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Fig. 1. A wool coat example with 92K vertices and 182K triangles. We develop a GPU-based multilevel additive Schwarz preconditioner that empowers
our simulator to animate this example with the time step Δ𝑡 = 1/100s at 37FPS, or more than 40FPS without collision handling. Compared with other
preconditioners, our preconditioner is not only fast and effective, but also cheap to precompute. Because of these strengths, our preconditioner is suitable for
both linear and nonlinear solvers in cloth and deformable body simulation, especially with dynamic contacts.

In this paper, we wish to push the limit of real-time cloth and deformable
body simulation to a higher level with 50K to 500K vertices, based on the
development of a novel GPU-based multilevel additive Schwarz (MAS) pre-
conditioner. Similar to other preconditioners under the MAS framework,
our preconditioner naturally adopts multilevel and domain decomposition
concepts. But contrary to previous works, we advocate the use of small, non-
overlapping domains that can well explore the parallel computing power on
a GPU. Based on this idea, we investigate and invent a series of algorithms for
our preconditioner, including multilevel domain construction using Morton
codes, low-cost matrix precomputation by one-way Gauss-Jordan elimina-
tion, and conflict-free symmetric-matrix-vector multiplication in runtime
preconditioning. The experiment shows that our preconditioner is effective,
fast, cheap to precompute and scalable with respect to stiffness and problem
size. It is compatible with many linear and nonlinear solvers used in cloth
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and deformable body simulation with dynamic contacts, such as PCG, accel-
erated gradient descent and L-BFGS. On a GPU, our preconditioner speeds
up a PCG solver by approximately a factor of four, and its CPU version
outperforms a number of competitors, including ILU0 and ILUT.
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1 INTRODUCTION
Many cloth and deformable body simulation problems can be boiled
down to large-scale nonlinear optimization problems, and how to
solve these problems fast has been amajor challenge botheringmath-
ematicians and scientists for decades. In the past, they have studied
this topic extensively and developed a variety of optimization meth-
ods. Graphics researchers [Bouaziz et al. 2014; Fratarcangeli et al.
2016; Wang and Yang 2016; Wu et al. 2020] have borrowed these
methods to accomplish real-time simulation of cloth and deformable
bodies with under 50K vertices. But for real-time simulation of even
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higher qualities, the existing methods are insufficient to address the
associated large-scale, ill-conditioned problems. Given the immi-
nent desire of real-time simulation in various graphics applications,
the need of faster solvers is more urgent than ever before.
Multilevel and domain decomposition methods have gained sub-

stantial popularity in recent years, because of their effectiveness in
solving large-scale, ill-conditioned problems. Among these methods,
multilevel additive Schwarz (MAS) preconditioning with a (non-
linear) iterative method is a particularly favorable one, not only
because it adopts both concepts, but also because it is simple. A
MAS preconditioner naturally avoids the domain discontinuity is-
sue involved in other domain decomposition methods [Kim and
James 2011; Li et al. 2019; Wu et al. 2015; Yang et al. 2013], and it
does not rely heavily on hierarchical coarsening and propagation
operators [Tamstorf et al. 2015; Wang et al. 2018]. Compared with
other preconditioners, such as multigrid ones, a MAS preconditioner
is also notably parallelizable: all of the domains across different lev-
els can run in parallel, rather than in any cyclic order. This makes a
MAS preconditioner an attractive candidate for GPU acceleration.

The benefits of a MAS preconditioner motivate us to investigate
a critical question: what is an ideal form of a MAS preconditioner that
can well explore the GPU computing power in cloth and deformable
body simulation? After all, mathematicians and scientists have stud-
ied MAS preconditioning for decades [Dolean et al. 2015], but the
performances of their preconditioners, not to mention the perfor-
mances on GPUs, are not always satisfactory. In general, the total
cost spent by a preconditioned solver in one time step is:

