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Fig. 1. A shirt example with 56K vertices and 112K triangles. The front of this shirt contains five cloth layers. Thanks to a safe and fast repulsion method
for cloth self collisions, our GPU-based cloth simulator animates this shirt at 38 to 72 FPS with a large time step (∆t=1/100s). This is at least one order of
magnitude faster than existing cloth simulators [Tang et al. 2018b].

Cloth dynamics and collision handling are the two most challenging topics

in cloth simulation. While researchers have substantially improved the per-

formances of cloth dynamics solvers recently, their success in fast collision

detection and handling is rather limited. In this paper, we focus our research

on the safety, efficiency and realism of the repulsion-based collision han-

dling approach, which has demonstrated its potential in existing GPU-based

simulators. Our first discovery is the necessary vertex distance conditions

for cloth to enter self intersections, the negations of which can be viewed as

vertex distance constraints continuous in time for sufficiently avoiding self

collisions. Continuous constraints, however, cannot be enforced with ease.

Our solution is to convert continuous constraints into three types of con-

straints: discrete edge length constraints, discrete vertex distance constraints

and vertex displacement constraints. Based on this solution, we develop a
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fast and safe collision handling process for enforcing constraints, a novel

splitting method for integrating collision handling with dynamics solvers,

and static and adaptive remeshing schemes to further improve the runtime

performance. In summary, our cloth simulator is efficient, safe, robust and

parallelizable on a GPU. The experiment shows that it runs at least one order

of magnitude faster than existing simulators.
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1 INTRODUCTION
Physics-based cloth simulation is a highly demanded computer

graphics technique and it is expected to revolutionize our lives

through virtual design, marketing and shopping applications in the

near future. But there is a huge obstacle in the path of realizing these

applications: the computational efficiency. Recent research [Bouaziz

et al. 2014; Fratarcangeli et al. 2016; Liu et al. 2013; Narain et al. 2016;

Wang 2015; Wang and Yang 2016; Wang et al. 2018] has successfully

improved the efficiency of cloth dynamics solvers, by formulating
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cloth dynamics as a nonlinear optimization problem and solving it

with graphics hardware acceleration. This success depends heav-

ily on the use of large time steps
1
, which lessens computational

overheads and enhances the benefit of acceleration methods. Un-

fortunately, recent research progress on self collision handling of

cloth is rather limited. Existing cloth collision handling algorithms,

including both discrete and continuous ones [Baraff et al. 2003;

Bridson et al. 2003; Volino and Magnenat-Thalmann 2006], are of-

ten unfriendly with graphics hardware due to their localized and

sequentialized workloads. Parallelizing and accelerating these al-

gorithms [Lauterbach et al. 2010; Tang et al. 2018a, 2016, 2018b] is

not trivial and the recent result is still nowhere close to real-time

performance. In general, fast and robust self collision handling of

cloth is a challenging problem in computer graphics.

A common way of dealing with cloth self collisions on a GPU is to

apply vertex distance constraints, i.e., pushing vertices apart so that

cloth does not get entangled. While this practice has demonstrated

its effectiveness and efficiency in previous systems [Fratarcangeli

et al. 2016; Macklin et al. 2014; Stam 2009], it suffers from a crit-

ical limitation: a vertex can penetrate through a triangle without

getting close to any triangle vertex. This issue can be lessened by

adding interior triangle samples and increasing the repulsion dis-

tance threshold, but the risk remains, especially if triangles are

overly stretched. The use of a large repulsion distance threshold

also worsens early repulsion artifacts. For example, cloth sheets

behave as if they float over each other, without making real contact.

In this paper, we focus our research on the development of a novel

repulsion-based collision handling approach that is:

• safe, i.e., strictly free of self penetration at any time,

• visually correct, i.e., hardly visible repulsion artifacts caused

by early responses, even though they still exist,

• and efficient, i.e., taking a small computational time.

We build the foundation of our research upon necessary conditions

on vertex distances for a triangle mesh to enter self intersections.

We then view the negations of these conditions as sufficient vertex

distance constraints for avoiding self intersections, which must

be satisfied continuously in time. To achieve this goal, we solve a

series of technical problems and we make the following technical

contributions.

• Constraint enforcement. Our first question is: how can we

strictly satisfy the aforementioned constraints defined contin-

uously in time? The answer to this question lies in the discov-

ery that continuous constraints can be satisfied sufficiently

by enforcing vertex distance and edge length constraints de-

fined discretely at every vertex state, and vertex displacement

constraints that restrict the distances the mesh vertices can

travel during a collision step. Based on this discovery, we

formulate our collision handling process as two phases: a

soft phase that takes a small computational time to satisfy

constraints most of the time; and a hard phase that enforces

constraints strictly at the cost of more computational time

and/or less accuracy.

1
When simulating cloth with its maximal velocity under 10m/s, we consider the time

step to be large if it is above 1/100s, or small if it is below 1/1000s.

• Dynamics-collision integration. To increase the success rate

of the soft phase and to improve the performance of collision

handling, we should limit the initial vertex displacement of

each collision step. But here comes another question: how

can we integrate collision handling with any cloth dynamics

solver, especially those state-of-the-art ones demanding the

use of large time steps? Simply synchronizing a collision step

with a time step or one iteration of a dynamics solver would

undermine the overall runtime performance. Our solution is

a splitting method that treats cloth dynamics and collision

handling as two independent yet coupled processes. Thanks

to this method, the dynamics solver runs freely without any

restriction on vertex displacement, while collision handling

tries to catch up with the solver result at its own pace.

• Uniform mesh sampling. The analysis in the development

of our collision handling process is based on the assump-

tion that all of the edges are shorter than a global constant

threshold. For fast and realistic simulation, we prefer to min-

imize the difference of edge lengths in both the reference

configuration and the deformed configuration. To do so, we

present a uniform mesh sampling scheme for the reference

configuration and an adaptive mesh resampling scheme for

the deformed configuration. Being developed for a GPU, the

adaptive scheme is of particular importance, as it prevents

edge length constraints from consuming too much computa-

tional time in simulation, especially when cloth gets overly

stretched.

By integrating the proposed techniques into a novel cloth simula-

tor and experimenting it on a GPU, we have successfully demon-

strated its efficiency, safety in collision handling, and robustness

against large time steps and deformations. Perhaps an even greater

strength of our simulator is its freedom of adopting various cloth

dynamics solvers. Since it treats cloth dynamics and collision han-

dling as two independent processes, we can conveniently replace

the current dynamics solver by others in the future.

2 RELATED WORK

Cloth collision handling. How to safely and efficiently handle

cloth self collisions is known to be a challenging problem. Since

the visual artifacts caused by cloth collisions are highly notice-

able in cloth simulation, the early work on continuous collision

handling [Bridson et al. 2002; Provot 1997] aimed at detecting and

removing any self intersection that can happen within a time step.

Brochu and colleagues [2012], Wang [2014] and Tang and collabo-

rators [2014] later improved the accuracy of continuous collision

detection tests with respect to floating point errors. Continuous

collision handling techniques [Bridson et al. 2002; Harmon et al.

2008; Huh et al. 2001; Provot 1997] typically use geometric impulses

and impact zones to remove detected collisions, under the assump-

tion that the time step is sufficiently small. When the time step is

large, impulse methods are likely to fail, and impact zone meth-

ods are likely to suffer from locking and convergence issues. If self

penetration artifacts are tolerable, cloth simulators can also use

discrete collision handling techniques [Baraff et al. 2003; Buffet et al.

2019; Volino and Magnenat-Thalmann 2006; Wicke et al. 2006] to
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untangle cloth at the end of every time step. When the time step

is large, these techniques still work but they often fail to eliminate

self penetrations even after many tries.

Since most continuous and discrete collision handling algorithms

are naturally unfriendly with GPU acceleration, a popular and ef-

ficient collision handling practice on a GPU [Fratarcangeli et al.

2016; Macklin et al. 2014; Stam 2009] is to simply push vertices and

samples apart from each other. Unfortunately as mentioned ear-

lier, this practice alone is not safe: it cannot prevent self collisions

from happening, especially when the time step is large or cloth gets

overly stretched.

In conclusion, the large time step is the common foe to most of

the collision handling algorithms. As pointed out by Harmon and

colleagues [2009], it is fundamentally the large vertex displacement

happening within one time step that causes all of the problems. To

make collision handling safe and robust, we should find a way to

limit the vertex displacement.

Collision culling. One research topic relevant but orthogonal to

this research is collision culling, i.e., avoiding unnecessary collision

tests if collisions do not happen. Collision culling techniques can

be roughly grouped into two categories: spatial partitioning and

bounding volume hierarchy [Schvartzman et al. 2010; Tang et al.

2010, 2011; Zheng and James 2012]. GPU-based implementations

of both categories have been investigated [Lauterbach et al. 2010;

Pabst et al. 2010; Tang et al. 2018a,b] previously, although grid-based

spatial partitioning on a GPU is slightly more popular in our opinion,

thanks to its simplicity and fast memory access.

Recently, Tang and collaborators [2018b] developed an incremen-

tal collision algorithm for iterative impact zone optimization. Their

simulator is similar to ours in that both must run multiple collision

handling processes in every time step. The difference is that each

of their processes is essentially one post-processing iteration, in

which only a few vertices move. As a result, their simulator performs

collision culling and detection only once per time step.

Dynamics-collision integration. How to integrate cloth dynam-

ics solvers with collision handling algorithms is an important yet

often overlooked problem. When the time step is small, e.g., when

using explicit time integration, simulators [Bridson et al. 2003; Choi

and Ko 2002] can simply perform collision handling after cloth dy-

namics as post-processing at the end of every time step. But when

the time step is large, especially when we use modern cloth dynam-

ics solvers, simulators must use many sub-steps if we still want to

post-process collisions [Bridson et al. 2002; Selle et al. 2009]. To

improve the simulation performance, Thomaszewski and collab-

orators [2008] proposed to update vertices asynchronously using

different time steps, so that the simulation does not get restricted

uniformly by small time steps or sub-steps. Based on the fact that

most cloth dynamics solvers are iterative, a more plausible approach

is to handle collisions as projection after every dynamics iteration.

This approach requires to use relatively inexpensive collision han-

dling processes, such as vertex repulsion [Macklin et al. 2014; Stam

2009]. While this approach suffers less from the use of large time

steps, it can still run into collision handling problems, especially in

the first few iterations when vertex displacements are large. The

situation can be worsened once we start to consider accelerated or

multi-resolutional solvers [Aksoylu et al. 2005; Green et al. 2002;

Jeon et al. 2013; Tamstorf et al. 2015; Wang et al. 2018], which try to

achieve even larger vertex displacements for faster convergence.

