A Unified Approach for Subspace Simulation of Deformable Bodies
in Multiple Domains

Xiaofeng Wu*

Rajaditya Mukherjee*

Huamin Wang*

The Ohio State University

(a) Constrained deformation

(b) Deformation after cut

(c) Unconstrained deformation

Figure 1: A hammock example. Under the vertex-based partitioning framework, we present a unified subspace simulation system to animate
a multi-domain deformable body in real time, without any coupling constraint. Our experiment shows that this system can effectively avoid
the limitations of many existing multi-domain subspace simulators and it can flexibly handle a variety of deformation cases.

Abstract

Multi-domain subspace simulation can efficiently and conveniently
simulate the deformation of a large deformable body, by constrain-
ing the deformation of each domain into a different subspace. The
key challenge in implementing this method is how to handle the
coupling among multiple deformable domains, so that the overall
effect is free of gap or locking issues. In this paper, we present a
new domain decomposition framework that connects two disjoint
domains through coupling elements. Under this framework, we
present a unified simulation system that solves subspace deforma-
tions and rigid motions of all of the domains by a single linear solve.
Since the coupling elements are part of the deformable body, their
elastic properties are the same as the rest of the body and our system
does not need stiffness parameter tuning. To quickly evaluate the
reduced elastic forces and their Jacobian matrices caused by the
coupling elements, we further develop two cubature optimization
schemes using uniform and non-uniform cubature weights. Our
experiment shows that the whole system can efficiently handle large
and complex scenes, many of which cannot be easily simulated by
previous techniques without limitations.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics—Animation.

Keywords: subspace simulation, domain decomposition, finite
element method, nonlinear elasticity, cubature approximation.

*e-mail: {wuxi, mukherjr, whmin}@cse.ohio-state.edu

1 Introduction

The fundamental idea behind subspace deformation, also known
as dimensional model reduction or reduced-order deformation, is
to constrain the deformation of an object into a precomputed sub-
space. The computational complexity of this method is O(+*) when
using cubic polynomial [Barbi¢ and James 2005], or even O(r?)
when using cubature approximation [An et al. 2008], in which 7 is
the number of deformation modes in the subspace basis. Since r
can be significantly smaller than the number of vertices, subspace
simulation can be several orders of magnitude faster than full-space
simulation. Unfortunately, to handle detailed local deformation of
a large object, subspace simulation must use a sufficiently large r,
which compromises its efficiency and makes it less attractive.

One solution to this efficiency issue, known as multi-domain sub-
space simulation, is to divide an object into multiple domains and
simulate the deformation of each domain in its own subspace. If d
is the number of domains and each subspace contains modes, then
the computational cost can be as low as O(dr*) or even O(dr?) the-
oretically, which is much lower than the cost of using dr modes for
the whole object. Most existing multi-domain techniques choose
to partition mesh elements, i.e., tetrahedra, into disjoint domains.
The challenge is how to handle the coupling among these domains,
each of which has its own local deformation and rigid motion. If
the interface between two domains is small and the domain connec-
tivity contains no loop, the coupling process can be simplified by
ignoring the deformation of the interface and attaching one child
domain to its parent domain, as Barbi¢ and Zhao [2011] showed.
Unfortunately, such an assumption is not always plausible, such
as the hammock example shown in Figure 1. To eliminate the
gap between two adjacent domains, a straightforward idea is to
enforce hard constraints on the interface vertices using Lagrangian
multipliers [Huang et al. 2006]. Since these constraints may con-
flict with the domain subspaces, they can cause the locking issue
that suppresses the local deformation effect. Instead of using hard
constraints, Kim and James [2011] used spring forces as soft con-
straints to connect two domains. Their result depends on the choice
of the spring stiffness: if the stiffness is higher, the gap becomes
smaller but the deformation is more locked; and if the stiffness is
lower, the deformation is less locked but the gap becomes larger.
Their original implementation also considers subspace local defor-
mation only, assuming that the rigid motion of each domain has

Deformable Interface Rigid Motion ~ Nonlinear Elasticity Special Limitations
[Huang et al. 2006] Yes Yes No Mesh-dependent complexity
[Barbi¢ and Zhao 2011] No Yes Yes Loop-free domains
[Kim and James 2011] Yes No Yes Stiffness parameter tuning
[Yang et al. 2013] Yes Yes No Restriction on the number of modes
Our method Yes Yes Yes See Section 7

Table 1: The limitations of multi-domain subspace simulation techniques. By using the vertex-based mesh partitioning strategy and inte-
grating rigid and non-rigid motions of all of the domains into a single solve, our multi-domain subspace simulation system effectively avoids

many limitations of the existing techniques.

been given by some earlier simulation. Recently, Yang and col-
leagues [2013] developed a boundary-aware method to construct
linear deformation modes, so that both the gaps and the locking
issues can be avoided. This method requires the number of defor-
mation modes in each basis to be at least six times the number of its
interfaces. Since these modes are specifically designed, they cannot
be easily reused when the domains are assembled into other shapes.
The method also has difficulty in handling large nonlinear elastic
behaviors, even after using modal warping [Choi and Ko 2005]. In
general, existing techniques have various limitations as shown in
Table 1. How to flexibly and accurately handle the coupling among
multiple domains still remains as an open problem.

In this paper, we propose to partition the vertices, not the elements,
into multiple domains. The benefit of this new domain decomposi-
tion framework is straightforward: the domains are now indirectly
coupled by the elastic forces of the coupling elements connecting
the domains, so there is no need to use additional coupling con-
straints. To develop a practical multi-domain subspace simulation
system under this framework, we made the following contributions.

o A single elastic model. = We show that the same model can
be used to handle the elastic deformation of the whole object,
including the domains and the coupling elements. We can
easily incorporate the elastic forces of the coupling elements,
called the coupling forces, into the simulation of each domain
to achieve the coupling effect, without parameter tuning.