𝐶total = 𝑁0 ·𝐶0 + 𝑁1 ·𝐶1 + 𝐾 · (𝐶2 +𝐶solver) , (1)

where 𝐶0, 𝐶1 and 𝐶2 are the costs spent by the preconditioner on
analyzing the matrix structure, precomputing needed data and per-
forming runtime preconditioning, 𝐶solver is the solver’s intrinsic
cost, 𝑁0 and 𝑁1 are the numbers of structure analysis and matrix
precomputation calls, and 𝐾 is the number of iterations. We can
treat 𝑁0, 𝑁1 and 𝐶solver as solver-specific constants. In particular, a
nonlinear solver may update the system matrix multiple times in
one time step, causing 𝑁1 to be greater than one. To handle dynamic
contacts and fractures, a solver may even need to modify the ma-
trix structure over time, resulting in a nonzero or even greater 𝑁0.
Therefore, an ideal preconditioner should make all of its relevant
factors in Eq. 1, including 𝐶0, 𝐶1, 𝐶2 and 𝐾 , as small as possible.
Improving the convergence rate, i.e., decreasing 𝐾 , while ignoring
other factors, would fail to meet the key point of preconditioning.
In fact, if our goal is to achieve the fastest convergence only, why
not use a direct method like Intel MKL PARDISO instead?
In this paper, we would like to develop an ideal MAS precon-

ditioner and we face many design and implementation choices.
Among them, perhaps the most significant one is the domain size.
In previous works, researchers often use large domains to reduce
inter-domain connections, i.e., the part of the system matrix not
covered by domains. Here we are thinking about the opposite: using
many but small non-overlapping domains at different levels, so that
each domain can be sufficiently and efficiently solved on a GPU.
Based on this idea, our research on MAS preconditioning includes
the following contributions.

(a) School dress (b) Party dress (c) Leather coat

(d) Down coat (e) Hiking jacket (f) T-shirt

Fig. 2. The cloth simulation examples. Our simulator efficiently simulates
these examples with the numbers of vertices ranging from 76K to 467K. The
efficiency comes largely from the use of our MAS preconditioner.

• Multilevel domain construction. Based on Morton code sort-
ing, we present a supernode splitting method and a skipping
approach, for fast and simple domain partitioning and coarse
space construction.
• Matrix precomputation. We propose a one-way elimination
algorithm and a compact matrix format, to calculate the sub-
matrix inverse of each domain with low computational and
storage costs. We also develop a selective update scheme to
address slight matrix modifications.
• Runtime preconditioning. Given the precomputed sub-matrix
inverses, we perform runtime preconditioning by simple
matrix-vector multiplication. To further reduce this cost, we
invent a symmetric-matrix-vectormultiplicationmethodwith
balanced workload and zero write conflict.

We implement our preconditioner for both GPUs and CPUs. Our
experiment demonstrates its effectiveness on the convergence rate,
its remarkably low runtime cost and its high scalability with re-
spect to stiffness and problem size. Because of these, although it
does not achieve the fastest convergence rate, it still significantly
outperforms other preconditioners, including multigrid AmgX on
a GPU [Naumov et al. 2015; NVIDIA 2021], ichol and ILUT on a
CPU [Chen et al. 2021; Saad 1994]. Furthermore, our preconditioner
has a low precomputation overhead, making it suitable for both
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linear and nonlinear solvers, especially in accurate simulation with
dynamic contacts. We validate the performance of our precondi-
tioner in many cloth and deformable body simulation examples as
shown in Fig. 1, 2 and 15, including real-time ones. (CPU code for
this work is downloadable at https://wanghmin.github.io/Wu-2022-
AGM/Wu-2022-AGM.zip.)

2 RELATED WORK

Cloth and deformable body dynamics. Fast and realistic simu-
lation of cloth and deformable body dynamics [Terzopoulos et al.
1987] have been active graphics research topics for decades. Early
simulation techniques [Bridson et al. 2002; Teran et al. 2003] often
choose to use explicit time integration with small time steps, but
they suffer from numerical instability as stiffness or nonlinearity
increases. To achieve numerical stability even when the time step is
large, researchers [Baraff and Witkin 1998; Teran et al. 2005; Volino
et al. 2009] explored implicit time integration based on Newton itera-
tions and their simulators solve one or multiple linearized systems in
every simulation step. Inspired by the variational formulation [Ortiz
and Stainier 1999], Kharevych et al. [2006] and Martin et al. [2011]
formulated implicit time integration as a nonlinear optimization
problem. In recent years, researchers [Bouaziz et al. 2014; Fratarcan-
geli et al. 2016; Liu et al. 2013, 2017] become particularly interested
in developing optimization techniques for fast cloth and deformable
body simulation. For example, Wang et al. [2015; 2016] showed that
a series of nonlinear iterative methods can benefit from the use
of a good preconditioner for fast GPU-based simulation, including
gradient descent, nonlinear conjugate gradient and L-BFGS.