A relatively unpopular idea of avoiding troubles in the integra-

tion of cloth dynamics and collision handling is to use two state

vectors, one for cloth dynamics and one for collision handling. This

idea was initially explored for flexible cloth simulation of noncon-

forming meshes [English and Bridson 2008] and embedded point

samples [Sifakis et al. 2007], which are not directly suitable for

collision handling. Later Harmon and colleagues [2011] developed

the phantom mesh method using two vertex state vectors, so that

the dynamics solver is unaffected by the use of small collision sub-

steps [Harmon et al. 2009]. These existing techniques typically per-

form the coupling of the two state vectors only once at the end

of every time step. This is an acceptable practice when the time

step is small. But as the time step gets larger, decoupling artifacts

can emerge and we must address the coupling issue differently, as

discussed in Section 5.

3 DISTANCE CONDITIONS FOR SELF INTERSECTIONS

To begin with, we would like to derive necessary conditions on

vertex distances for a triangle mesh to become self intersected. There

are two possible ways to achieve self intersections: vertex-triangle

intersection and edge-edge intersection.

3.1 Vertex-Triangle Intersection
Let xi ∈ R3

be the 3D position of vertex i , and xjxkxl be the vertex
positions of triangle jkl . When they are in intersection, we define

D(xi , xjxkxl ) as the distance from xi to the closest triangle corner:

D(xi , xjxkxl ) = min

(
∥xi j ∥, ∥xik ∥ , ∥xil ∥

)
, (1)

in which xi j = xi − xj is the relative position from xj to xi . Since
D(xi , xjxkxl ) is continuous and xi is inside of a closed triangle,

there must exist x∗i that maximizes D(xi , xjxkxl ), according to the

extreme value theorem. If the triangle is acute, x∗i must be its interior

circumcenter, as Theorem A.1 shows; otherwise, D(x∗i , xjxkxl ) can-
not exceed half of the longest edge length, as Theorem A.2 shows.

Together we obtain an upper bound Bi, jkl on D(xi , xjxkxl ):

D(xi , xjxkxl ) ≤ Bi, jkl ={
r jkl =

∥xjk ∥ · ∥xkl ∥ · ∥xl j ∥√
ljkl (ljkl−2∥xjk ∥)(ljkl−2∥xkl ∥)(ljkl−2∥xl j ∥)

, if acute,

1

2
max(∥xjk ∥, ∥xkl ∥, ∥xl j ∥), otherwise,

(2)

in which ljkl = ∥xjk ∥ + ∥xkl ∥ + ∥xl j ∥ is the sum of the triangle

edge lengths and r jkl is the circumradius. If the triangle is acute,

Theorem A.3 proves that r jkl is a monotonically increasing function

of any edge length. Overall, Bi, jkl is a monotonically increasing

function of any edge length: it does not decrease as any edge length

increases.

3.2 Edge-Edge Intersection
Let xixj and xkxl be the vertex positions of two intersecting edges.

We define D(xixj , xkxl ) as the shortest distance of the four vertex
pairs:

D(xixj , xkxl ) = min(∥xik ∥, ∥xil ∥, ∥xjk ∥, ∥xjl ∥). (3)
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Let ∥xi j ∥ and ∥xkl ∥ be the given lengths of the two edges. Theo-

rem A.4 proves that D(xixj , xkxl ) is maximized only if the edges

intersect perpendicularly at their midpoints. In that case, we have:

D(xixj , xkxl ) ≤ Bi j,kl =
1

2

√
∥xi j ∥2 + ∥xkl ∥2. (4)

Here Bi j,kl serves as an upper bound on D(xixj , xkxl ), which is

also a monotonically increasing function of any edge length.

4 CONSTRAINT FORMULATION AND ENFORCEMENT

In this section, we will first formulate constraints for a triangle mesh

to stay away from self intersections, based on the upper bounds on

vertex distances provided in Section 3. We will then discuss how to

enforce those constraints strictly and efficiently.

4.1 Continuous and Discrete Constraints
Since Eq. 2 and 4 are necessary conditions for vertex-triangle and

edge-edge pairs to intersect, we can treat their negations as sufficient

conditions to avoid self intersections. A realistic issue though is that

Bi, jkl and Bi j,kl are functions of edge lengths varying over time. To

address this issue, we propose a constant upper bound L on all of the

edge lengths. Since both Bi, jkl and Bi j,kl are monotonically increas-

ing functions of edge lengths, we treat B = max(Bi, jkl ,Bi j,kl ) =

max(L/
√

3,L/
√

2) = L/
√

2 as the global lower bound on the dis-

tance between any two non-adjacent vertices within a mesh. We

then describe the intersection-free constraints as:{ 

xi j (t)

2

≤ L2, if {i, j} is an edge,

xi j (t)

2

≥ B2 = L2/2, otherwise,
(5)

for t being any time within the simulation period. In practice, we

perform cloth simulation through a sequence of updates

{
x[k ]

}
and

we typically assume that the trajectory between two consecutive

updates is linear: x(t) = (1 − t)x[k ] + tx[k+1]
. In that case, t ∈ [0, 1]

is an interpolant between two updates. We then convert Eq. 5 into

quadratic inequalities of t :



(1 − t)x[k]i j + tx

[k+1]

i j




2

≤ L2, if {i, j} is an edge,


(1 − t)x[k]i j + tx
[k+1]

i j




2

≥ B2, otherwise,
(6)

for any t ∈ (0, 1]. We note that Eq. 6 is satisfied at t = 1 during

the last update, so it is automatically satisfied at t = 0 during the

current update. To detect any constraint violation, we calculate

t that minimizes/maximizes the left-hand sides of Eq. 6 and then

evaluate the inequalities directly. We can even eliminate t from Eq. 6

by its closed form and formulate the constraints solely as functions

of x[k ] and x[k+1]
. Unfortunately, we cannot easily enforce such

constraints due to their complexity.

Instead of enforcing continuous constraints, i.e., those being de-

fined continuously over time in Eq. 6, we propose to derive and en-

force discrete constraints being defined solely at every update x[k+1]
,

in a way that the satisfaction of discrete constraints guarantees the

satisfaction of continuous constraints. When {i, j} is an edge, it is

straightforward to see that if



x[k ]i j



2

≤ L2
and



x[k+1]

i j



2

≤ L2
, then

xi j (t)

2

≤ L2
as well for t ∈ [0, 1]. This means we can simply turn

continuous edge length constraints into discrete ones defined at

every update x[k+1]
. But when {i, j} is not an edge, we may not be

able to obtain the same conclusion. Let t∗ ∈ [0, 1] be the interpolant

that minimizes



xi j (t)

2

. There are three possibilities: t∗ = 0, t∗ = 1,

or t∗ ∈ (0, 1) when xi j (t) ·
(
x[k+1]

i j − x[k ]i j
)
= 0. In all of the three

cases, we know:

xi j (t)

2

≥


xi j (t∗)

2

≥

min

(

x[k+1]

i j



2

,


x[k]i j



2
)
− 1

4



x[k+1]

i j − x[k ]i j



2

.
(7)

If we use a small constant Btight to tighten every vertex distance

constraint:

x[k]i j



2

,


x[k+1]

i j



2

≥ (B + Btight)2, if {i, j} is not an edge, (8)

and set an upper limit on the displacement of each vertex:

x[k+1]

i − x[k ]i



2

≤ (B + Btight)2 − B2, (9)

we then obtain:

x[k+1]

i j − x[k ]i j



2

≤ 4(B + Btight)2 − 4B2, (10)

and we know



xi j (t)

2

≥ B2
for any t ∈ [0, 1]. In summary, we have

the following discrete constraints on x[k+1]

i j :{ 

x[k+1]

i j



2

≤ L2, if {i, j} is an edge,

x[k+1]

i j



2

≥ (B + Btight)2, otherwise,
(11)

and



x[k+1]

i − x[k ]i



2

≤ (B + Btight)2 − B2
for every vertex i . The

satisfaction of discrete constraints in Eq. 11 and vertex displace-

ment constraints in Eq. 9 ensures the satisfaction of continuous

constraints in Eq. 6.

Without loss of generality, we define a continuous constraint as

Ci j
(
x[k ], x[k+1]

)
≥ 0 and a discrete constraint as ci j (x[k+1]) ≥ 0 in

the rest of this paper.

4.1.1 The avoidance of vertex displacement constraints. An im-

portant idea we will explore next in Subsection 4.2 is that we choose

not to deal with vertex displacement constraints explicitly for two

reasons. First, vertex displacement constraints are not always nec-

essary, and enforcing them would slow down vertex movement.

For instance, vertex distance constraints do not allow a vertex and

a triangle to move at the same high velocity, even though they

satisfy continuous constraints. Second, we can effectively reduce

the collision handling cost, especially because vertex displacement

constraints are not so compatible with others in a single GPU kernel

and they may need their own kernel.

We would like to emphasize that the above discussion does not

suggest vertex displacement constraints are meaningless. Instead

they provide theoretical guarantee on the efficiency and safety of

our methods. In Subsection 4.2.1, they will justify the use of a small

initial vertex displacement to improve the success rate of the soft

phase; in Subsection 4.2.2, they will ensure the safe termination of

the hard phase by finding a small step size.

4.2 Constraint Enforcement
Let x[k ] be the latest vertex state vector and xinit be the initial ver-
tex state vector for the next update. Our goal is to find the next

update x[k+1]
, which is the closest to xinit and satisfies continuous
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constraints. According to Subsection 4.1, we choose to enforce dis-

crete constraints only and we formulate the constraint enforcement

problem as:

x[k+1] = arg min

x



x − xinit

2

, s.t. ci j (x) ≥ 0 for any {i, j}. (12)

Since the original goal is to satisfy continuous constraints, we incor-

porate both continuous and discrete constraints into the termination

condition of the constraint enforcement process.

The key problem is: how can we achieve the satisfaction of con-
tinuous constraints and discrete constraints, without even addressing
vertex displacement constraints? This problem is particularly impor-

tant to the development of a real-time simulator, which requires

a careful balance between the performance and the accuracy. Our

solution is to divide constraint enforcement into two phases. In the

soft phase, we try to find an acceptable x[k+1]
quickly first. Under a

small initial displacement assumption, we aim at making most of

the soft phase cases successful. But if the soft phase does fail, we

switch to run a failsafe method in the hard phase, which can be

safely terminated within a limited computational time thanks to

novel step size conditions.