¢ A unified multi-domain system. It is straightforward to
separate the rigid motion of a single domain from its subspace
deformation and solve them simultaneously as a single dy-
namical system. But it is not straightforward to do so for
multiple domains that are connected by coupling forces. In
this work, we formulate a unified system that contains rigid
motions and subspace deformations of all of the domains, and
we show this is needed to reduce artificial damping.

o Cubature approximation. A computationally expensive
step in subspace simulation is the evaluation of the reduced
elastic forces and their Jacobian matrices. Here we present
two cubature approximation schemes to efficiently calculate
the reduced forces and their Jacobian matrices. We show that
by using different weights for different force components, one
of the schemes can achieve better approximation results.

Our experiment reveals the capability of our system in handling
large and complex deformable bodies, many of which cannot be
easily simulated by previous multi-domain subspace simulation
techniques. Despite being more versatile, our system can still run at
a high frame rate (from 16.7 to 100 FPS). The system has no strict
requirement on the subspace basis, so it is compatible with better
basis construction methods and elastic models in the future.

2 Other Related Work

Simulation of deformable objects. The simulation of de-
formable objects has been an important research topic in com-
puter graphics, since the early work by Terzopoulos and col-

leagues [1987]. A variety of techniques have been developed to
simulate cloth [Baraff and Witkin 1998; Choi and Ko 2002; Chen
et al. 2013], elastic rods [Bergou et al. 2008; Umetani et al. 2014],
and volumetric deformable bodies [Teran et al. 2003; Miiller et al.
2005; Wang et al. 2010]. Although the performance of graphics
hardware has been significantly improved in recent years, it is still
computationally expensive to simulate a large deformable object,
which may take hours or even days. This restricts the simulators
from using high-resolution meshes, when they are applied in real-
time applications, such as artistic modeling, virtual surgeries, and
electronic games.

Subspace simulation of deformable bodies. Originally de-
signed to solve problems in other engineering fields, the subspace
simulation approach [Sifakis and Barbic 2012] has gained popu-
larity in computer graphics recently. The early subspace simulator
developed by Pentland and Williams [1989] uses modal analysis
to build linear vibration modes as the subspace basis. Hauser and
colleagues [2003] studied how to integrate collisions and other con-
straints into modal analysis. Choi and Ko [2005] developed the
modal warping method to make linear modes more suitable for
handling large deformations, by removing incorrect vertex defor-
mation components caused by linear elasticity. To more accurately
model nonlinear elasticity under large deformation, Barbi¢ and
James [2005] constructed nonlinear deformation modes from modal
derivatives. An and collaborators [2008] proposed to calculate the
reduced elastic force in the subspace by cubature approximation.
Their method reduces the computational complexity of subspace
simulation to O(r?), in which r is the number of modes in the sub-
space basis. Harmon and Zorin [2013] presented a basis augmenta-
tion scheme to help subspace simulation capture local deformation
caused by collision contact. Recently, Hahn and colleagues [2014]
used a pose-varying basis to simulate clothing with wrinkle details.

When simulating deformable objects in the subspace, an interesting
question is whether collisions can be handled in the subspace as
well. Based on the fact that two primitives of the same object cannot
be in contact without sufficient deformation, the collision culling
method developed by Barbi¢ and James [2010] used subspace co-
ordinates to check the existence of potential self collisions. Teng
and colleagues [2014] explored the use of self contact patterns in
subspace simulation of articulated bodies, and formulated a pose-
space cubature scheme to quickly resolve collisions without check-
ing colliding primitives. In this work, our research is focused on
multi-domain subspace simulation and our system can benefit from
the use of existing and future subspace collision handling methods.

Subspace fluid simulation. Graphics researchers have also
investigated the use of subspace simulation in fluid animation.
Treuille and colleagues [2006] showed that both the velocity field
and the boundary coupling force can be reduced for subspace sim-
ulation. Wicke and collaborators [2009] later improved the usabil-
ity of this method, by decomposing the volume into domains and
enforcing velocity constraints at the domain interface. Given high-
resolution fluid simulation data, Kim and Delaney [2013] built a re-
duced model to efficiently generate animation results under new dy-

namic conditions. Recently, Ando and colleagues [2015] combined
a reduced pressure projection solver with a boundary conforming
basis, to speed up the pressure projection step without violating the
free-surface boundary condition.

3 Background

In this section, we will present the background knowledge of de-
formable body simulation in both the full space and the subspace.

Full-space simulation. Given a deformable body with N ver-
tices, we can formulate the equation governing its motion as,

Mii + Du + fi"(u) = £,)

where u € R3 is the stacked vertex displacement vector, M €
R33N and D € R33N are the mass and damping matrices, and
fint € R and f** € R are the stacked internal and external
force vectors. To stably integrate u over time by Equation 1, many
full-space simulators use the implicit Euler method, which requires
solving a large sparse linear system with 3N degrees of freedom.

Subspace simulation in an inertial frame. The basic idea be-
hind subspace simulation is to constrain the displacement vector u
into a subspace spanned by a set of r representative displacement
vectors {u',u?,...,u’}, also known as deformation modes. These
vectors can be assembled into a 3N X r matrix U, as the basis for
subspace simulation. So we can convert the displacement vector
into u = Ugq, in which q € R" contains the reduced coordinates
of u in the subspace. Following the method presented in [Barbi¢
and James 2005], we use generalized eigenvalue decomposition
to construct U, such that U is mass orthogonal: UMU = L in
which I is the r X r identity matrix. By combining u = Uq and
U™MU = I with Equation 1, we now obtain the governing equation
in the subspace:

q+UDUq + UTf"(Uq) = UTF™, 2)

Using implicit time integration, we can formulate Equation 2 into a
dense r X r linear system. Since r can be significantly smaller than
3N, subspace simulation can be orders of magnitude faster than
full-space simulation.