Multilevel methods. The most popular type of multilevel meth-
ods is multigrid. Multigrid methods and preconditioners have been
extensively studied in the past, but their usages in computer graphics
are limited in practice. The main challenge associated with multigrid
is a need of effective coarsening and prolongation operators, espe-
cially for non-uniform, unstructured meshes. In the past, graphics
researchers [Lee et al. 2010; Wang et al. 2018; Xian et al. 2019; Zhu
et al. 2010] investigated many geometric multigrid methods based
on the construction of a mesh hierarchy, and they experienced a
variety of implementation issues. Compared with geometric multi-
grids, algebraic multigrids [Naumov et al. 2015; Tamstorf et al. 2015]
are advantageous in their independency of mesh topology. However,
they often need considerable precomputation time to analyze the
matrix sparsity structure, which makes them more costly when they
handle time-varying systems with contacts.
On a GPU, multigrid methods and preconditioners suffer from

two fundamental limitations affecting their parallelizability. First,
they must process all of the levels sequentially, e.g., from fine to
coarse and then from coarse to fine in a so-called V-cycle. Second, at
the coarsest level, a single coarsened problem is too small to feed up
all of the GPU cores. These two limitations do not exist in multilevel
additive Schwarz preconditioners.

Recently, researchers have also investigated other multilevel pre-
conditioners, including a multilevel preconditioner for Laplacian
matrices [Krishnan et al. 2013] and a multilevel incomplete Cholesky
preconditioner [Chen et al. 2021]. But similar to multigrid methods
and preconditioners, they suffer from a variety of problems, such

as algorithmic complexity, extended precomputation time and/or
incompatibility with parallelization.

Domain decomposition. The idea of domain decomposition has
been well explored by mathematicians and scientists, since the semi-
nal work by Schwarz [1870] more than one century ago. Specifically
relevant to our work, an additive Schwarz (AS) method [Cai and
Saad 1996; Dryja and Widlund 1989; Rodrigue et al. 1989] divides
a large, sparse linear system into smaller ones and solves them in
parallel. Intuitively, an AS method [Dolean et al. 2015; Gander 2008]
can be viewed as the block Jacobi method, if the domains do not
overlap and the sub-problems are exactly solved in every iteration.
But in general, it is suggested to use overlapping domains for an
AS method to converge robustly [Frommer and Szyld 1999]. An
alternative way of improving the convergence of an AS method is to
turn it into an asymmetric variant, i.e., restricted additive Schwarz
(RAS) [Cai and Sarkis 1999]. Both AS and RAS can work as effec-
tive preconditioners. Since RAS is asymmetric, it is often used with
GMRES, an iterative method for solving asymmetric systems.
Besides additive Schwarz, researchers have developed other do-

main decomposition methods, such as balancing domain decompo-
sition [Mandel 1993], Schur complement-based domain decomposi-
tion [Haase et al. 1991; Li and Saad 2017] and finite element tearing
and interconnect (FETI) [Farhat et al. 2001; Farhat and Roux 1991].
In computer graphics, researchers have also studied domain decom-
position for deformable body simulation [Li et al. 2019], especially
in a reduced space [Barbič and Zhao 2011; Kim and James 2011; Wu
et al. 2015; Yang et al. 2013]. Broadly speaking, these techniques can
be viewed as FETI, which couples independently solved domains by
Neumann boundaries. Recently, Wang [2021] used an overlapping
AS method to simulate high-resolution grid cloth meshes.

An interesting idea is to combine multilevel and domain decom-
position methods together, so as to achieve even higher scalability
with respect to problem size. This idea is not new and many existing
domain decomposition methods have already considered adopting
corrections at a coarser level. What makes additive Schwarz special
is that it works flexibly not only at two levels [Edwards and Bridson
2015], but at multiple levels [Dryja et al. 1996; Dryja and Widlund
1991; Zhang 1992]. As a result, a multilevel additive Schwarz (MAS)
preconditioner can more effectively fix the error associated with
inter-domain connections [Dolean et al. 2015]. This inspires us to
develop a new MAS preconditioner in this work, by using small and
parallelizable domains on a GPU.