4.2.1 The soft phase. In the soft phase, we calculate x[k+1]
as

the projection of xinit to the feasible region: c(x) ≥ 0, as shown in

Fig. 3a. This approach is fast and effective most of the time, since

xinit is often close to the feasible region. Let ϵslack be a positive slack
constant. We convert the original constrained optimization problem

into the following unconstrained one:

x[k+1] = arg min

x

{

x−xinit

2

− ρ
∑
{i, j }

min

(
ci j (x)−ϵslack, 0

)}
, (13)

in which ρ is a penalty strength constant and each constraint penalty
term is active when x violates its corresponding discrete constraint:

ci j (x) ≥ ϵslack. We treat xinit as the initialization and run a fixed

number I soft of gradient descent iterations to reduce the objective.

After that, we test whether the result satisfies both continuous and

discrete constraints. If it does, we declare a soft phase success and

terminate the collision handling process. Otherwise, we abandon

the soft phase and switch to the hard phase next.

There are three possible reasons why the soft phase can fail.

x[k]

x[k+1]

xinit = x(0)x(l)

c(x) ≥ 0

x[k] = x(0)x[k+1]

xinit

x(l)

c(x) ≥ 0

Fig. 2. A 2D square example.
In this example, vertex distance
constraints try to push vertices
apart, while edge length con-
straints try to hold the square
from being too expanded.

First, since the objective in Eq. 13

is non-convex, the optimization can

get stuck in a local optimum that

fails to satisfy all of the constraints.

For example, when a 2D square is

stuffed with four alien vertices as

shown in Fig. 2, it cannot satisfy ver-

tex distance and edge length con-

straints simultaneously, while the

optimization can still reach an equi-

librium state corresponding a local

minimum. Fortunately, such local

minimum cases are extremely un-

common in practice.

Second, the soft phase can fail because discrete constraints are

satisfied while continuous constraints are not. We can eliminate

this possibility by enforcing vertex displacement constraints, but

x[k]

x[k+1]

x(0) = xinitx(l)

c(x) ≥ 0

x(0) = x[k]x[k+1]

xinit

x(l)

c(x) ≥ 0

x(l+1)

C(x(l), x(l+1)) ≥ 0

(a) The soft phase

x[k]

x[k+1]

x(0) = xinitx(l)

c(x) ≥ 0

x(0) = x[k]x[k+1]

xinit

x(l)

c(x) ≥ 0

x(l+1)

C(x(l), x(l+1)) ≥ 0

(b) The hard phase

Fig. 3. The iterations of the two phases. While the soft phase can reach
its solution fast as shown in (a), the hard phase ensures that every x(l )

is acceptable: c
(
x(l )

)
≥ 0 and C

(
x(m), x(m+1)

)
≥ 0 form = 0...l − 1, as

shown in (b). Therefore, we can terminate the hard phase safely at any x(l ),
regardless of the objective convergence.

we prefer not to do so as discussed in Subsection 4.1.1. Instead we

assume that the initial displacement xinit − x[k ] is sufficiently small.

Ideally, if x[k+1]
is the closest

2
feasible point to xinit, we have:

x[k+1] − x[k ]



 ≤ 

xinit − x[k ]

 + 

xinit − x[k+1]




≤ 2



xinit − x[k ]

. (14)

Thus the resulting displacement x[k+1] − x[k ] must also be small to

eventually satisfy continuous constraints, as in Subsection 4.1.

Finally, the soft phase can fail due to an insufficient number of

iterations, I soft. As before, we rely on the use of a small initial dis-

placement to address this issue. As the initial displacement decreases,

the distance from xinit to the feasible region drops, which implies a

lower demand of a large I soft.
From the above analysis, we see that the use of a small initial

displacement is essential to the reduction of soft phase failures. That

being said, we cannot strictly prevent them from happening and we

need the hard phase to terminate the collision process next.

4.2.2 The hard phase. The main purpose of the hard phase is

to guarantee the safe termination of the collision handling process

within a limited computational time. In this regard, its safety and

efficiency are more important than its accuracy. Here we model

constraints as log barriers and apply the interior point method:

x[k+1] = arg min

x

{

x−xinit

2

− µ
∑
{i, j }

log

(
f (ci j (x), ϵslack)

)}
, (15)

where µ is a log barrier constant and f (x , ϵ) is a piecewise function:

f (x , ϵ) =


x , if x ≤ 0,

a3x
3 + a2x

2 + a1x + a0, if 0 < x ≤ ϵ,
ϵ, if ϵ ≤ x ,

(16)

in which the coefficients are calculated for C0
and C1

continuity:
0 0 0 1

ϵ3 ϵ2 ϵ 1

0 0 1 0

3ϵ2
2ϵ 1 0



a3

a2

a1

a0

 =


0

ϵ
1

0

 . (17)

2
In reality, the calculated result x[k+1]

may not be closer to xinit than x[k ] for many

reasons, such as the non-convexity of the objective. Fortunately, this becomes unlikely

as the initial displacement decreases, if we assume that the objective is convex within

a small neighborhood of xinit .
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Intuitively, f (x , ϵ) limits the influence of the constraints within a

range x = ci j (x) ∈ (0, ϵslack]. We note that when x ≤ 0, f (x , ϵ) is
defined but Eq. 15 is undefined. This is not an issue, because the

interior point method forces x to be strictly feasible: ci j (x) > 0. To

do so, we treat x[k ] as the initialization and we run a number of

gradient descent iterations as shown in Fig. 3b to reduce Fhard(x),
the objective of Eq. 15:

x(l+1) = x(l ) − αhardl ∇Fhard(x(l )), (18)

in which αhardl is the step size. We choose a relatively small initial

step size αhard
0

= 0.1 and then apply backtracking line search to

adjust it gradually until it achieves three conditions:

• Every result x(l+1)
is strictly within the feasible region, i.e.,

ci j
(
x(l+1)

)
> 0,

• The objective Fhard(x) decreases adequately from x(l ) to x(l+1)
,

i.e., satisfying the Armijo-Goldstein condition,

• The displacement x(l+1) −x(l ), directly controlled by αhardl , is

small enough to satisfy continuous constraints in Eq. 6 from

x(l ) to x(l+1)
, according to Subsection 4.1.

Given the above description, we claim that every x(l ) is accept-
able: it satisfies discrete constraints and it forms a piecewise lin-

ear and intersection-free trajectory from x(0) to x(l ), although the

continuous constraints here are different from the continuous con-

straints for linear motion. Therefore we can safely terminate the

hard phase at any x(l ). This is a crucial advantage compared with

other optimization-based impact zone methods [Harmon et al. 2008;

Tang et al. 2018b], which require the optimization to reach the

convergence. Since their problems are often ill-conditioned, their

methods can stagnate, especially if the time step is large.

The number of hard phase iterations imposes a trade-off between

the efficiency and the accuracy. The fewer the iterations are, the

faster but the less accurate the hard phase becomes. Meanwhile, the

hard phase typically needs more iterations than the soft phase to

reach similar levels of accuracy, given the fact that the hard phase

is initialized by x(0) = x[k]. Instead of using a fixed number of hard

phase iterations, we choose to run Ihard iterations and then check

the termination condition:



∇Fhard(x(l ))

 ≤ η, in which η is the

termination threshold. If this condition is not met, we run another

Ihard iterations, check the condition again, and repeat, until either

the condition is met or the total number of iterations reaches a

maximal value.

One practical issue is that the optimization can be slowed down

by an arbitrarily small step size, if x[k ] is too close to the boundary

of the feasible region: ci j (x[k ]) = 0. This is mostly due to the soft

phase accepting any x[k ] that satisfies ci j (x[k ]) ≥ 0. To solve this

issue, we slightly adjust the success condition of the soft phase to:

ci j (x[k]) ≥ ϵcond. In our system, ϵcond = 0.01mm
2
.

Our experiment shows that a hard phase iteration alone is approx-

imately 40 percent more expensive than a soft phase iteration. But

due to step size adjustment and additional iterations, the hard phase

can become significantly more expensive as the initial displacement

xinit − x[k] grows. Ideally, we prefer the initial displacement to be

small enough, so that the soft phase is successful and the hard phase

is not even needed, as discussed in Subsection 4.2.1. We will study

how to achieve a tight upper limit on the initial displacement with

efficiency in Section 5.

4.3 GPU-Based Implementation
Implementing the collision handling process is mostly straightfor-

ward. To begin with, we collect all of the vertex pairs {i, j} violating

ci j (xinit) ≥ ϵslack into an array. In every soft phase iteration, we

launch a soft phase kernel to calculate their gradients in parallel

and update x[k+1]
by atomic operations accordingly. After I soft ker-

nel launches, we test continuous and discrete constraints, label out

the vertices involved in any constraint violation, and collect the

constraints affected by those labeled vertices into a new array. We

then process these remaining constraints by hard phase kernels,

which calculate constraint gradients and update x[k+1]
in parallel by

atomic operations again. At the end of the hard phase, we recheck

continuous and discrete constraints. If they are satisfied, we end the

collision handling process. Otherwise, we modify the step size and

redo the hard phase.

4.3.1 Proximity search. One computational challenge is how to

efficiently find the nearby vertices of every vertex within a radius√
(B + Btight)2 + ϵslack, the distance at which vertex distance con-

straints start to act. Similar to other GPU-based simulators [Pabst

et al. 2010; Tang et al. 2018b], our simulator uses grid-based spatial

partitioning to accelerate this proximity search. Let the grid cell

size be equal to

√
(B + Btight)2 + ϵslack. For every vertex, we find its

nearby vertices from those being stored in its surrounding 27 grid

cells. In practice, we check only the 14 grid cells with lower or equal

grid cell keys, since the proximity relationship between two vertices

is mutual. When the simulator runs many collision handling steps,

it can be computationally expensive to build the grid from scratch

every time. The good news is the vertex displacement in a single

step is made to be small, which means most of the vertices stay

in the same grid cells from step to step. We explore such tempo-

ral coherence by maintaining two data structures: a dynamic grid

that stores all of the vertices, and a neighborhood cache defined

at every vertex that stores the vertices in its surrounding cells. We

use the neighborhood cache to reduce uncoalesced memory access

specifically.

4.3.2 Missing vertex pairs. We choose to collect vertex pairs

violating ci j (xinit) ≥ ϵslack only once at the beginning of the process,
because we want to reduce the proximity search cost. But doing this

may ignore the pairs that start to violate ci j (xinit) ≥ ϵslack later on.