Subspace simulation in a non-inertial frame. As Barbi¢ and
Zhao [2011] pointed out, Equation 2 is not suitable for simulating
the rigid motion of a deformable object, since incorporating rigid
modes into the basis U will cause U to be time-dependent and
we cannot afford updating U over time. A more practical way to
handle the rigid motion is to simulate it separately from subspace
deformation by rigid body dynamics, as did in [Barbi¢ and James
2005; Kaufman et al. 2008]. Because non-rigid deformation is now
defined in a non-inertial frame, we must consider four fictitious
forces applied at each vertex x;:

fr=-2-m-owxU-q, f*=-m-v, 3)
o = —m - & x X(q), £ = —m - w X © X X(q),

which are the Coriolis force, the inertial force, the Euler force and
the centrifugal force, respectively. Here v and w are the linear and
angular velocities of the non-inertial frame, m is the vertex mass,
U; is the sub-matrix of U corresponding to vertex x;, and X;(q) is
the vertex position in the non-inertial frame. Note that Equation 3
requires all of the vectors to be defined in the non-inertial frame.
By summing up all of the four forces and stack them into a vector
ffic € RV, we can formulate subspace simulation of the non-rigid
deformation in the non-inertial frame by:

q + UTDUq + UTfinl(Uq) — UT (RTfexl + fﬁC(",’ , 0, q q)) , (4)

Domain D;

: Domain elements &;
: Coupling elements &;;
: Domain elements &;

: Vertex partition X; ® : Vertex partition X;
Figure 2: A 2D beam. We segment its vertices and elements into
two domains, which are connected by coupling elements.

where RT is a time-varying rotation matrix from the global frame
to the non-inertial frame. Note that RT is not needed in front of
ffic, since it has already been defined in the non-inertial frame. To
efficiently project the fictitious forces into the subspace: UTfc, we
adopt the fast sandwich transform method' developed by Kim and
James [2011]. Basically, this method uses pre-computed matrix
blocks to directly calculate UTf°, based on the fact that these forces
can be treated as linear functions of R, q, and (.

4 Multi-Domain Subspace Simulation

In this section, we will investigate how to efficiently simulate both
rigid and non-rigid motions of a deformable body made of multiple
domains. To begin with, we will present our new vertex-based mesh
partitioning strategy in Subsection 4.1. We will then discuss how
to incorporate coupling forces into subspace simulation and rigid
body simulation of each domain in Subsection 4.2. Finally, we will
study numerical integration and linear solve in Subsection 4.3.

4.1 Mesh Partitioning

Given a mesh M = (&, X), in which & is the set of its elements
and X is the set of its vertices, we choose to partition X into d
disjoint sets { X;|i = 1,2,...,d} with X = Ujlzlz\’,- and X; N X; =0,
for any i # j. This partitioning can be automatically generated
by mesh segmentation algorithms, or manually created from user
input. Given {X}, we can further partition the elements &. Let &; be
a subset of &, whose elements have vertices coming from X; only.
We define D; = (&;, X;) as the i-th domain, as shown in Figure 2.
If the vertices of an element belong to more than one domain, this
element is a coupling element that connects these domains. The
elements connecting domain O; and domain D; form an interface
layer &;;. We name D; and D; as neighbors, if &;; # 0. To simplify
our discussions later, we assume that an element does not connect
more than two domains. It should be straightforward to extend our
methods to handle elements connecting three or more domains as
well. Table 2 lists some of the symbols to be used in this paper.

4.2 Inter-Domain Coupling

Similar to many existing subspace simulators, our system simulates
rigid body dynamics separately from non-rigid local deformation.
The main question is: how can we integrate the coupling force into
the simulation of these two components for each domain?

I'Similar performance can be achieved by using precomputed quantities
too, as Barbi¢ and Zhao [2011] proposed.

Symbol Definition

D; The i domain of the mesh
&E; The element set of domain D;
X; The vertex set of domain D;
&ij The coupling elements connecting O; and D,
€ijk The k" element of &;

Xﬁf,k The " vertex of element e;; in the global frame
R; The rotation matrix of domain D;

Vi, W; Domain D;’s linear and angular velocities
[The basis for vertex V/,,

f}j,k The coupling force on V!, i caused by e;jx
F! ; The reduced coupling force of D; caused by &;;
f;j The net coupling force on domain D; caused by &;;
ut The net coupling torque on domain D; caused by &;;

Table 2: Symbols. This table summarizes some of the symbols.

Coupling force in subspace simulation. Our system does not
explicitly model the deformation of each coupling element. Instead,
the motions of the adjacent domains indirectly cause the deforma-
tion, which triggers the coupling force exerted on the domains next.
Let &;; be an interface layer connecting domain O; and domain D;.
Its coupling force applied on D; can be formulated in the subspace:

F = Z (U,)'RIEL,, 5)

€ijk€E; eX;

]
ij Xk

where ffj,k is the force of element e;;; applied on its vertex xﬁj,k in
the global frame, R; is the rotation matrix of 9;, and Uﬁ ik is the
sub-matrix of domain 9);’s basis U; that corresponds to vertex xl’.j’k.
Intuitively, Equation 5 first rotates the coupling force to the do-
main’s non-inertial local frame, and then reduces it to the domain’s

subspace. We will use F and f to denote the forces in the subspace
and the full space, respectively.

By adding all of the coupling forces applied on domain D;, we can
extend Equation 4 to govern the non-rigid deformation of D; as,

i+ UD U + UTE" (Uig) +) Fj = Fy™, ©)
8'./

in which F* is defined as:
F* = U7 (RTE + (Vi 01, @01, €, @) - @)
The terms with subscript i indicate that they belong to domain D;.

Coupling force in rigid body simulation. For interactive ap-
plications, we cannot assume that the rigid motion of a domain
has already been given, as in [Kim and James 2011]. So we need
to know how the coupling force affects the rigid motion as well.
According to rigid body dynamics [Baraff 1997], we have the equa-
tions describing the linear and rotational motions of domain D;:

0 — fext __ Xt)
m;v; + DVivl - fi Zeljkeé,, X kEX’ fuk fe fl]’ (8)
. . — ext l — Xt
Lo; + Dy, w; = 7} Ze,,kea,, X e Tiw = T; ‘r”,
in which m; and I, are domain D;’s mass and inertia matrix, 7 is

the total external torque, Tﬁj,k is the coupling torque caused by the
coupling force f}j,k’ and Dy, and D,,, are two damping matrices. For
Rayleigh damping, the damping matrices can be computed from
m;, I; and the Jacobian matrices. For simplicity, we use f;; and 7},
to denote the net coupling force and torque caused by the elastic
forces of the coupling elements in &;;.

