as an initialization. Let x̄𝑡−Δ𝑡 and x𝑡−Δ𝑡 be the originally re-
sampled mesh and the synthesized final mesh at the previous frame.
A naïve idea is to simply apply their difference to the originally
resampled mesh x̄𝑡 at the current frame: x(0) = x̄𝑡 + x𝑡−Δ𝑡 − x̄𝑡−Δ𝑡 .
Unfortunately, this approach does not work well, since cloth often
undergoes nonlinear motion, including rotation, especially when
Δ𝑡 is large.

Our solution is to initialize x(0) using the local coordinate system
instead. To begin with, we build the local coordinate system of every
vertex in x̄𝑡−Δ𝑡 and use that to calculate the local displacement from
x̄𝑡−Δ𝑡 to x𝑡−Δ𝑡 . We then apply this local displacement to x̄𝑡 , using
the local coordinate system of x̄𝑡 this time. The outcome xest is an
estimation of the wrinkled mesh at the current frame, but it may
contain self intersections. To avoid self intersections, we borrow
the idea developed by Wu et al. [2020] and formulate a simplified
optimization process, starting from x̄𝑡 :

x(0) = arg min
x



x − xest

2 + 𝐹 self (x), (12)

where 𝐹 self (x) is the self collision potential given in Subsection 5.2.
To solve Eq. 12, we apply the same solver developed for the wrinkle
optimization process. Because x(0) is an initialization, we do not
need to calculate it exactly and we choose to run a fixed number of
iterations with a small constant step size. Fig. 11 shows this wrin-
kle transfer approach improves the convergence of the following
optimization process. The approach is also important to temporal
coherence. Without initialization, the optimization tends to produce
flickering wrinkle artifacts, caused by local minima corresponding
to different quasistatic states.

6.1.2 A multi-resolution approach. To further speed up the con-
vergence of the wrinkle optimization process, we construct a mesh
hierarchy based on the underlying regular grid structure and solve
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Fig. 12. The convergence behaviors of the optimization process, without and
with applying the multi-resolution approach. The multi-resolution approach
is compatible with both gradient descent and block-based descent, for
speeding up the convergence of the optimization process.

the optimization process in a multi-resolution fashion. Specifically,
we formulate an optimization problem at each hierarchical level,
with its elastic and collision constants adjusted to better approx-
imate the original high-resolution problem. We then solve these
problems from coarse to fine and upsample the coarser result as
an initialization to the finer problem. Fig. 12 demonstrates the ef-
fectiveness of this multi-resolution approach by three hierarchical
levels: 1,024× 1,024, 2,048×2,048 and 4,096×4,096. We choose not go
any coarser than 1,024× 1,024, since patch boundaries would not be
accurately represented.
To apply the two aforementioned initialization approaches to-

gether, we simply use the wrinkle transfer approach to initialize
the wrinkled mesh at the coarsest level first, and then solve the
optimization problems from coarse to fine. Doing this allows us to
reduce the initialization cost associated with Eq. 12 as well. We note
that upsampling does not cause any self intersection and we do not
need to address it as in the wrinkle transfer approach.

6.2 Gathering
Shirring and other gathering techniques are popularly used by fash-
ion designers to create fine wrinkle details. Our system can imme-
diately refine simulated coarse wrinkles caused by gathering, if the
mesh input has already encoded the sewing relationship between
two patch boundaries with unequal lengths. But if not, our system
also provides an option for a user to interactively modify the refer-
ence mesh, so as to generate new gathering effects with flexibility
and convenience, as shown in Fig. 13.
A naïve implementation of this option is to directly modify the

reference mesh vertices and recalculate the elastic constants de-
scribed in Subsection 4.1. However, we found this implementation
to be not so user friendly in practice, especially after the mesh gets
severely modified. Instead we implement a deformation tensor field
that uses a 2D matrix S𝑖 to describe the local transformation at
vertex 𝑖 from the original reference mesh to the desired reference
mesh. From a different perspective, we can view S𝑖 as the inverse
of the deformation gradient from the desired reference mesh to the
original one. Let r𝑖 and r𝑗 be the original reference positions of two
vertices connected by an edge, and S𝑖 and S𝑗 be their deformation

(a) The coarse input (b) The vertically shirred result

(c) The horizontally shirred result (d) The inflated result

Fig. 13. The square patch example. Given the coarse mesh input shown in
(a), our system allows a user to interactively design shirring and inflation
effects on the mesh with fine wrinkles, as shown in (b), (c) and (d).

tensors. We obtain the desired reference edge as:

1
2 (S𝑖 + S𝑗 ) (r𝑗 − r𝑖 ). (13)

We can then recalculate the desired reference edge length and use
edge lengths to recompute the desired bending constants.