Fortunately, given a sufficiently large ϵslack, those missing pairs are

unlikely to undermine the safety of the collision process, since they

can still satisfy continuous and discrete constraints in the end. A

safer yet more expensive solution is to expand the proximity search

by collecting vertex pairs that violate ci j (xinit) ≥ ϵSLACK > ϵslack,

in which ϵSLACK is a greater constant. We have not found this to be

necessary in our experiment so far.

4.3.3 The choice of parameters. Given the range of the refer-

ence edge lengths, we first determine the maximum edge length

constant L and the vertex distance bound B. The greater L is, the
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(c) The splitting method

Fig. 4. The pipelines of three different methods that integrate the collision handling process with an iterative cloth dynamics solver. Different from the
post-processing method in (a) and the interleaving method in (b), the splitting method in (c) uses two state vectors, y and x, to deal with cloth dynamics and
collision constraints in a separate yet coupled fashion. The splitting method allows the simulator to avoid artifacts and performance drops caused by large
displacements, commonly noticed in the use of other methods.

more stretchability the mesh has before the collision handling pro-

cess kicks in. On the other hand, an increase of L causes an increase

of B, which worsens early repulsion artifacts. As discussed later

in Subsection 6.1, we resample the reference mesh with a desired

edge length constant Lref = 4.2mm. In our experiment, we specify

L = 6

√
2mm and B = 6mm, which provide a reasonable balance

between stretchability and repulsion artifacts.

Our next job is to determine the constraint tightening constant

Btight. According to Eq. 9 in Subsection 4.1, this is the parameter

that controls the vertex displacement limit for satisfying continuous

constraints. Since we do not enforce vertex displacement constraints

explicitly as described in Subsection 4.2, we want this limit to be

large enough, so that vertex displacement constraints can be au-

tomatically satisfied most of the time. In our experiment, we set

Btight=0.5mm.WhenB=6mm, the vertex displacement limit becomes
√

6.52 − 6
2
=2.5mm. This is significantly greater than the initial ver-

tex displacement limit we will specify later in Section 5.

Finally, we would like to decide the slack constant ϵslack. This pa-
rameter should be sufficiently large to facilitate the convergence of

the two phases and to address the missing pair issue as discussed in

Subsection 4.3.2. But it should also be small to reduce the proximity

search cost and to lessen early repulsion artifacts. In our experiment,

we use ϵslack=21.75mm
2
, which makes the proximity radius equal

to

√
(B + Btight)2 + ϵslack=8.0mm.

4.3.4 A rollback approach for reduction operations. The last

issue is the reduction operations needed for detecting any constraint

or optimization failure, which triggers the hard phase, step size

adjustment, and the use of more hard phase iterations as described

in Subsection 4.2. Performing too many reduction operations can

be prohibitively expensive on a GPU, as shown in [Wang and Yang

2016]. To address this problem, we run R collision steps with the

hard phase being disabled, and test if any violation or failure occurs

only in the end. If so, we roll back the last R steps and re-run the

simulation in the safe mode, with both phases being enabled and

reductions being performed whenever they are needed. Based on

the assumption that constraint violations are rare, this approach

decreases the reduction cost by nearly a factor of (R · I soft).

5 DYNAMICS-CONSTRAINT INTEGRATION
Let xt and vt be the vertex state and velocity vectors at time t , and
∆t be the time step. We define the goal of cloth simulation as find-

ing the next vertex state vector xt+∆t , which solves the following

constrained optimization problem:

xt+∆t = arg min

x
E(x, xt + ∆tvt ),

s.t. Ci j
(
xt , x

)
≥ 0 and ci j (x) ≥ 0, for any {i, j}.

(19)

Here E(x, xt + ∆tvt ) stands for the cloth dynamics objective, which

can be minimized by various GPU-based solvers [Fratarcangeli et al.
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2016; Wang and Yang 2016], and Ci j
(
xt , x

)
stands for continuous

constraints defined on either a line segment from xt to x, or a
piecewise linear curve passing through intermediate updates.

A crucial problem is: how can we integrate the proposed collision
handling process together with any cloth dynamics solver? As dis-
cussed in Subsection 4.2, our collision handling process needs a

small initial vertex displacement to function with efficiency. This is

not an issue when the time step is small, since the vertex displace-

ment should also be small and we can simply handle collisions as

post-projection at the end of the time step. But when the time step

is large, if we still want to post-process collisions, we would have to

break the displacement into multiple sub-steps and handle collisions

in each sub-step as Fig. 4a shows. Such a practice is problematic,

since the dynamics result can be very different from the final re-

sult xt+∆t and it can lead to artifacts as shown in Subsection 5.4.

A better idea is to combine a cloth dynamics step and a collision

handling step into a joint iterative step as Fig. 4b shows, in which

the displacement within a single joint step should be much smaller

than the displacement within a whole time step. Unfortunately, this

idea still suffers from the existence of large displacements, which

can cause soft phase failures and performance drops especially in

the first few steps as Fig. 5a shows.

Our key idea is to treat cloth dynamics and collision handling as

two independent yet coupled processes as Fig. 4c shows. Specifically,

we split the vertex state vector into two: x for collision handling

and y for cloth dynamics. We then formulate the original cloth

simulation problem in Eq. 19 into:{
xt+∆t , yt+∆t

}
= arg min

{x,y}

{
E(y, yt + ∆tvt ) + σ

2
∥x − y∥2M

}
,

s.t. Ci j
(
xt , x

)
≥ 0 and ci j (x) ≥ 0, for any {i, j},

(20)

in whichM is the mass matrix, ∥x − y∥2M = (x− y)
TM(x− y), and σ

is the positive coupling strength coefficient. Ideally, we want a large

σ to achieve strong coupling between x and y, but a too large σ can

overly stiffen the system. In our experiment, we set σ = 80, 000s
−2

as a constant. Because only the intersection-free state x is useful for

display, we eliminate the difference from accumulation by setting

yt+∆t = xt+∆t at the end of every time step. Next we divide Eq. 20

into two sub-problems:
y[k+1] = arg min

y

{
E(y, yt + ∆tvt ) + σ

2



x[k] − y

2

M

}
,

x[k+1] = arg min

x
σ
2



x − y[k+1]


2

M,

s.t. Ci j
(
xt , x

)
≥ 0 and ci j (x) ≥ 0, for any {i, j},

(21)

and solve them iteratively K times. Since we cannot afford solving

the sub-problems exactly every time, we propose to solve them in

an inexact fashion: in the dynamics step, we solve the first sub-

problem by Idyn cloth dynamics iterations; and then in the collision

step, we solve the second sub-problem by the proposed collision

handling process with a displacement limit. Specifically, if there is

no constraint, we can solve the second sub-problem in the collision

step exactly by a single Newton iteration:

x[k+1] = x[k ] + (σM)−1σM
(
y[k+1] − x[k ]

)
= x[k ] +

(
y[k+1] − x[k]

)
.

(22)

-1.2

-0.8

-0.4

0

0 0.01 0.02 0.03 0.04

-1.2

-0.8

-0.4

0

0 64 128 192 256

0

0.0005

0.001

0.0015

0.002

0 16 32 48 640 16 32 48 64

2.0

1.0

0.0

C
os

t (
m

s)

Steps

1.5

10-3

R
el

at
iv

e 
Er

ro
r

0.5

Interleaving
Splitting
Interleaving + A multi-res solver

10-2

10-1

100

0 16 32 48 64
Steps

10-3
R

el
at

iv
e 

Er
ro

r

10-2

10-1

100

0 10 20 30 40
Simulation Time (ms)

Splitting + A multi-res solver

Interleaving
Splitting

(a) The simulation cost per iterative step

-1.2

-0.8

-0.4

0

0 0.01 0.02 0.03 0.04

-1.2

-0.8

-0.4

0

0 64 128 192 256

0

0.0005

0.001

0.0015

0.002

0 16 32 48 640 16 32 48 64

2.0

1.0

0.0

C
os

t (
m

s)

Steps

1.5

10-3

R
el

at
iv

e 
Er

ro
r

0.5

Interleaving
Splitting
Interleaving + A multi-res solver

10-2

10-1

100

0 16 32 48 64
Steps

10-3
R

el
at

iv
e 

Er
ro

r
10-2

10-1

100

0 10 20 30 40
Simulation Time (ms)

Splitting + A multi-res solver

Interleaving
Splitting

(b) The convergence rates of different methods

-1.2

-0.8

-0.4

0

0 0.01 0.02 0.03 0.04

-1.2

-0.8

-0.4

0

0 64 128 192 256

0

0.0005

0.001

0.0015

0.002

0 16 32 48 640 16 32 48 64

2.0

1.0

0.0

C
os

t (
m

s)

Steps

1.5

10-3

R
el

at
iv

e 
Er

ro
r

0.5

No splitting
Splitting
No splitting + A multi-res solver

10-2

10-1

100

0 16 32 48 64
Steps

10-3
R

el
at

iv
e 

Er
ro

r
10-2

10-1

100

0 10 20 30 40
Simulation Time (ms)

Splitting + A multi-res solver

No splitting
Splitting

(c) The convergence speeds of different methods

Fig. 5. The convergence of our simulator when it uses different methods in
the dress example. The interleaving method causes the simulator to spend
large computational time on collision handling in the first few steps as (a)
shows, due to large vertex displacements. The splitting method avoids this
issue and improves the convergence speed, as shown in (c). Here we define
the relative error as: (E(x[k ]) − E(x∗))/(E(x[0]) − E(x∗)), in which E(x) is
the cloth dynamics objective and x∗ stands for the exact solution, estimated
by our simulator with the interleaving method after 1,024 iterative steps.
We define one iterative step as the combination of one dynamics step and
one collision step.

But since constraints do exist in a collision step, we initialize vertex

i for the collision handling process using an initial displacement

limit D:

xiniti = x[k ]i +min

(
D

y[k+1]

i −x[k ]i


 , 1) (y[k+1]

i − x[k]i
)
. (23)

In our experiment, we set D=0.25mm, one tenth of the actual vertex

displacement limit as discussed in Subsection 4.3.3. This is suffi-

cient to make more than 99.9 percent of the soft phases successful.