---Two-step 10%s Two-step 107 ---Two-step 107s

One-step 10735 —— One-step 1025

— One-step 10™s

g
o

e
~

Total energy

e
)

g
=3

(=]
[\S)
oo
—_
(=]

4 6
Time (s)

Figure 3: The energy dissipation process of a 3D beam after initial
deformation. This plot visualizes how the total energy dissipates
when using different integration schemes and time steps, without
damping. It indicates that the one-step integration scheme can pre-
serve the energy well, even when using a large time step.

By combining Equation 6 with Equation 8, we now obtain a dy-
namical system that governs both non-rigid and rigid motions of
the domains, which are partitioned from the original mesh.

4.3 Numeric Integration

Given the dynamical system presented in Subsection 4.2, we can
now study its numerical integration schemes and matrix solvers.

Two-step integration scheme. Since we separate the rigid
body motion of each domain from its non-rigid motion, a natural
way to simulate a body with multiple domains is to solve rigid and
non-rigid motions separately. Specifically, we propose a two-step
integration scheme to solve body motions within one time step.
First, we assume that a deformed domain is rigid and we use the
backward Euler method to integrate Equation 8. After that, we treat
the local frame of each domain to be static and we use the backward
Euler method to integrate Equation 6.

Unfortunately, our experiment shows that this two-step integration
scheme can cause very large artificial damping on the rigid motion,
unless a sufficiently small time step is used. Figure 3 shows how the
total energy dissipates when we use this scheme to simulate a two-
domain beam example. As the time step gets larger, the artificial
damping effect becomes more obvious and the energy dissipation
rate is significantly increased. We believe this problem is funda-
mentally due to the fact that the two-step scheme ignores the inter-
play between the rigid motion and the non-rigid motion within one
time step. The magnitude of this ignored term scales with O(A#?),
which gradually vanishes when the time step Az becomes smaller.
To solve this problem, we tested many ideas, such as asynchronous
integration and exchanging rigid and non-rigid information multi-
ple times within one time step. None of these ideas is effective, as
our experiment shows.

One-step integration scheme. To use larger time steps with-
out artificial damping, we propose to integrate rigid and non-rigid
motions of all of the domains into a unified system, and solve it
by a single backward Euler step. Since the fictitious forces contain
nonlinear terms, we integrate them explicitly and treat the overall
external force F5*° applied in the subspace of domain D; as con-
stant. Let primed symbols represent the states at the next time
t + At and non-primed symbols represent the states at the current
time 7. By linearizing the elastic forces in Equation 6, we obtain the

equation for simulating non-rigid deformation as:

OF,
(I + UN(AD; + APK)U,) @, + At X, 70 Q ©
= At(F° - UTE™ - 3 FL) + q,
where I € R'™i is the identity matrix, K; € R/ is
domain D;’s tangent stiffness matrix at time ¢, and Q;; =
[ql.T,viT,wl.T,qJT.,vI,wHT € R!2**7j is the stacked velocity vector
of domain O; and domain D);, including the reduced deformation
velocities, the linear velocities, and the angular velocities. Here r;
is the number of modes in the subspace of Domain D;. By applying
the same idea to linearize Equation 8, we obtain the linear equation

for simulating the rigid motion:

ot .
mi(V, = v;) + At(Te, (ﬁ = f;j) + Dviv;) = A, o

att. .
1] - @) + M(S, (7-Q); + 71)) + Do) = A,

Details about Equation 9 and 10 are in the appendix. Once we
formulate the non-rigid deformation and the rigid motion of each
domain using the two equations, we combine them into a single
linear system and update the domains through a single linear solve.
Figure 3 shows that this one-step integration scheme suffers less
from the artificial damping issue, even when using a large time step.

Matrix solver. The one-step integration scheme results in a linear
system AQ’ = b, where A € RO4+Z7x(6d+L 1) jg 3 block-wise sparse
symmetric matrix. Figure 4 shows a partitioned armadillo example
and its corresponding block matrix structure, in which the rows and
the columns are in the order of Dy, D,,...,D,. Intuitively, each
diagonal block represents a domain and two symmetric off-diagonal
blocks indicate an interface layer between two domains.

Our experiment shows that the interplay between rigid motions and
non-rigid motions can cause A to become ill-conditioned. This in-
terplay is represented by off-diagonal matrix blocks that exchange
information between rigid motions and non-rigid motions. This in-
formation exchange process demands more iterations, which can be
manifested as a high condition number. For example, the condition
number of the octopus example shown in Figure 9 can be as high
as 10% to 10°. In contrast, if we choose the two-step integration
scheme instead, the matrix is decoupled into a block diagonal ma-
trix and the condition number drops to 10° to 10* immediately. This
explains why the two-step scheme cannot benefit from the use of
multiple iterations, because it is equivalent to a block descent solve
suffering from the slow convergence issue. This issue exists even
if we use other iterative solvers, such as conjugate gradient and
generalized minimal residual.

So we choose to use sparse block Cholesky decomposition to solve
the linear system directly. To reduce the number of new non-zero
blocks introduced by the decomposition process, we re-order the
domains so that the decomposition order follows the domain con-
nectivity. In an ideal case when the domain connectivity has no
loop, no new block will be introduced and the computational cost of
the direct solve is linear to the number of domains, as in [Barbi¢ and
Zhao 2011]. A similar idea was also used in [Hecht et al. 2012] for
fast Cholesky re-factorization. To apply Cholesky decomposition,
the matrix must be symmetric positive definite. Using the invertible
FEM method [Irving et al. 2004; Teran et al. 2005], we ensure that
the stiffness matrix is symmetric and semi-positive definite. The-
oretically, the matrix may still have zero eigenvalues, but they are
extremely rare as Teran and colleagues [2005] pointed out and we
did not notice any failure in our experiment. Figure 4 visualizes the
domains of an armadillo example and its matrix layouts.