We allow a user to form such a deformation tensor field either by
a procedural function, or by interaction. Initially, we set all of the
tensors as identity, representing zero deformation. To interactively
model the tensor field, a user can sketch a line segment from r𝑖 to
r𝑗 , which provides the following tensor:

S =
[
r̃𝑖 𝑗 R(90◦) r̃𝑖 𝑗

]
diag(𝑠0, 𝑠1)

[
r̃𝑖 𝑗 R(90◦) r̃𝑖 𝑗

]T
, (14)

in which r̃𝑖 𝑗 = (r𝑗 − r𝑖 )
/

r𝑗 − r𝑖

, R(90◦) is the 2D rotation ma-

trix by 90◦, and 𝑠0 and 𝑠1 are two user-controlled scaling variables.
Intuitively, S scales the line segment direction by 𝑠0 and its orthogo-
nal direction by 𝑠1. Given S being calculated, we blend it smoothly
into the existing tensor field based on various factors, such as the
distance from a vertex to the line segment. Fig. 13b and 13c show
two gathered wrinkle results simulated by our system, thanks to
the use of interactively modeled deformation tensor fields. To add
irregularities, our system also provides random perturbation to the
terms in Eq. 14, and Fig. 1 demonstrates such results.

ACM Trans. Graph., Vol. 1, No. 1, Article 169. Publication date: April 2021.



169:10 • Huamin Wang

(a) Air inflation (b) Normal inflation (c) Filling

Fig. 14. The three models adopted by our system for modeling inflation
and filling effects. The actual simulation of complex cloth appearance often
involves the use of more than one models.

6.3 Inflation and Filling
Real multi-layered clothing can be filled with air or stuffing material
among its layers. Our system offers three models for the simulation
of such effects.
The first model, derived from the maximization of the enclosed

volume, addresses air inflation. Its gradient at vertex 𝑖 is:

∇𝑖𝐹 air (x) = 𝜅air
∑︁

𝑗, 𝑘∈N𝑖
(x𝑗 − x𝑖 ) × (x𝑘 − x𝑖 ), (15)

in which 𝜅air is the air inflation strength coefficient, and 𝑗 and 𝑘 are
two consecutive vertices in vertex 𝑖’s neighborhood. Intuitively, this
model tries to push vertex 𝑖 in its area-weighted normal direction
and it can be naturally implemented together with the triangular
element model. But since it demands additional computational cost
if it works with the mass spring model, we introduce the second
model for similar air inflation effects with much less cost:

∇𝑖𝐹norm (x) = 𝜅normn̄𝑖 , (16)

where 𝜅norm is its strength coefficient and n̄𝑖 is the normal of vertex
𝑖 by the original mesh x̄. Fig. 14 compares the results of these two
models. In general, they are visually indistinguishable when strength
coefficients are small.
Finally, the third model addresses filling effects when clothing

is stuffed with soft material. This model assumes that the material
tries to expand to a certain thickness 𝐷 , and its resistance is linearly
proportional to compression:

∇𝑖𝐹 fill (x) = 𝜅fill max (𝐷 − (x𝑖 − x̄𝑖 ) · n̄𝑖 , 0) n̄𝑖 , (17)

in which 𝜅fill is its strength coefficient and x̄𝑖 is the original position
of vertex 𝑖 . Fig. 14c shows the effect of this model, in which cloth
embeds a 3mm-thick 6mm-wide elastic band.

6.4 Quadtree-Based Mesh Simplification
Once we obtain the synthesized high-resolution mesh, we can use
it either to create a high-resolution normal map for the original
coarse mesh, or to replace the coarse mesh entirely in various appli-
cations. In the latter case, mesh simplification becomes an inevitable
step, as the high-resolution mesh would be too large for sharing,
rendering or processing by other tools. There exist many off-the-
shelf mesh simplification techniques suitable for accomplishing this
task, including some developed on GPUs [DeCoro and Tatarchuk
2007; Papageorgiou and Platis 2015]. But since the high-resolution
mesh is built upon a regular grid, it becomes natural to implement

Table 1. The statistics and the performances of our examples. To simulate
each frame, the system solves the optimization problems from coarse to
fine at three resolution levels: 1K, 2K and 4K. In total, we measure the cost
spent on each frame, excluding the initialization cost and the output cost,
by running 256 iterations at each level.