Intuitively, we can view the displacement limit as asynchronous

stepping of every vertex. Given collisions being avoided between

x[k ] and x[k+1]
by the collision step, the number of steps, K , affects

only the simulation accuracy, not the safety. We note that we can

also view the whole approach as the coordinate descent method

with constraints, which suffers from the convergence issue on the

boundary of the feasible region if both descent directions cause con-

straint violations. Fortunately, this does not happen in our simulator,

since the constraints exist in the second sub-problem only.
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ALGORITHM 1: A GPU-based cloth simulator

Input: xt , yt , vt , σ and ∆t
Output: xt+∆t

y[0] ← yt + ∆tvt ;
x[0] ← Initialization

(
xt , y[0]

)
;

for k = 0...K − 1 do
y[k+1] ← Dynamics_Solver

(
x[k ], y[k ], yt + ∆tvt , σ , k

)
;

for i = 0...N − 1 do

xiniti ← x[k ]i +min

(
D

y[k+1]

i −x[k ]i


 , 1

) (
y[k+1]

i − x[k ]i
)
;

end
x[k+1] ← Soft_Phase(xinit);
if Ci j

(
x[k ], x[k+1]

)
< 0 or ci j

(
x[k+1]

)
< ϵ cond then

x[k+1] ← Hard_Phase(xinit, x[k ]);
end

end
yt+∆t ← xt+∆t ← x[K ];

Alg. 1 provides the pseudo code of our simulator. For simplicity,

it omits the details in collision handling, such as step size adjust-

ment. Fig. 5a compares the computational costs of our simulator

per iterative step, with the interleaving method
3
and the splitting

method. It confirms that the splitting method effectively avoids high

computational costs in the first few steps, caused by large vertex

displacements. Meanwhile, Fig. 5b shows that the splitting method

does have a negative impact on the convergence rate with respect

to the number of steps, due to the quadratic penalty term. Overall,

the simulator still benefits from the use of the splitting method as

shown in Fig. 5c, especially when the time budget is tight.

5.1 Cloth Dynamics Solver
Thanks to the splitting method, our simulator can adopt a vari-

ety of GPU-based cloth dynamics solvers, including both descent

ones [Fratarcangeli et al. 2016; Wang and Yang 2016; Wang et al.

2018] and non-descent ones. In this work, we choose to use the

gradient descent solver with Jacobi preconditioning and Chebyshev

acceleration [Wang and Yang 2016] for its simplicity and efficiency.

Currently, the solver supports two planar elasticity models: the

mass-spring model and the triangular finite element model, and

two bending elasticity models: the dihedral model [Bergou et al.

2006] and the meshless co-rotational model (in Appendix B). For

experimental purposes, we also allow the simulator to solve cloth

dynamics at different mesh resolutions in a hierarchy. Specifically

as shown in Fig. 4c, a cloth dynamics step contains multiple cloth

dynamics iterations solved at a given resolution level, preceded by

down-sampling and followed by up-sampling operations. Doing this

allows us to always handle collision steps at the finest level.

The optimal multi-resolutional strategy we found so far is to run

a sufficient number of dynamics steps at the coarsest level first,

then move on to a finer level, until eventually we solve dynamics

steps at the finest level. Using this strategy, we can effectively apply

Chebyshev acceleration across multiple dynamics steps solved at

3
To implement the interleaving method, we simply modify Alg. 1 by setting xinit ←
y[k+1]

and y[k+1] ← x[k+1]
before and after every collision step. This essentially turns

y into a duplicate variable of x.

the same level. Fig. 5 indicates that our multi-resolutional strategy

magnifies both the negative impact on the convergence rate and the

positive impact on the convergence speed. Interestingly, it causes

the interleaving method to run even slower as shown in Fig. 5c, due

to very large displacements and excessive collision costs associated

with coarse dynamics steps.

5.2 Initialization by Spatial Smoothing

An interesting question is: how should we initialize x[0] for collision
steps? Unlike y[0], which can be initialized as an instant prediction

of yt+∆t , x[0] cannot be initialized arbitrarily. Instead, it must be

treated as the very first update of x and it must satisfy both contin-

uous and discrete constraints like other updates.

A naive idea is to simply ignore this initialization and set x[0] ←
xt . Doing this would create a tight upper bound on the speed a vertex
can travel at, due to the initial displacement limitD in every collision

step. When D = 0.25mm, ∆t=1/100s, and K=72, this upper bound is

1.8m/s, about the same speed cloth reaches after 0.18s in free fall.

We can loose this upper bound by increasing the number of steps,

K , but that also increases the computational cost. In simulation, this

issue is often demonstrated as artificial damping artifacts shown in

Fig. 12b.

Mathematically, given y[0] as the initialization of y, we want a
cheap way of calculating x[0] as the initialization of x, such that x[0]

is close to y[0] and it satisfies continuous and discrete constraints

from xt to x[0]. To achieve this goal, we propose to apply a spatially

smoothed version of the displacement y[0] − xt on xt as this ini-
tial update. We perform spatial smoothing by first converting the

displacement y[0] − xt from vertices to a coarse regular grid, and

then convert it back to vertices by trilinear interpolation. Once the

displacement becomes spatially smooth, the relative displacement

between two nearby vertices should be small and it should cause few

constraint violation. But since we cannot guarantee zero violation,

we divide the smoothed displacement equally into a small number

of pieces and apply them sequentially through I init initialization
iterations as shown in Fig. 4c, each of which contains a standard

collision step. In our experiment, I init = 6. Fig. 12 shows our ini-

tialization approach effectively reduces artificial damping. We note

that spatial smoothness is important in keeping the initialization

cost, especially the costs of initial collision steps, low. Without it,

the initialization approach would spend large yet unnecessary costs

to fix many constraint violations from xt to y[0].

5.3 No Lagrange Multipliers
Amajor difference between our method and other splitting methods,

such as the alternating direction method of multipliers (ADMM),

is that our method uses a relatively large coupling coefficient σ
without using Lagrange multipliers. If it does use Lagrange multi-

pliers, the simulator becomes unstable due to our inexact iterative

steps. Trading the system stiffness for cheaper steps is a reasonable

decision, because x[0] and y[0] are often far from their solutions and

solving the steps exactly would be a waste of time, especially when

the time step is large. Furthermore, we can address the system stiff-

ness issue by running more cloth dynamics iterations per dynamics

step. As shown in Subsection 8, dynamics steps are less expensive
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(a) The mean vertex difference between x and y fluctuating over animation time

(b) Without the quadratic penalty term (c) With the quadratic penalty term

Fig. 6. A dress example. This example compares the simulation results
without and with the quadratic penalty term. Without this term, the cloth
dynamics solver is ignorant of rigid body collisions and causes y to be
severely dragged down by user interaction. Eventually, the simulator overly
stretches x as well and pulls it off the shoulders, as shown in (b).

than collision steps and the impact of additional dynamics iterations

on the overall runtime performance is limited.

The current design of our method is based on the assumption that

we do not have enough computational time to get x and y strongly

coupled at the end of every time step. If our goal is to solve the

problem accurately with strongly coupled x and y, we believe that
exact iterative steps with Lagrange multipliers would be a better

choice, once x and y become close to their solutions. Before that

happens, we can still apply our method as fast initialization.

5.4 Comparison to Collision Post-Processing
A common practice performed by many existing physics-based cloth

simulators is to post-process collisions at the end of every time step.

Interestingly, since the collision step does not actually use σ in Eq. 22

or 23, we can simply set σ = 0 to remove the quadratic penalty term

in our simulator. In that case, the dynamics step becomes ignorant

of collisions and our collision handling process is equivalent to a

post-process. When the time step is large, this can cause a large

difference between the cloth dynamics result yt+∆t and the collision
result xt+∆t . In Fig. 6, this difference gets manifested as overly

stretching artifacts when an external force tries to pull a dress down.

(a) The phantom mesh method (b) Our method

Fig. 7. A comparison between the phantom mesh method and our method.
To reduce the difference between x and y, the phantom mesh method
gradually corrects its Lagrange multiplier estimation over time. During this
process, the estimation error can cause noticeable artifacts as shown in (a),
especially when the time step is large. Our method is free of this issue.

In comparison, when σ = 80, 000s
−2
, the result is free of such

artifacts and it is consistent with the ground truth simulated by

using a small time step.

5.5 Comparison to Phantom Mesh
Similar to our method, the phantom mesh method [Harmon et al.

2011] also uses two vertex state vectors to protect cloth dynamics

solvers from being affected by asynchronous collision stepping.

But unlike our method that uses quadratic penalty within every

time step and eliminates the difference in the end, the phantom

mesh method estimates Lagrange multipliers once per time step and

uses them to reduce the difference over time. While this method is

effective when the time step is small, i.e, ∆t ≤1/1000s, its original
implementation suffers from severe oscillations when the time step

is large, i.e., ∆t ≥ 1/100s, a crucial condition desired by state-of-the-

art cloth dynamics solvers for their performances. The oscillation

issue can be lessened by reducing the update of Lagrange multipliers

as discussed in Appendix C, but the result still contains noticeable

artifacts. The reason is because the phantom mesh method needs

sufficient time to fix Lagrange multipliers, during which the error

can incorrectly modify the cloth shape. For example, when the dress

gets released from a wrinkled configuration, temporarily incorrect

Lagrange multipliers cause artifacts as shown in Fig. 7a.

6 UNIFORM MESH SAMPLING
Our vertex distance constraints rely on the maximal edge length

constant L. If the mesh contains too long edges, L would be too

large and the constraints would push vertices far away from each

other, leaving large gaps in-between. On the other hand, if the mesh

contains too short edges, the constraints would apply excessive

repulsions on vertices near each other, which can cause oscillations

even if we simulate the mesh in the reference configuration. There-

fore, for fast and realistic simulation, we must uniformly sample the

mesh in both reference and deformed configurations.

6.1 Reference Mesh Sampling
During the precomputation stage, we would like to improve the uni-

formness of the reference mesh by making the ratio of the smallest
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(a) After resampling (b) After repulsion (c) After triangulation

Fig. 8. The results of our reference mesh sampling process. This process
consists of sampling, repulsion, triangulation and optimization steps. In this
example, the uniformness, i.e., the ratio of the smallest edge length to the
greatest edge length, is improved to 0.656.

edge length to the greatest edge length as close to one as possi-

ble. There are plenty of remeshing techniques [Alliez et al. 2002,

2008; Bossen and Heckbert 1998] available for achieving this goal.

In this work, we choose to apply particle repulsion on randomly

sampled particles [Turk 1992], triangulate and finally optimize the

edge length ratio as shown in Fig. 8. To begin with, we resample

the mesh boundary by a desired mean edge length constant Lref .
We then add more particle samples inside the mesh by stratified

sampling, and apply particle repulsion to separate them evenly. In

the end, we triangulate the samples and run an optimization to

lengthen the shortest edge and shorten the longest edge:

xI = arg min

x

(
max

{i, j }∈E



xi − xj

 − min

{i, j }∈E



xi − xj

) , (24)

in which xI is the positional vector of interior vertices and E is the

edge set. We use the gradient descent method to solve Eq. 24 with

a fixed small step size, 0.01mm in our experiment. This method

improves the edge length ratio in Fig. 8c even further from 0.631

to 0.656. We note that since the process does not modify boundary

vertices, their fixed positions will affect the ideal edge length ratio.