(a) An armadillo with unconstrained motion

0 200 400 0 200 400

200 200

400 400

(b) The matrix layout in our system (c) The matrix layout after symamd

Figure 4: An armadillo example. We segment this model into 11
domains. As a result, the system matrix has 11 blocks in its rows
and columns, as shown in (b). After using our domain re-ordering
method, Cholesky decomposition creates a matrix with 33K nonze-
ros. In contrast, after using the matlab command symamd, Cholesky
decomposition creates a matrix with 39K nonzeros shown in (c).

5 Cubature Approximation

To improve the system performance, we must know how to quickly
evaluate the reduced elastic forces and their Jacobian matrices in
the subspace. In general, there are two efficient techniques to
accomplish this task: cubic polynomial proposed by Barbi¢ and
James [2005], and cubature approximation developed by An and
colleagues [2008]. The cubic polynomial method is exact, but it
has a high computational cost O(drﬁm), where rpax 18 the maximum

number of modes used in the subspaces. So we choose cubature ap-

proximation instead, whose computational complexity is O(dr2,,,).

To determine the cubature samples and weights for the elastic forces
inside of a domain, we follow the non-negative-least-squares-based
optimization approach presented in [An et al. 2008]. We will dis-
cuss how to generate the training and testing data for cubature op-
timization in Section 6. Our focus in this section is on cubature
optimization and approximation of the coupling forces.

Uniform weight cubature optimization. The deformation of
a coupling element causes not only the reduced coupling force in
each domain’s subspace, but also the linear force and the torque that
affect the rigid motion of each domain. Since all of these forces
must be evaluated, we propose to use cubature approximation for
all of them and we handle them together in cubature optimization.
For simplicity, we define the overall “force” vector generated by an
interface layer &;; as:

F’:jT F('J.T f?jT f.’}T ‘r’:jT T?'J.T !
F=|ite, i, i e e (11
el ol el T el]

0 =—=a Non-uniform weight
. 0.5 . .
= e—= Uniform weight
5 0.4
=]
£03
5
'E 0.2

0.1

0 20 60 100 140 180 200

Number of cubature samples

Figure 5: The errors of using different cubature schemes. This plot
shows that using non-uniform weights provides more accurate ap-
proximation than using uniform weights. However, their difference
becomes less significant as the total number of samples increases.

which contains all of three forces applied on both domain 9; and
domain ;. We normalize each force component, to avoid any bias
during the optimization process. Once we obtain a large set of these
high-dimensional force vector data, we use the optimization frame-
work [An et al. 2008] to generate cubature samples and weights.
Since these forces are collected into a single vector and optimized
together, they will be evaluated with the same cubature weights.
Figure 5 shows the approximation errors using different numbers
of samples, when we use this optimization strategy.

Non-uniform weight cubature optimization. We can make
cubature approximation more accurate, by using different samples
and weights for different forces. If we use different samples for
different forces, we need to evaluate more samples in total, which
becomes less efficient in practice. So we choose to still use the same
samples, but different weights for different forces.

Specifically, we first run the uniform weight optimization strategy
to obtain cubature samples and uniform weights as before. We then
allow the weights to vary, by running four additional optimization

i J i) i) :
processes for Fl.]., F; i (f,.j, f; j), and ('rl.j,-rl. j), respectively. Here we
J

still use the same cubature weights for ff_’, and fl.’j, and ‘rfj and T; i
to ensure linear and angular momentum conservation in rigid body
motion. Note that the use of non-uniform weights will cause the
linear system presented in Section 4.3 to be asymmetric, so we
replace Cholesky decomposition by LU decomposition in our direct
solver accordingly. Since the solver contributes a small portion of
the overall computational cost, the use of an asymmetric matrix has
limited influence on the system performance. Figure 5 compares
the approximation errors of using uniform and non-uniform cuba-
ture weights. In general, the non-uniform weight scheme is more
accurate, especially when the number of samples is small. Figure 6
shows the result of using cubature approximation is visually indis-
tinguishable from the result of exact evaluation.

6 Implementation
Here we will provide some implementation details of our system.

Subspace basis construction. A nice feature of our system is
that it does not have any strict requirement on the subspace basis.
In fact, the basis of each domain can be generated using many
existing techniques, including motion capture data, pre-computed
simulation data, and modal analysis. In our current implementa-
tion, we use linear modal analysis and modal derivatives proposed
in [Barbi¢ and James 2005] to generate both linear and nonlinear
deformation modes in the basis. Our system allows the basis to be
generated separately for each domain. In our experiment, it took

(a) Using cubature approximation (b) Using exact evaluation

Figure 6: A caterpillar example. Our cubature approximation
scheme accurately estimates the reduced forces within the domains
and at the interfaces. So the result of using cubature approximation
in (a) is comparable to the result using exact evaluation in (b).

(a) Rigid interface (b) Non-rigid interface
Figure 7: Comparison of rigid and non-rigid interfaces. Our sys-
tem allows the interface to be naturally deformed, as shown in (D).

less than five minutes to finish constructing subspace bases for all
of the domains. In contrast, Kim and James [2011] constructed the
basis for the whole mesh first and then divided each deformation
mode into separate ones for the domains. Their method becomes
computationally expensive if the mesh is too large. The method
also has difficulty in factoring out the rotational components in the
resulting basis of each domain. Finally, their bases may cause the
system matrix to be nearly singular, as our experiment shows.