3 BACKGROUND
Without loss of generality, we consider cloth and deformable body
dynamics integrated by the implicit Euler method as an uncon-
strained nonlinear optimization problem:

q = argmin
q

𝐹 (q), (2)

where q ∈ R3𝑁 is the state vector of 𝑁 nodes (or called vertices)
to be solved for the next update and 𝐹 (q) is the objective function.
As shown in [Martin et al. 2011], 𝐹 (q) contains a momentum term
and a potential term. To handle collisional contacts, it can include a
repulsive potential term [Li et al. 2020; Wu et al. 2020] as well.
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3.1 Preconditioning
One way to solve the problem in Eq. 2 is to apply Newton’s method.
In every Newton step, this method solves a linear system: Ax = b, in
which A = 𝜕2𝐹/𝜕q2 ∈ R3𝑁×3𝑁 and b = −

(
𝜕𝐹/𝜕q

)T ∈ R3𝑁 are the
Hessian and the negative gradient of 𝐹 at the current state q, and x
provides an update to it: q← q + x. We assume that A is positive
definite. If it is not, we can still enforce it through per-element
correction [Choi and Ko 2002; Teran et al. 2005], which turns the
method into a (broadly defined) quasi-Newton method.
A popular way of solving a linear system is to use the precondi-

tioned conjugate gradient (PCG) method. The performance of the
PCG method depends heavily on the preconditionerM, a symmetric
positive definite matrix. Intuitively, we can view preconditioning
as converting the original system into a better conditioned one:
M−1Ax = M−1b. Ideally, the use of M should significantly improve
the convergence rate, while introduce little computational overhead
in every iteration.
Preconditioning is also applicable to many nonlinear iterative

methods [Wang and Yang 2016] solving Eq. 2 directly, such as gra-
dient descent, nonlinear PCG and L-BFGS. Similar to PCG, these
methods need a suitableM to achieve fast convergence rates with
low per-iteration costs.

3.2 Multilevel Additive Schwarz (MAS)
Let

{
𝛀𝑑

}
be a set of domains covering all of the nodes 𝛀, such that

𝛀 =
⋃

𝛀𝑑 , and S𝑑 ∈ R3𝑁𝑑×3𝑁 be the selection matrix of domain 𝑑
that pulls the 𝑁𝑑 nodes in 𝛀𝑑 out of the 𝑁 nodes in 𝛀. We define
an additive Schwarz (AS) preconditioner as:

M−1(0) =
∑︁
𝑑

ST
𝑑
M−1

𝑑,(0)S𝑑 , (3)

whereM𝑑,(0) ≊ S𝑑AST𝑑 ∈ R
3𝑁𝑑×3𝑁𝑑 is a symmetric positive definite

sub-matrix defined within domain 𝑑 . An AS preconditioner can
also work as a standalone stationary iterative solver. Frommer and
Szyld [1999] pointed out that such a solver is guaranteed to converge,
if the domains overlap and A is symmetric positive definite. In a spe-
cial case when the domains do not overlap andM𝑑,(0) = S𝑑AST𝑑 , the
AS solver is equivalent to the block Jacobi method and it converges
as long as A is block diagonal dominant.
To improve the effectiveness of AS preconditioning in dealing

with large systems, researchers have considered to construct a two-
level AS preconditioner as:

M−1TAS = M−1(0) + C
T
(1)M

−1
(1)C(1) , (4)

where C(1) ∈ R3𝑁 (1)×3𝑁 is a coarsener matrix and M(1) is a single-
level additive Schwarz preconditioner built for the coarsened system
matrix A(1) = C(1)ACT

(1) . The rightmost part of Eq. 4 is commonly
known as coarse space correction. If we coarsen M(0) more, we can
add more corrections and formulate a MAS preconditioner [Dolean
et al. 2015] as:

M−1MAS = M−1(0) +
𝐿∑︁
𝑙=1

CT
(𝑙)M

−1
(𝑙)C(𝑙) , (5)

in which C(𝑙) ∈ R3𝑁 (𝑙 )×3𝑁 is the coarsener at level 𝑙 . Unlike the
coarseners used in other multilevel methods, the coarseners in Eq. 5
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Fig. 3. The algorithmic pipeline. The pipeline of our MAS preconditioner
contains three stages. We explore its parallelizability for fast and accurate
simulation on a GPU. Here each block represents a domain.

establish maps from level 0 directly to all of the levels. Therefore,
hierarchical coarse space construction is not necessary, but often
helpful in practice. Eq. 5 also suggests that the preconditioning
process can be parallelized at all of the levels, rather than being
sequenced in any specific order.