For example, if there exists a right boundary triangle, the edge length

ratio cannot exceed 1/
√

2.

6.2 Adaptive Mesh Resampling
When the mesh receives a large load, the edge length constraints in

Section 4 will be severely violated. As a result, the collision handling

process must spend more computational time to deal with those

constraints in the hard phase.

Fig. 9. Three types of sample can-
didates generated by two triangle
subdivision levels.

To improve the success rate

of the soft phase and lessen the

computational burden, we pro-

pose to dynamically and proac-

tively resample overly stretched

edges and triangles, so that fewer

edge length constraints can be-

come severely violated. Specifi-

cally, we predefine a set of sam-

ple candidates and then we acti-

vate the needed ones at the begin-

ning of each collision step. Fig. 9

shows two triangle subdivision levels used for generating those

(a) Without adaptive mesh resampling (b) With adaptive mesh resampling

Fig. 10. A tie example. In this example, cloth is severely stretched and
squeezed. Without adaptive mesh resampling, our simulator fails to re-
move all of the self collisions in the soft phase, as shown in (a). Here we
intentionally disable the hard phase.

sample candidates. When the length of an edge is above an adaptive

resampling threshold Lada, we activate the mid-edge sample (in

orange) and divide the edge into two sub-edges. When the length

of a sub-edge is above Lada, we further activate its own mid-edge

sample (in green). Finally if a sub-edge connecting two mid-edge

samples gets stretched beyond Lada as well, we activate its sample

(in blue) inside of the triangle. Once we activate a sample, we keep

it active until the end of the time step.

6.2.1 New constraints. Activated samples introduce new vertex

distance constraints into the collision handling process. Since we

determine the sample position by barycentric interpolation of the

three triangle vertex positions, we formulate and enforce new vertex

distance constraints upon triangle vertex positions. For example,

we define the continuous distance constraint between vertex i and
an activated sample as:

xi (t) − bjxj (t) − bkxk (t) − blxl (t)

2

≥ B2, (25)

in which xj , xk and xl are the vertices of the triangle embedding

the sample, and bj , bk and bl are their barycentric coordinates.
Activated samples also introduce new sub-edge length constraints

that can serve two purposes: to replace original constraints in the

optimization objectives of Eq. 13 and 15; and to replace original

constraints in the success conditions of the two phases. Since the

change of the optimization objectives modifies the elastic behavior

of cloth as shown in Subsection 8.4.3 and costs the simulator more

iterations to converge, we choose to replace original constraints in

the success conditions only. In other words, we still enforce original

edge length constraints by the same optimization objectives, while

we accept the results as long as they satisfy looser sub-edge length

constraints.

6.2.2 Discussions. Fig. 10 reveals the effect of our adaptivemesh

resampling approach, when we intentionally disable the hard phase.

Without resampling, the simulator runs into self collision issues as

Fig. 10a shows; and with resampling, the simulator removes all of

the self collisions by the soft phase as Fig. 10b shows.

The key strength of our adaptive mesh resampling approach is

its high compatibility with a GPU. Instead of performing adaptive

remeshing [Koh et al. 2015; Narain et al. 2012], our approach uses

predefined mesh samples and it does not modify mesh topology.

Furthermore, since every edge or triangle generates three samples at
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(a) Before entering the funnel (b) Halfway through the funnel

(c) Leaving the funnel (d) After leaving the funnel

Fig. 11. A funnel example. In this example, four square cloth sheets ex-
perience severe collisions when they are dragged through a funnel. Our
simulator robustly simulates this example at 29 to 72 FPS.

most, the approach can balance thread workload well by storing and

processing samples on per-edge or per-triangle basis. This advantage

disappears once we consider more samples generated by higher-

level subdivisions, which is unnecessary so far.

7 VELOCITY, DAMPING AND FRICTIONAL CONTACTS
Similar to other variational simulators, our simulator calculates the

velocity at the end of every time step as: vt+∆t = 1

∆t (x
t+∆t − xt ).

After that, it reduces the velocity magnitude by a decay factor to

account for air damping, and by Laplacian smoothing to account

for internal damping.

Although we can use our vertex repulsion approach to handle

cloth-body collisions as well, we choose to use the level set method

instead thanks to its simplicity and efficiency. Specifically, at the be-

ginning of every time step, we compute the signed distance function

representing the body surface implicitly. We then treat cloth-body

collisions as additional constraints and incorporate them as qua-

dratic penalties (similar to the springmodel) into soft and hard phase

iterations. We choose not to use log barrier penalties [Wang 2018],

since we want to reduce the nonlinearity of the whole collision

handling process.

To simulate frictional contacts with the body, we create a spring

connecting a vertex with its initial contact location after the first

contact. We incorporate the spring potentials as additional terms

into the objectives of soft and hard phase iterations. Meanwhile, we

sum up the collision penalty force and the frictional spring force

for every vertex, which is considered to be the total contact force.

If the total force is inside of the Coulomb’s friction cone at the end

of the time step, we treat the friction to be static and maintain the

Table 1. The statistics and the runtime performances of our examples. The
second column provides the minimum and the maximum edge lengths of
the reference mesh in each example.

Name Edge FPS

(#Verts., #Tri., Ref.) (mm) 2080 Ti 1080

Shirt (56K, 112K, Fig. 1) 3.4 to 6.2 39 to 61 23 to 37

Dress (55K, 109K, Fig. 6) 3.8 to 6.0 38 to 72 23 to 44

Tie (49K, 96K, Fig. 10) 3.9 to 6.0 19 to 24 11 to 16

Funnel (58K, 113K, Fig. 11) 3.8 to 5.7 29 to 72 17 to 42

Table (58K, 113K, Fig. 14) 3.8 to 5.7 31 to 71 18 to 40

Gown (139K, 276K, Fig. 12) 2.9 to 5.6 28 to 50 17 to 31

Layered dress (297K, 588K, Fig. 15) 2.4 to 7.9 10 to 14 5 to 9

Table 2. Parameters and their values used by our simulator.

Name Definition Location Value

L Maximal edge length Eq. 5 6

√
2mm

Btight Constraint tightening constant Eq. 8 0.5mm

ϵslack Constraint slack constant Eq. 13 21.75mm
2

ϵcond Success condition constant Subs. 4.2 0.01mm
2

I soft # of soft phase iterations Subs. 4.2 6 to 16

Ihard # of hard phase iterations Subs. 4.2 8

R # of rollback steps for reduction Subs. 4.3 12

K # of iterative steps Subs. 5 72

σ Coupling coefficient Eq. 20 80,000s
−2

Idyn # of cloth dynamics iterations Sec. 5 1 to 6

I init # of initialization iterations Subs. 5.2 6

D The initial displacement limit Eq. 23 0.25mm

Lref Reference sampling constant Subs. 6.2 4.2mm

Lada Adaptive resampling constant Subs. 6.2 6.5mm

spring to the next time step. Otherwise, for simulating dynamic

friction, we destroy the old spring and create a new spring between

the vertex and the new initial contact location in the next time step,

if it contacts the body again. We simulate self friction effects in a

similar fashion, by sticking two vertices together after they collide

and destroy their spring connection, if the total contact force falls

outside of the friction cone at the end of the time step. We use the

average of the two vertex normals to define the cone.

The above frictional contact approach works fine if the Coulomb’s

frictional coefficient is relatively small, such as the funnel example

shown in Fig. 11. But when the coefficient becomes large, sticking

artifacts can appear due to the inaccuracy of our contact forces.

We plan to address this issue further, by exploring recent frictional

contact techniques [Brown et al. 2018; Li et al. 2018, 2020].

8 RESULTS
The GPU implementation of our simulator uses CUDA 10.1. Our ex-

periment runs on an Intel Core i7-6700 3.4GHz CPU and an NVIDIA

GeForce GTX 2080 Ti GPU, or an NVIDIA GeForce GTX 1080 GPU.

Table 1 provides the statistics and the runtime performances of

our examples. Table 2 summarizes the parameters and their values

used by our simulator. We note that the performance can fluctuate

dramatically over time, due to the collision handling process being
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(a) The initial configuration (b) I init = 0 and I dyn = 6 (c) I init = 6 and I dyn = 1 (d) I init = 6 and I dyn = 6 (e) I init = 6 and I dyn = 12 (f) ∆t=1/1000s

Fig. 12. A gown example. This example compares the results being simulated from the same initial configuration in (a) for 0.3s, using different parameter
values. The use of the initialization approach and a sufficient number of coarse-level cloth dynamics iterations per step effectively reduces artificial damping
artifacts as shown from (b) to (e). We note that the simulation result always contains artificial damping caused by implicit Euler time integration.

affected by the scene complexity. For all of the examples, we use

three hierarchical mesh levels. The numbers of iterative steps spent

by the solver at the three levels are: 48, 12, and 12, respectively. The

total number of iterative steps in one time step is 72.

8.1 Breakdown Analysis
Fig. 13 provides a breakdown of the computational cost in the dress

example. It shows that the collision handling process is more ex-

pensive than the cloth dynamics solver. It also shows that all of

the major components in collision handling, including rigid body

constraints, edge length constraints
4
, proximity search and vertex

distance constraints, consume considerable costs. Thanks to the roll-

back approach as discussed in Subsection 4.3.4, constraint tests and

objective evaluations are inexpensive and we choose not to list their

costs in Fig. 13. Among all of the collision handling components,

the use of edge length constraints contributes the most to the total

cost and their functions could be further optimized.

8.2 Speed-Accuracy Tradeoffs
Given the collision safety being protected by the collision handling

process, our simulator offers several options for trading the sim-

ulation speed with the simulation accuracy. The first option is to

adjust the number of cloth dynamics iterations per dynamics step.

As shown by the gown example in Fig. 12, when the number Idyn at

the coarsest level grows from 1 to 12, the frame rate drops from 53

FPS to 43 FPS while artificial damping artifacts decrease noticeably.

From our experiment, we find that setting Idyn = 6 at the coarsest

level while Idyn = 1 at other levels provides a good balance between

the speed and the accuracy. The second option is to adjust the to-

tal number of steps, K . When K grows, both the total number of

dynamics iterations and the allowed maximal vertex displacement

within one time step increase. But because the computational cost is

linearly proportional to K , we prefer to keep it as low as possible. Fi-

nally, the simulator suffers from artificial damping inherently caused

4
We define the cost of the constraints as the cost of the kernel function calculating their

gradients. One issue is that we cannot separate the cost of edge length constraints from

the cost of vertex distance constraints, since they are handled in parallel by the same

function as discussed in Subsection 4.3. Therefore we estimate their costs according to

their numbers and their gradient costs per thread.