Cubature optimization. Since the scope of our method is not
limited to skinned characters, we can not sample skeleton poses to
generate pose data for cubature optimization as did in [Kim and
James 2011]. Instead, we apply random forces on each domain to
get randomly deformed configurations for a non-skinned mesh. We
then use the invertible FEM method [Irving et al. 2004; Teran et al.
2005] to generate full-space simulation data. Given the training
data, we perform intra-domain cubature optimization in the same
way as described in [An et al. 2008]. We process interface cubature
optimization differently, as discussed previously in Section 5. In
our experiment, the training data took 2 to 10 minutes to generate
and the cubature optimization step took 5 to 30 minutes.

7 Results

We tested our system on an Intel Core i7-2600 3.4GHz processor.
We use the OpenMP library to parallelize our simulation steps. All
of our examples are simulated at the time step Ar = 1/90s. Cur-
rently, our examples use the St. Venant-Kirchhoft material model,
whose stiffness is parameterized by two Lamé coefficients.

Figure 7b shows our system can simulate natural deformation of the
whole object, including the interface between two domains. In con-
trast, if we do not allow the interface to deform, the multi-domain
problem can be simplified but the result looks strange, as Figure 7a
shows. Here we generate the result in Figure 7a by enforcing the
rigidity constraint on the interface during basis reconstruction.

Name and #of Interface Cubature Tets Domain Domain Cholesky Full-space Total
Statistics Modes DoFs Tets (interface / total) | Dynamics Coupling Factorization = Conversion Cost
Armadillo 20 280 7,441 395/ 928 4.9ms 3.4ms 0.9ms 4.1ms 16.7ms
62K nodes, 241K tets 30 390 7,441 492/1,702 13.4ms 4.8ms 2.0ms 5.0ms 30.3ms
11 domains, 10 interfaces 40 500 7,441 563/2,051 23.2ms 6.2ms 3.2ms 6.2ms 45.1ms
Octopus 20 436 2,807 478/1,335 5.6ms 3.3ms 1.0ms 2.4ms 16.1ms
24K nodes, 84K tets 30 606 2,807 798/3,284 19.4ms 5.7ms 2.3ms 3.3ms 38.4ms
17 domains, 16 interfaces 40 776 2,807 951/3,945 33.9ms 7.9ms 3.8ms 4.4ms 59.8ms
Hammock 20 118 1,105 160/ 404 3.7ms 1.7ms 0.3ms 1.4ms 10.0ms
14K nodes, 42K tets 30 168 1,105 201/ 678 6.4ms 2.0ms 0.7ms 2.1ms 14.4ms
5 domains, 4 interfaces 40 218 1,105 260/ 961 14.0ms 3.1ms 1.3ms 2.4ms 23.9ms
Caterpillar 20 202 500 165/ 740 3.2ms 1.0ms 5.6ms 2.8ms 11.4ms
31K nodes, 98K tets 30 282 500 254/1,457 9.1ms 1.3ms 1.2ms 4.2ms 19.8ms
8 domains, 7 interfaces 40 362 500 346/1,967 17.0ms 2.2ms 2.2ms 5.0ms 32.7ms

Table 3: Mesh and performance statistics. This table lists the number of modes per domain, the total degrees of freedom, the number of
interface tetrahedra, the number of interface cubature tetrahedra, the total number of cubature tetrahedra, the computational cost of each

simulation step, and the total computational cost per time step.

of Frame Rate

Name Modes | single domain no inter. cubature ours
Armadillo 20 0.53 16.0 59.9
30 0.09 12.2 33.0

40 0.04 8.6 22.2

Octopus 20 0.09 32.8 62.2
30 0.02 15.5 26.1

40 0.01 114 16.7
Hammock 20 17.7 71.1 100.0
30 5.07 43.8 69.5

40 1.54 28.9 41.8

Caterpillar 20 2.51 67.3 87.5
30 0.31 37.6 50.6

40 0.10 24.6 31.5

Table 4: Frame rates. This table lists the simulation frame rates.

Performance evaluation. Table 3 summarizes the statistics of
the 3D models and their performances in our experiment. It shows
that the domain dynamics step, which constructs the unified system
for linear solve, is typically the computational bottleneck. When
a model (such as the armadillo example) contains many interface
tetrahedra, the use of interface cubature is necessary to reduce cou-
pling force and matrix evaluation costs. In contrast, if a model (such
as the caterpillar example) does not contain many interface tetrahe-
dra, the performance improvement provided by interface cubature
becomes small, as Table 4 shows. Table 4 also illustrates that the
simulation speed is much lower, if the system uses a single domain
with the same number of degrees of freedom. This is because the
matrix would become dense, which is more computationally expen-
sive to construct and solve. Note that our system is compatible with
parallel computing and it has a good potential to run faster on GPU.

An interface domain in the full space. If the interface between
two subspace domains contains a thick layer of elements, we can
treat it as a domain as well and simulate it in the full space. To
do that, we simply incorporate its implicit time integration into the
linear system and handle the coupling between the interface domain
and the subspace domain in the same way as before. Since the
interface domain is defined in the global frame, there is no need
to simulate its rigid motion separately. One use of these interface
domains is to allow user to edit the mesh. For example, user can cut
the mesh in the interface domains, as shown in Figure 1b and 9c.
This cannot be done if the domain is simulated in the subspace.

Comparison to spring-based coupling. An interesting ques-
tion is what if we couple the domains directly by springs, not by

Spring-based method

ind truth

: "'/1/(')/\1/1 ;
(failed)

Figure 8: A 3D beam example, partitioned into two domains. This
example compares the results of spring-based coupling, element-
based coupling (as our method), and full-space simulation (as
ground truth). Our method allows all of the elements to use the
same stiffness, so it avoids the coupling problems that may occur in
stiffness parameter tuning.

coupling elements. To answer this question, we implemented a
spring-based coupling method in our system, similar to [Kim and
James 2011]. We also simulated the ground truth in full-space.
Figure 8 compares the results of these methods. It indicates that the
result quality of the spring-based coupling method really depends
on the spring stiffness parameter. If the stiffness is too low, the
springs cannot keep the two domains well attached, and if the stiff-
ness is too high, locking and artificial damping issues will become
obvious. The stiffness value depends on the mesh resolution and
the time step, so it needs to be tuned for different interfaces and
simulation cases. In contrast, our coupling method allows all of the
elements to use the same stiffness and it does not need to tune the
stiffness of the coupling elements separately, although the stability
issue still occurs if the stiffness is too high.