Name Per-Iteration Cost (ms) Total
(#Verts., #Tri., Ref.) 1K 2K 4K (s)

shirred dress (7.3M, 14.6M, Fig. 1) 0.175 0.621 2.445 0.830
mini dress (6.0M, 12.0M, Fig. 8) 0.143 0.521 2.171 0.726

body-con dress (6.2M, 12.4M, Fig. 10) 0.165 0.596 2.403 0.810
down coat (7.6M, 15.2M, Fig. 16) 0.213 0.795 3.406 1.130
quilt dress (6.9M, 13.9M, Fig. 19) 0.188 0.693 2.818 0.947
shirred patch (1.0M, 2.0M, Fig. 13) 0.041 0.117 0.444 0.154
inflated patch (2.0M, 4.0M, Fig. 13) 0.067 0.188 0.722 0.250

a quadtree-based mesh simplification algorithm that can be well
accelerated on a GPU.

Fig. 15. Unsubdivided cells at three
hierarchical levels. If an unsubdi-
vided cell (in blue) is neighboring to
a subdivided cell at one lower level
(in orange), it needs to become sub-
divided as well in Phase 2.

Our mesh simplification algo-
rithm involves three phases. In
Phase 1, it checks every cell in the
grid hierarchy from top to bottom,
to see if any of its interior vertices
is on patch boundaries or departs
too much from bilinear interpola-
tion of the four cell corners. If so,
this cell contains details and must
be labeled as a subdivided one. In
Phase 2, the algorithm checks ev-
ery unsubdivided cell in the hi-
erarchy, to see if any of its eight
cell neighbors at one lower level is
subdivided. If so, we change such
a cell to be subdivided as well, as Fig. 15 shows. The algorithm
repeats the checks, until no unsubdivided cell can be changed. The
purpose of Phase 2 is to ensure that an unsubdivided cell contains no
more than one inner vertex within each of its four edges. Finally, in
Phase 3, the algorithm triangulates a cell in the hierarchy, if it is un-
subdivided while its parent at one upper level is subdivided. Thanks
to Phase 2, the cell contains at most four inner vertices within its
edges, which can produce at most six triangles after triangulation.
We note that Phase 2 is not mandatory, but it greatly simplifies the
triangulation process in Phase 3, making the algorithm balanced
and suitable for GPU implementation.

7 RESULTS AND DISCUSSIONS
We develop the GPU implementation of our system by CUDA 11.1.
We evaluate the system on an Intel Core i7-6700 3.4GHz CPU and
an NVIDIA GeForce GTX 2080 Ti GPU. Table 1 summarizes the
statistics and the runtime performances of the quasistatic wrinkle
simulation examples in our experiment. The mesh sequence inputs
to those examples are simulated by a GPU-based cloth simulation
engine [Wu et al. 2020] with a fixed 1/100s time step. The sequence
selects one frame every three time steps. In other words, the time
gap Δ𝑡 between two frames is 3/100s. By default, the system runs
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(a) The front view (b) The back view
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cloth-body collision
cloth self collision
inflation & filling
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(c) The performance breakdown

Fig. 16. The down coat example and its performance breakdown. While the
basic solver contributes the most to the overall cost, collision handling is
also expensive and it can be even more expensive in complex collision cases.

256 iterations to solve the optimization problem at each resolution
level, so the cost at the finer level is approximately four times the
cost at the coarser level. In general, the computational cost depends
on three factors: the number of vertices, the collision complexity and
the effects to be simulated. For instance, the examples with inflation
or stuffing effects are 20 to 30 percent more expensive, thanks to
extra memory accesses and arithmetic operations. Table 1 shows
that when the number of vertices decreases at the same resolution
level, the computational time does not drop as fast as it should be.
This is because we did not optimize our system enough for small
examples and we plan to address this in the future.