24.00%

9.62%

11.39%
24.01%

11.80%

13.62%
4.73% Dynamics: Solver

Dynamics: Down and upsampling
Collision: Rigid body constraints
Collision: Edge length constraints
Collision: Proximity search
Collision: Vertex distance constraints
Adaptive mesh resampling
Others

Fig. 13. A typical breakdown of the total computational cost. The collision
handling process is notably more expensive than the cloth dynamics solver.

by implicit Euler time integration. This issue can be addressed by

using higher-order time integration or smaller time steps, as shown

in Fig. 12f. We would like to note that artificial damping may not be

entirely bad, as cloth motion would become too dynamic without

any damping.

8.3 Artifact Evaluation
To evaluate the significance of the visual artifacts produced by

our simulator, we design a table example in which four square

cloth sheets stack on a round table as Fig. 14 shows. According

to the collision handling process in Section 4.2, the gap between

two adjacent sheets should be under

√
(B + Btight)2 + ϵslack=8.0mm.

This gap is not so noticeable from a distance, but quite obvious in

a closeup view as Fig. 14b shows. In the future, as the hardware

becomes faster, we can reduce the gap by using higher-resolution

meshes and more iterations in constraint enforcement.

Another potential artifact is the surface bumpiness caused by

applying distance constraints among discrete vertex samples only.

Interestingly, Fig. 14 shows that this artifact is hardly visible even

in a closeup view. Assuming that cloth sheets are made of regular

triangles with all of the edge lengths equal to Lref=4.2mm, we know

the distance from an upper sheet vertex to the lower sheet must be

within [

√
8

2 − 4.22/3mm, 8.0mm]≈ [7.6mm, 8.0mm]. In other words,

the bump is under 0.4mm, too small to be noticeable as expected.
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(a) An equilibrium configuration (b) A closeup view

Fig. 14. A table example. Similar to the square example, this example uses
four identical 0.576m×0.576m cloth sheets. We hold two corners of each
sheet and drape them upon each other as (a) shows.

Finally, vertex distance constraints can cause artificial bending

resistance when cloth is severely folded. In the current implemen-

tation of our system, we simply ignore a distance constraint if the

two vertices are in each other’s 2-ring neighborhood. This solution

also ignores self collisions within a 2-ring neighborhood, which are

fortunately uncommon and can be avoided by applying bending

constraints if needed.

8.4 Stress Tests
In this subsection, we evaluate the performance and the robustness

of our simulator through a series of stress tests.

8.4.1 Scalability. Our simulator demonstrates its nearly linear

scalability with respect to the number of mesh elements in Table 1,

when the collision complexity and the stiffness are roughly the

same. As the collision complexity grows, the simulator must run

more soft and/or hard phase iterations and the collision handling

cost increases, as shown in the tie example. Meanwhile, to deal

with high stiffness, the simulator must run more cloth dynamics

iterations and the cloth dynamics cost increases. We note that the

stiffness depends on not only the cloth material property, but also

the mesh resolution. Since cloth dynamics contributes a relatively

small portion of the total computational cost, we can afford spending

more cloth dynamics iterations, if necessary.

8.4.2 Time steps. A unique strength of our collision handling

approach is its ability of handling very large time steps, such as

∆t=1/30s. This is highly welcomed by state-of-the-art cloth dynam-

ics solvers for achieving their high performances. In contrast, most

previous collision handling approaches, including I-Cloth [Tang

et al. 2018b], fail to resolve collisions with safety or efficiency, once

the time step becomes large. For larger time steps, our simulator

must run more dynamics and collision steps per time step to main-

tain the simulation accuracy at a similar level. But in general, it is

still more efficient to use larger time steps, thanks to the benefits

gained by cloth dynamics solvers. This conclusion is consistent with

the observations provided by many previous works [Bouaziz et al.

2014; Fratarcangeli et al. 2016; Wang and Yang 2016; Wang et al.

2018]. The issue of using larger time steps is even worse artificial

damping artifacts. Given no better solution to this issue other than

adopting higher-order time integration with more computational

cost, we prefer to avoid very large time steps in practice.
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(a) The height of a layered dress affected by the change of the mass density

(b) Without collision steps (c) With collision steps

Fig. 15. A layered dress example. In this example, we test how a layered
dress responds to the mass density change, in terms of its height as shown
in (a) and its outer appearance as shown in (b) and (c).

8.4.3 Stretchability. To evaluate the influence of edge length

constraints on cloth stretchability, we design a draping experiment

using the layered dress example as shown in Fig. 15, in which the

mass density grows from 0.001kg/m
2
to 10.0kg/m

2
. In comparison,

the default mass density in other experiments is 0.276kg/m
2
. As the

mass density grows, the stretching difference between the result

without collision steps and that with collision steps increases.

According to Section 4, the collision handling process places an

upper limit on edge lengths: L = 6

√
2mm. This is about twice of

the desired reference edge length: Lref = 4.2mm. But thanks to

the slack constant ϵslack, the influence of constraint enforcement

occurs before that. By definition, edge length constraints start to

act when edge lengths reach

√
L2 − ϵslack ≈ 7.1mm. In other words,

many edges can stretch up to 69 percent without being affected by

constraint enforcement. Given the fact that most real-world cloth

can hardly stretch beyond 20 percent, we believe the overall impact

of edge length constraints on cloth stretchability is limited.

8.5 Adaptive Remeshing
In the next experiment, we evaluate the compatibility of our simu-

lator with the adaptive remeshing concept. Given the original mesh
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(a) The dress (b) The raw mesh (c) The refined mesh

Fig. 16. An adaptively remeshed dress example. Our simulator can simulate
an adaptively refined mesh as shown in (c), which is updated in real time
by merging the original meshes at two hierarchical levels.

hierarchy used by our simulator, we build an adaptively refined

mesh by simply merging meshes at multiple hierarchical levels, as

shown in Fig. 16. We can simulate this mesh in full resolution di-

rectly for addressing the bending locking issues as did in [Narain

et al. 2012]. Alternatively, we also explore an idea of using an adap-

tively refined mesh hierarchy to accelerate the simulation of the

original full-resolution mesh. In this new hierarchy, every mesh

is an adaptively refined one, made of the original meshes at two

original hierarchical levels. Unfortunately, we have not observed

any benefit of this idea on the convergence speed yet. We plan to

investigate this idea even further.

8.6 Performance Comparison to I-Cloth

Fig. 17. A draping dress exam-
ple without the human body.

To compare the performances of our

simulator and I-Cloth [Tang et al.

2018b], we run the dress example

at the same time step ∆t = 1/100s

by the same NVIDIA GeForce GTX

1080 GPU, i.e., the graphics hard-

ware on which I-Cloth was origi-

nally tested. In this example, since

I-Cloth fails to handle both cloth self

collisions and cloth-body collisions

at ∆t = 1/100s, we fix two shoulder

points and drape the dress under

gravity without the body as shown

in Fig. 17. The experiment shows

that the average frame rate of our

simulator in the first 200 frames is

50.16 FPS, while that of I-Cloth is

4.77 FPS. Given the fact that both

our simulator and I-Cloth spend 45 to 60 percent of their compu-

tational costs on collision handling, our collision handling process

is also approximately ten times faster than that of I-Cloth. As men-

tioned in Subsection 8.4.2, one strength of our simulator is its ability

of handling very large time steps. If artificial damping is tolerable,

we can improve the ratio of the simulation clock time to the anima-

tion scene time from 0.5016 to 0.9436, by increasing the time step

from ∆t = 1/100s to ∆t = 1/30s. In comparison, I-Cloth fails to run

this example at ∆t = 1/50s. Our experiment also reveals that the

performance of I-Cloth is much more sensitive to the moving speed

of cloth: the performance decreases as the dress drops faster; and it

increases as the dress gradually reaches quasistatic equilibrium. Fi-

nally, I-Cloth fails to run complex examples, such as the tie example,

even at ∆t = 1/1000s.

8.7 Limitations
Based on the vertex repulsion concept, our collision handling ap-

proach requires vertices to be sufficiently away from each other.

This means the simulator cannot handle close stitching of two ver-

tices without using other techniques, such as embedded mesh. Our

collision handling approach also cannot simulate overly stretching

effects well, due to the use of edge length constraints as shown in

Subsection 8.4.3. To achieve strong coupling of the two state vectors,

our simulator needs a sufficiently large coupling coefficient σ in the

quadratic penalty term. As a result, the simulator must spend more

cloth dynamics iterations to overcome artificial damping artifacts

caused by a stiff system, as discussed in Subsection 8.2. Currently,

our simulator cannot handle frictional contacts in a proper fashion.

Its runtime performance fluctuates over time, due to the collision

complexity of the scene. To improve the performance, we optimize

our CUDA implementation mostly on the GTX architecture and we

just started our research on the RTX architecture.

9 CONCLUSIONS AND FUTURE WORK
In this paper, we demonstrate that we can eliminate the possibil-

ity of cloth self collisions, by satisfying vertex distance and edge

length constraints continuous in time, or their discrete counterparts

together with vertex displacement constraints. More importantly,

we achieve strict and efficient enforcement of these constraints

and their integration with cloth dynamics solvers in a GPU-based

cloth simulator. The experiment reveals that we can now safely and

robustly solve cloth dynamics and collision handling for millimeter-

level cloth meshes in real time.

Our immediate plan next is to address the frictional issue, as it

limits the ability of our simulator in producing realistic contact

effects. We then would like to study the ways of decreasing dis-

tance thresholds, to reduce early repulsion artifacts and to lessen

the mesh quality requirement. Since the proximity search can be

highly sensitive to the scene complexity, we are interested in fur-

ther optimization of its GPU-based implementation. Finally, we

will continue exploring performance improvement from an algo-

rithmic perspective, for real-time cloth simulation at even higher

resolutions.
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A SUPPLEMENTAL THEOREMS
Theorem A.1. Let x∗i be the point within triangle xjxkxl that max-

imizes D(xi , xjxkxl ). If the triangle is acute, x∗i must be its interior
circumcenter.