8 Conclusions

We present a new multi-domain subspace simulation technique,
based on the vertex-based mesh partitioning strategy. Our research
shows that this technique can overcome the limitations of many
previous techniques, and our system can be built upon the same
elastic model without additional hard or soft coupling constraints.
Our experiment demonstrates the flexibility of our system in han-
dling large and complex deformable bodies, and its performance is
comparable to those of the existing subspace simulation techniques.

(a) The domains

(b) Unconstrained deformation

(c) Deformation after cut

Figure 9: An octopus example. Our system efficiently simulates this octopus example in real time, which contains 17 domains.

Figure 10: Discontinuity artifact. This example demonstrates the
discontinuity artifact at the interface, due to large deformation.

Limitations and future work. Our system does not solve the
fundamental discontinuity issue among multiple domains simulated
in their own subspaces. Because of this, the surface may be uneven
and the coupling elements may be inverted, when the body under-
goes large deformation as shown in Figure 10. One solution to this
problem is to extend the boundary-aware idea [Yang et al. 2013] to
nonlinear deformation modes, which however is not so straightfor-
ward and needs further research in the future. The coupling force in
our system needs additional cubature samples for evaluation, which
increases the overall computational cost. Our plan is to implement
the whole system on GPU, so that forces and Jacobian matrices can
be quickly evaluated in parallel. Our system separates rigid motions
from non-rigid motions. Although it provides a practical solution
to dynamic simulation, it is not strictly correct and the result can
be different from the result of full-space simulation. Currently, our
system integrates nonlinear fictitious forces explicitly and imple-
ments implicit time integration by a single Newton iteration. As
a result, the system can become unstable when it handles complex
hyperelastic materials or fast rotations. We can integrate fictitious
forces implicitly and use multiple Newton iterations in the future,
if the computational resource allows. Finally, our system does not
consider collisions yet and it is interesting to know how self colli-
sions can be handled in multi-domain subspace simulation.

9 Acknowledgments

We thank Nvidia and Adobe for funding and equipment support.
This work was supported in part by NSF grant I1S-1524992.

References

AN, S. S., Kiv, T., anp James, D. L. 2008. Optimizing cubature
for efficient integration of subspace deformations. ACM Trans.

Graph. (SIGGRAPH Asia) 27,5 (Dec.), 165:1-165:10.

ANDO, R., THUREY, N., AND WoiTaN, C. 2015. A dimension-reduced
pressure solver for liquid simulations. Computer Graphics Fo-
rum (Eurographics) 34, 2, 473-480.

Bararr, D., anp WiTkiN, A. 1998. Large steps in cloth simula-
tion. In Proceedings of the 25th Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM, New York,
NY, USA, SIGGRAPH 98, 43-54.

Bararg, D. 1997. An introduction to physically based modeling:
Rigid body simulation i - unconstrained rigid body dynamics. In
An Introduction to Physically Based Modelling, SIGGRAPH 97
Course Notes, 97.

Barsi¢, J., anp James, D. L. 2005. Real-time subspace integra-
tion for St. Venant-Kirchhoff deformable models. ACM Trans.
Graph. (SIGGRAPH) 24, 3 (July), 982-990.

BaRrBIC, J., anND JamEs, D. L. 2010. Subspace self-collision culling.
ACM Trans. Graph. (SIGGRAPH) 29, 4 (July), 81:1-81:9.

BaRBIC, J., AND ZHAO, Y. 2011. Real-time large-deformation sub-
structuring. ACM Trans. on Graphics (SIGGRAPH 2011) 30, 4,
91:1-91:7.

BerGou, M., WaARDETZKY, M., RoBINSON, S., AupoLy, B., AND GRIN-
spuN, E. 2008. Discrete elastic rods. ACM Trans. Graph. (SIG-
GRAPH) 27, 3 (Aug.), 63:1-63:12.

CHEN, Z., Feng, R., anp WanG, H. 2013. Modeling friction and
air effects between cloth and deformable bodies. ACM Trans.
Graph. (SIGGRAPH) 32, 4 (July), 88:1-88:8.

CHoy, K.-J., anp Ko, H.-S. 2002. Stable but responsive cloth. ACM
Trans. Graph. (SIGGRAPH) 21, 3 (July), 604-611.

CHor, M. G., anp Ko, H.-S. 2005. Modal warping: Real-time sim-
ulation of large rotational deformation and manipulation. /EEE
Trans. Vis. Comp. Graph. 11, 1 (Jan.), 91-101.

Hann, F., THomaszewski, B., Coros, S., SUMNER, R. W., CoLE,
F., MEver, M., DERosg, T., anp Gross, M. 2014. Subspace
clothing simulation using adaptive bases. ACM Trans. Graph.
(SIGGRAPH) 33, 4 (July), 105:1-105:9.

Harmon, D., anp ZoriN, D. 2013. Subspace integration with local
deformations. ACM Trans. Graph. (SIGGRAPH) 32, 4 (July),
107:1-107:10.

Hauser, K. K., Suen, C., anp O’Brien, J. F. 2003. Interactive
deformation using modal analysis with constraints. In Graphics
Interface, 247-256.

Hecnr, F, LEg, Y. J., SHEwcHUK, J. R., aNp O’Brien, J. F. 2012. Up-
dated sparse Cholesky factors for corotational elastodynamics.
ACM Trans. Graph. 31, 5 (Sept.), 123:1-123:13.

Huang, J., Liu, X., Bao, H., Guo, B., anp Suum, H.-Y. 2006. An
efficient large deformation method using domain decomposition.
Comput. Graph. 30, 6 (Dec.), 927-935.