7.1 Breakdown Analysis
Fig. 16 provides a breakdown of the computational cost spent on the
simulation of the down coat example. It shows that the basic solver
for handling the wrinkle optimization process with elastic potentials
contributes the most to the overall cost. The second contributor is
collision handling, including both cloth-body collision handling
and cloth self collision handling, which together provides about 30
percent of the total cost. This is actually considerably lower than
the contribution of collision handling in other GPU-based cloth
simulators, which is approximately 45 to 60 percent [Tang et al.
2018; Wu et al. 2020]. The main reason is because the collisions in
our examples, especially in the down coat example, are light and

(a) The transferred result (b) The simulated result

Fig. 17. The down coat example handled by deformation transfer and qua-
sistatic simulation. Instead of simulating all of the frames, we can also use
our system to simulate a reference frame with a neutral body pose and
transfer simulated wrinkles to other frames, such as the one performed by
houdini Point Deform shown in (a).

infrequent. We expect the collision cost to be much higher in more
complex cases and we will study this issue further.

7.2 Deformation Transfer
To reduce the computational cost, we can also use our system to
simulate a single frame and then propagate simulated wrinkles to
other frames by existing deformation transfer tools. Fig. 17 compares
the transferred result with the simulated result in the down coat
example. While the transferred result looks visually plausible, it
does not contain the wrinkles caused by body motions and it cannot
address existing artifacts in coarse mesh inputs. These problems are
probably not so troublesome when gathered wrinkles are dense and
tight, such as those in Fig. 1. In general, we still suggest to simulate
all of the frames as long as computational resources permit.

7.3 A Double-Layered Case
Most of our examples, including the down coat example in Fig. 16
and the quilt skirt example in Fig. 19, are single-layered. But our
system is able to handle simple multi-layered cases as well, such
as the inflated patch example in Fig. 13d. In this example, we use
two meshes facing in opposite directions to represent the two sides
of an inflated patch. Thanks to the inflation effect, this example
does not experience frequent collisions and we apply the same
collision handling technique as before. Having said that, if it does
experience frequent collisions, we may have to specifically address
the proximity search between the two meshes later.

7.4 Sensitivity to the Input Resolution
Next we would like to evaluate the sensitivity of our system to the
resolution of the coarse mesh input. Specifically, we provide two
coarse mesh sequences to the mini dress example: a coarser one
with 4K vertices and a finer one with 16K vertices. After running a
fixed number of iterations in quasistatic simulation, Fig. 18 shows
that the result using the input with 4K vertices contains more un-
natural wrinkles, due to the locking issue in coarse cloth simulation.

ACM Trans. Graph., Vol. 1, No. 1, Article 169. Publication date: April 2021.



169:12 • Huamin Wang

(a) Using an input with 4K vertices (b) Using an input with 16K vertices

Fig. 18. The mini dress example using coarse mesh sequence inputs at two
resolutions. Compared with the result using an input with 16K vertices
shown in (b), the result using an input with 4K vertices contains multiple
unnatural wrinkles, as shown in (a).

Although we can address this problem by simply running more
iterations, we think it is more computationally efficient to increase
the resolution of the coarse mesh input instead.

7.5 Existing Stretching in the Input
Existing stretching in the coarse mesh input can also affect our
result. While this is typically not a problem, it can cause trouble in
the quilt skirt example, when the system tries to add light wrinkles
by a procedural deformation tensor field in diamond shapes. In
particular, the system is unable to synthesize wrinkles in chest and
shoulder regions, where cloth gets stretched too much in the coarse
mesh input. To address this issue, we replace Eq. 13 by:

1
2 (S𝑖 + S𝑗 ) (r𝑗 − r𝑖 )

∥x̄𝑗−x̄𝑖 ∥
∥r𝑗−r𝑖 ∥ . (18)

Intuitively, Eq. 18 applies existing stretching in the original mesh x̄
to desired reference edges, so that the reference mesh gets expanded
even further for wrinkles. Fig. 19b shows that after modifying de-
sired reference edges like this, the system can now enrich chest and
shoulder regions with realistic wrinkles.

7.6 Dynamic Simulator
While we formulate our system mainly for offline quasistatic simu-
lation of high-resolution wrinkles, we can also adjust it to function
as a standalone dynamic simulator. To do so, we incorporate two
more potentials into the overall optimization objective in Eq. 1:

𝐹mome (x) = 1
Δ𝑡2



x − 2x𝑡−Δ𝑡 + x𝑡−2Δ𝑡 

2
M ,

𝐹grav (x) = (Mg)Tx,
(19)

in which Δ𝑡 is the time step, ∥x∥2M = xTMx, M is the mass ma-
trix, and g is the stacked gravity acceleration. We are then able
to compare the performance of our simulator with that of [Wu

(a) Without applying existing stretching (b) With applying existing stretching

Fig. 19. The quilt dress example without and with applying existing stretch-
ing to the desired reference mesh. Existing stretching in the coarse mesh in-
put can cause difficulty in synthesizing light wrinkles. Our system addresses
this problem by calculating elastic constants upon existing stretching.