Proof. It is straightforward to see that for any xi on the triangle

boundary, D(xi , xjxkxl ) cannot exceed half of the greatest edge

length, which is less than the circumradius. Since the triangle is

acute, its circumcenter must be in the interior and x∗i must be in the

interior as well. Now if x∗i is in the interior but not the circumcenter,

there are two possibilities:



x∗i − xj

 < min

( 

x∗i − xk 

 , 

x∗i − xl 

 ) ,
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Fig. 18. An acute triangle with its interior circumcenter C. Theorem A.3
proves that its circumradius r is a monotonic function of the edge length l .

or



x∗i − xj

 = 

x∗i − xk 

 < 

x∗i − xl 

. In both cases, we can move

x∗i away to enlarge



x∗i − xj

 (and | |x∗i − xk | |), which increases

D(xi , xjxkxl ) even further. This is against the assumption that x∗i
has already maximized D(x∗i , xjxkxl ). Therefore x∗i must be the

circumcenter. �

Theorem A.2. Let x∗i be a point within triangle xjxkxl that maxi-
mizesD(xi , xjxkxl ). If the triangle is not acute, thenD(xi , xjxkxl ) ≤
1

2
max

(

xj − xk 

 , ∥xk − xl ∥ , 

xl − xj

) .
Proof. The proof of Theorem 1 suggests that if x∗i is in the inte-

rior, it must be the circumcenter. But since the triangle is non-acute

and it does not have an interior circumcenter, x∗i must be on the tri-

angle boundary. It is then straightforward to see that D(xi , xjxkxl )
cannot exceed half of the greatest edge length and the argument is

true. �

TheoremA.3. The circumradius of an acute triangle is a monotonic
function of any triangle edge length.

Proof. Without loss of generality, let 2a and 2b be two triangle

edge lengths as Fig. 18 shows. We first show that the distance h from

circumcenter C to edge OA is a monotonic function of the angle θ
between the two edges. Let D be the center of edge OB. Line DC is

perpendicular to OB and we have:

a − b cosθ

h − b sinθ
= −

sinθ

cosθ
, (26)

which gives h = (b − a cosθ )/sinθ . When the triangle is acute, we

have sinθ > 0 and a > b cosθ , so:

dh
dθ =

a−b cos θ+b sin θ
sin

2 θ
> 0. (27)

Since r =
√
h2 + a2

is a monotonic function of h, it must also be

a monotonic function of θ . Meanwhile, θ = cos
−1

(
4a2+4b2−l 2

8ab

)
is

a monotonic function of l , the length of edge AB. Together, r is a
monotonic function of l . �

Theorem A.4. Let xixj and xkxl be two intersecting edges with
fixed lengths. The distanceD(xixj , xkxl ) is maximized when the edges
are perpendicular and the intersection happens at their midpoints.

Proof. Without loss of generality, we assume that:

maxD(xixj , xkxl ) = ∥xi − xk ∥

≥ Bi j,kl =
1

2

√

xi − xj

2

+


xj − xk 

2

,
(28)

where Bi j,kl is the value of D(xixj , xkxl ) when the edges are per-

pendicular and they meet at the midpoints. To begin with, we prove

!
xi xj

xl

xk

p
c !

xi xj

xk

xl

p
c !xi xj

xk
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q

c
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Fig. 19. Three possible cases when θ , 90
◦. Theorem A.4 proves that

D(xixj , xkxl ) cannot be maximized in any of the three cases.

that D(xixj , xkxl ) cannot be maximized if the edges are not perpen-

dicular. Let c be the intersection point and θ be the angle between

xi c and xk c. There are three possibilities if θ , 90
◦
.

If θ > 90
◦
, we must have ∥xi − c∥ ≤



xj − c

 and ∥xk − p∥ ≤
∥xl − p∥, in which p is the projection of xi on edge xkxl . In that

case, pmust be between c and xl , as Fig. 19a shows. By turning xkxl
perpendicular to xixj and aligning pwith c, we elongate xixk while

it is still the shortest of the four. Therefore, D(xixj , xkxl ) cannot be
maximized if θ > 90

◦
.

If θ < 90
◦
and ∥xi − c∥ <



xj − c

, p must be between c and xk ,
as Fig. 19b shows. This is because if xk is between c and p instead, we
would have ∥xi − xk ∥ ≤ ∥xi − c∥ < Bi j,kl , which is against Eq. 28.

Now since ∥xi − xk ∥ is the shortest, we have ∥xk − p∥ ≤ ∥xl − p∥.
By turning xkxl perpendicular to xixj and aligning pwith c, we can
elongate xixk while it is still the shortest. Therefore, D(xixj , xkxl )
cannot be maximized if θ < 90

◦
and ∥xi − c∥ <



xj − c

.
Finally, if θ < 90

◦
and ∥xi − c∥ ≥



xj − c

, we define q as the

projection of xj on edge xkxl and we know q must be between c
and xl as Fig. 19c shows. This is because if xl is between c and q
instead, we would have ∥xi − xk ∥ ≤



xj − xl 

 ≤ 

xj − c

 < Bi j,kl ,
which is against Eq. 28. Now by turning xkxl perpendicular to
xixj and aligning q with c, we will increase ∥xi − xk ∥,



xj − xk 

,
and



xj − xl 

, and we will have



xj − xl 

 ≤ ∥xi − xl ∥. As a result,
D(xixj , xkxl )will increase, so it cannot be maximized when θ < 90

◦

and ∥xi − c∥ ≥


xj − c

.

From the above three cases, we see that D(xixj , xkxl ) is maxi-

mized only when θ = 90
◦
. It is then straightforward to see that

when D(xixj , xkxl ) is maximized, the intersection point must be

the midpoints of the two edges. �

B A MESHLESS BENDING MODEL
One issue associated with the dihedral bending model [Bergou

et al. 2006] is that it requires a manifold triangle mesh. But in many

practical cases, the meshmay not be manifold, or even exist. Inspired

by the shape matching method [Müller et al. 2005], we propose a

simple meshless bending model to provide more flexibility in our

cloth simulator.

Let ri ∈ R3
and xi ∈ R3

be the 3D positions of vertex i in the

reference space and the deformed space. Let the neighborhood of

vertex i in the reference space beNi =
{
j :



rj − ri 

 ≤ r
}
, in which

r is the neighborhood radius. We define the affine transformationAi
from the neighborhood in the reference space to that in the deformed
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space as the solution to the following minimization problem:

Ai = arg min

Ai

∑
j ∈Ni



Ai (ri − rj ) − (xj − xi )


2

, (29)

whose solution is:

Ai =
( ∑
j ∈Ni

(xi − xj )(ri − rj )T
) ( ∑

j ∈Ni

(ri − rj )(ri − rj )T
)−1

. (30)

We note that if the reference neighborhood is on a plane, the right-

most side of Eq. 30 will be singular. In that case, it is more convenient

to define ri as a 2D vector andAi as a 3×2 matrix. Under the assump-

tion that the reference neighborhood is nearly planar and planar

deformation is locally uniform, we treat affine transformation as if

it is solely caused by planar deformation. Therefore, we define the

meshless bending energy at vertex i as:

E
bending
i = kbending

2

∑
j ∈Ni



A−1

i (xi − xj ) − (rj − ri )


2

, (31)

in which kbending is its stiffness coefficient. This model is not fully

accurate, but it provides a plausible approximation to elastic bending

deformation, especially when the aforementioned assumption holds.

C PHANTOMMESH IMPLEMENTATION
Without the quadratic penalty term, i.e., σ = 0, we reformulate the

splitting problem into:
yt+∆t = arg min

y
E(y, yt + ∆tvt ),

xt+∆t = arg min

x
1

2



x − yt+∆t 

2

M,
(32)

subject to Ci j (xt , x) ≥ 0, ci j (x) ≥ 0, and xt+∆t = yt+∆t . Let ȳ =
yt + ∆tvt and M be the mass matrix. We have E(y, ȳ) = E0(y) +

1

2∆t 2



y − ȳ

2

M, in which ∥y − ȳ∥2M = (y − ȳ)
TM(y − ȳ) and E0(y) is

the elastic potential [Wang and Yang 2016]. Meanwhile, since we

model collision constraints as penalties in both the soft phase and

the hard phase, we represent them by a single cost function: E1(x).
With Lagrange multipliers λ for xt+∆t = yt+∆t , we aim at solving:

yt+∆t = arg min

{
E0(y) + 1

2∆t 2



y − ȳ

2

M + λ
T(xt+∆t − y)

}
,

xt+∆t = arg min

{
E1(x) + 1

2



x − yt+∆t 

2

M + λ
T(x − yt+∆t )

}
.

(33)

The solutions to Eq. 33 are:{
yt+∆t = ȳ + ∆t2M−1λ − ∆t2M−1∇E0(yt+∆t ),
xt+∆t = yt+∆t −M−1λ −M−1∇E1(xt+∆t ).

(34)

Under the assumption that a small adjustment ∆λ to λ has little

impact on ∇E0 or ∇E1 [Harmon et al. 2011], we get:
ynew ≈ yt+∆t + ∆t2M−1∆λ,
xnew ≈ ynew −M−1λ −M−1∆λ −M−1∇E1(xt+∆t )

= xt+∆t + ∆t2M−1∆λ −M−1∆λ.
(35)

To achieve xnew = ynew, we then set λ ← λ + ∆λ at the end of the

time step, for ∆λ = M(xt+∆t − yt+∆t ).

With the quadratic penalty term, we can also introduce Lagrange

multipliers λ into the splitting problem:
yt+∆t = arg min

y

{
E(y, ȳ) + σ

2



xt+∆t − y

2

M + λ
T(xt+∆t − y)

}
,

xt+∆t = arg min

x

{
E1(x) + σ

2



x − yt+∆t 

2

M + λ
T(x − yt+∆t )

}
.

(36)

At the end of the time step, we obtain xt+∆t and yt+∆t that satisfy:{
∇E(yt+∆t ) − σM(xt+∆t − yt+∆t ) − λ = 0,
∇E1(xt+∆t ) + σM(xt+∆t − yt+∆t ) + λ = 0.

(37)

Since the ideal solutions x∗, y∗ and λ∗ satisfy ∇E(y∗) − λ∗ = 0 and
∇E1(x∗)+λ∗ = 0, we define the update ∆λ at the end of the time step

as: ∆λ = σM(xt+∆t − yt+∆t ). We note that this implementation is

essentially the augmented Lagrangian method with λ being updated

at the end of every time step only.

Unfortunately, both implementations suffer from severe oscilla-

tions, due to the rapid change of λ when the time step is large. We

can lessen this issue by introducing a step size coefficient s into
the update: λ ← λ + s∆λ, for s ∈ (0, 1). However, it can still cause

temporary shape artifacts as shown in Fig. 7a.
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