IrviNG, G., TERAN, J., AND Fepkiw, R. 2004. Invertible finite ele-
ments for robust simulation of large deformation. In Proceedings
of SCA, 131-140.

Kaurman, D. M., Suepa, S., JamEs, D. L., anp Par, D. K. 2008. Stag-
gered projections for frictional contact in multibody systems.
ACM Trans. Graph. (SIGGRAPH Asia) 27, 5 (Dec.), 164:1-
164:11.

Kim, T., aND DELANEY, J. 2013. Subspace fluid re-simulation. ACM
Trans. Graph. (SIGGRAPH) 32, 4 (July), 62:1-62:9.

Kmv, T., anp James, D. L. 2011. Physics-based character skinning
using multi-domain subspace deformations. In Proceedings of
SCA, 63-72.

MULLER, M., HEIDELBERGER, B., TESCHNER, M., AND GRross, M. 2005.
Meshless deformations based on shape matching. ACM Trans.
Graph. (SIGGRAPH) 24, 3 (July), 471-478.

PENTLAND, A., AND WiLLIAMS, J. 1989. Good vibrations: Modal dy-
namics for graphics and animation. SIGGRAPH Comput. Graph.
23, 3 (July), 207-214.

Strakis, E., aNp Barsic, J. 2012. FEM simulation of 3D deformable
solids: A practitioner’s guide to theory, discretization and model
reduction. In ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12,
20:1-20:50.

TENg, Y., Otabpuy, M. A., anp Kiv, T. 2014. Simulating articulated
subspace self-contact. ACM Trans. Graph. (SIGGRAPH) 33, 4
(July), 106:1-106:9.

TerAN, J., BLEMKER, S., HINg, V. N. T., anp Fepkiw, R. 2003. Fi-
nite volume methods for the simulation of skeletal muscle. In
Proceedings of SCA, 68-74.

TerAN, J., Sirakis, E., IrviNG, G., anp Fepkiw, R. 2005. Robust
quasistatic finite elements and flesh simulation. In Proceedings
of SCA, 181-190.

TerzorouLos, D., PLarT, J., BARR, A., aND FLEIscHER, K. 1987. Elas-
tically deformable models. In Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Techniques,
ACM, New York, NY, USA, SIGGRAPH ’87, 205-214.

TREUILLE, A., LEwIs, A., AND Popovi¢, Z. 2006. Model reduction for
real-time fluids. ACM Trans. Graph. (SIGGRAPH) 25, 3 (July),
826-834.

UmeTani, N., ScamipT, R., AND Stam, J. 2014. Position-based elastic
rods. In ACM SIGGRAPH 2014 Talks, ACM, New York, NY,
USA, SIGGRAPH 14, 47:1-47:1.

Wang, H., O’BrieN, J., aND RamamoortHi, R. 2010. Multi-
resolution isotropic strain limiting. ACM Trans. Graph. (SIG-
GRAPH Asia) 29, 6 (Dec.), 156:1-156:10.

WickE, M., STaNTON, M., AND TREUILLE, A. 2009. Modular bases for
fluid dynamics. ACM Trans. Graph. (SIGGRAPH) 28, 3 (July),
39:1-39:8.

Yang, Y., Xu, W., Guo, X., ZHou, K., aNp Guo, B. 2013. Boundary-
aware multidomain subspace deformation. [EEE Trans. Vis.
Comp. Graph. 19, 10 (Oct), 1633-1645.

A Derivation of Equation 9

Since only internal elastic forces are integrated implicitly, we can
discretize Equation 6 in time by plugging in 4 = (@' — q)/At:
@ - @)/At+UDUq,; + UL (Uq) + Z F/=F" (12
&ij

By linearizing the internal forces at time ¢, we can get the approxi-
mate internal force at the next time instant ¢ + Af:

£ (Uiq) + 55— (¢} — q)
(UA(I/) Ou,

£ (Uq)) + T 2 (g~)
f;“‘(U,q,) + AtK;U; q[

i afin (U i)
£ (Ui = .

13)

With similar linearization and derivation, we get the equation de-
scribing the reduced coupling force as:

OF:.
F, = [F + —”Q;-)- (14)
;ij J ;lj] 6Qij J

After merging Equation 12 to 14, we obtain Equation 9.

B Equations for Implicit Integration

Let xl’.j . be the [-th vertex of element e, in the global frame and iﬁj i

be its position in the local frame of domain ;. The matrix-vector
product term in Equation 9 can be evaluated as:

OF, OF, OF, OF, OF, OF,
230 5, 5l T, U, 0,

lo
ljk

M

ARUL)T —=(RU} @ + v + 0] X RKL) |+

l j,k

(I
€ijk€8ijX Ij](XX

2

eXX (X

lo
ijk

AHRUS)T —

(R U,]kqj +V + w xRJxUk))

t,k
€ijk€Eij X /k J

(15)
in which the term 6fl](; P /(9X” . 18 one of the 3 X 3 sub-blocks of the
element stiffness matrix corresponding to element ¢;;;. The matrix-
vector product terms in Equation 10 can be expanded in a similar
fashion.

Matrix symmetry. Although it is not intuitive, the system matrix
assembled from Equation 9 and 10 is indeed symmetric. This is
because every term in these equations has a corresponding sym-
metric term in one of the other equations. For example, the term
ZSU 6Fi ; /0v; in Equation 15 is one sub-block of the system matrix
A, whose its transpose is:

i N\T
]
) D)
S avl Iy
Y i UAGX*z/kEX

1
ik

ofY
ARUY)T , —=]

;jk€E;
) (16)
]
ij

a4
8/

- 3

¢ijk€Eij, ’kE{YX EX

ijk |~

ot
(At Uk R UL
X
X

ij.k

Here, the symmetry of element e;;;’s tangent stiffness matrix, i.e.,
(IE0, ox)T = Ofl, /O . Equa-
tion 16 indicates that 3¢,) ;/0v;and Xg,. fl.’j /q; are two symmet-
ric blocks. Similar relationships can be derived for other terms.

ik is used in this derivation.