et al. 2020], which is one of the fastest GPU-based cloth simulators
as far as we know. This comparison uses a square cloth example
running at Δ𝑡 = 1/100s. To make the comparison fair, we disable
multi-resolution features and collision safety protection in [Wu et al.
2020]. Since the optimization problems solved by the two simulators
are similar but not identical, we adjust their simulation variables so
they converge at similar rates, as shown in Fig. 20c. Fig. 20e demon-
strates that our simulator runs 8.43 times faster when the resolution
is 512 × 512. As the resolution increases, the performances of both
simulators drop. But our simulator still handles up to 16M vertices,
while their simulator reaches memory limit with 800K vertices.

It is difficult to compare our simulator with P-Cloth [Li et al.
2020], another state-of-the-art simulator, since the two are using
different simulation models and collision methods. Here we model
the square cloth example with 600K vertices and roughly compare
our performance with the flag example in [Li et al. 2020]. In our
experiment, the simulator needs 0.285 seconds to solve 1,024 iter-
ations at Δ𝑡 =1/100s, while P-Cloth needs 0.855 seconds to solve
fewer than 200 iterations at Δ𝑡 =1/250s. Given the fact that more
iterations are needed as the time step increases, we argue that our
simulator is about 2.5 × 0.855/0.285 ≈ 7.50 times faster. We note
that P-Cloth is able to achieve large speed-ups by using multiple
GPUs. We have not explored this idea yet, but our system should
benefit significantly from multi-GPU acceleration as well.

Finally, we would like to mention that our system can also work
together with existing cloth simulators in a multi-resolution fashion.
This should not be confused with the multi-resolution approach
discussed in Subsection 6.1.2 for solving the optimization problem,
which relies on the use of a grid-based mesh hierarchy. To use our
system with other simulators handling unstructured meshes, we
need restriction and prolongation operators between unstructured
and structured meshes, which are beyond the scope of this paper.
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(a) The result of [Wu et al. 2020] (b) Our result
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(e) Per-iteration costs at different resolution levels

Fig. 20. The square cloth example used for evaluating the performance of
our system with those of other simulators. When the simulators are solving
roughly the same optimization problem with similar convergence rates as
shown in (c), our simulator runs 8.43 times faster and it is able to handle
meshes with up to 16M vertices, as shown in (e).

7.7 Limitations
When our system is used for quasistatic wrinkle synthesis, its result
quality depends on the quality of the coarse mesh input. In particu-
lar, the system is unable to resolve existing self intersections, or fix
unnatural elastic or frictional behaviors. High-resolution wrinkles
synthesized in a quasistatic fashion also contain no secondary dy-
namic effects, although they are hardly noticeable in reality. These
issues do not exist, if our system runs as a standalone dynamic
simulator. But this will require the use of smaller time steps and
more computational costs, like other GPU-based simulators. For sim-
plicity and efficiency, the implementation of our collision handling
technique does not include any collision safety mechanism [Wu et al.
2020]. As a result, the output may contain self intersection artifacts,
even though they are rare thanks to small step sizes. Currently, the
computational cost of the collision handling technique is acceptable
only in single-layered and simple double-layered cases, such as the

inflated patch in Fig. 13d. As the collision complexity grows, we
expect this cost to increase notably.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we claim that physics-based cloth simulation is now
ready to enter the submillimeter era. For modeling and simulation
in such a high resolution, it is reasonable to consider the use of
regular grid meshes, which enables the exploration of the regular
grid structure for GPU parallelization. Our research verifies the
feasibility of this practice and demonstrates the effectiveness of our
system in synthesizing highly detailed cloth wrinkles.

When comparing our results with real-world wrinkles, we notice
that our results look more regular and structured, probably due to an
insufficient amount of randomness in our models. We will address
this issue first to produce irregular and realistic results. We then
would like to experiment other effects that may also be simulated
by our system, such as proper frictional contacts [Li et al. 2018;
Ly et al. 2020], homogenized yarn-level elastic models [Sperl et al.
2020], fabric thickness, complex sewing lines and boundaries, and
permanent creases and pleats. Since safe collision handling can be
expensive in complex collision cases, wewill develop safer and faster
collision algorithms, especially for multi-layered clothing. Finally,
we plan to explore the possibility of increasing the resolution even
further, for simulating finer wrinkles in closeup views.
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