4 OVERVIEW
To begin with, we would like to discuss the key choices in the
development of our preconditioner under the multilevel additive
Schwarz (MAS) framework. First, we choose not to use overlapping
domains. When the domain size stays the same, the use of overlap-
ping domains allows a preconditioner to converge faster, but it also
increases the number of domains and it is unfriendly with our GPU-
based domain partitioning approach in Subsection 5.1. Second, we
avoid asymmetric variants, known as restricted additive Schwarz,
and stick to the symmetric positive definite version outlined in Sub-
section 3.2. This ensures that our preconditioner is applicable to
many linear and nonlinear solvers. Finally, we propose to adopt the
Nicolaides’ coarse space [Nicolaides 1987], which can be viewed
simply as aggregating nodes into a supernode. Compared with a
spectral coarse space [Spillane and Rixen 2013; Willems 2013], the
Nicolaides’ coarse space is more compatible with GPU implemen-
tation and more convenient to construct on the fly, as discussed in
Subsection 5.2.

Based on the aforementioned choices, we formulate the algorith-
mic pipeline of our preconditioner in three stages as Fig. 3 shows.
At the very beginning, the algorithm sorts all of the nodes by their
Morton codes in the multilevel domain construction stage (in Sec-
tion 5). Once the nodes are sorted, domain partitioning and coarse
space construction become straightforward linear segmentation pro-
cesses. In the sub-matrix inverse precomputation stage (in Section 6),
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the algorithm calculates the coarsened system matrix A(𝑙) at each
level and directly computes the sub-matrix inverse of each domain:
M−1
𝑑,(𝑙) =

(
S𝑑A(𝑙)ST𝑑

)−1. Finally at runtime, the preconditioning pro-
cess (in Section 7) executes three steps in every call: distributing
the input x to every level, performing the matrix-vector product in
each domain and gathering the sub-vectors into the output y.
Our preconditioner is highly parallelizable thanks to the MAS

framework. Its two most expensive steps, i.e., the sub-matrix inverse
step in the precomputation stage and the matrix-vector multipli-
cation step in the preconditioning stage, can be well parallelized
for all of the domains across different levels. This is crucial to the
overall performance of our preconditioner, as shown in Section 8.

4.1 Why Not Factorization
The reason we compute the inverse of the sub-matrix, rather than
its Cholesky or LDLT factorization, is because a triangular solver is
difficult to parallelize. While we can still assign one thread to each
domain, we cannot easily reach parallelization capacity unless the
problem size is large (with at least 500K vertices). Meanwhile, no
parallelization within a domain means the preconditioning stage
must read the factorization matrix twice from the global memory,
which greatly downgrades the preconditioner’s performance.

Matrix inverse computation is known for the numerical stability
issue caused by floating point precision. By default, our precondi-
tioner uses single-precision floating point accuracy, but it barely
suffers from numerical stability in our experiment for two reasons.
First, the sub-matrix is relatively small and error accumulation is
limited. Second, as inter-domain connections being dropped off, the
sub-matrix becomes much better conditioned than the whole system
matrix. We note that our preconditioner can still experience the nu-
merical stability issue in extremely ill-conditioned cases irrelevant
to simulation, such as those provided in [Chen et al. 2021]. There-
fore, the preconditioner is not supposed to be a general-purpose
one for arbitrary problems.

4.2 Cloth and Deformable Body Simulation
While our MAS preconditioner is applicable to a wide range of
cloth and deformable body simulators, we would like to describe
our in-house ones here for reference purposes. Our cloth simula-
tor handles unstructured triangle meshes. It uses the co-rotational
linear model [Müller et al. 2005] for planar elasticity and the qua-
dratic bending model [Bergou et al. 2006] for bending elasticity.
Meanwhile, our deformable body simulator handles tetrahedral
meshes and it supports multiple elastic models, including projective
dynamics [Bouaziz et al. 2014], the co-rotational FEM model and
hyperelastic models. To handle collisions, our simulators use spatial
hashing [Tang et al. 2018] to detect colliding element pairs and
integrate their repulsive potentials into the optimization objective
in Eq. 2. To handle frictions, our simulators adopt both the impulse-
based method [Bridson et al. 2002] and the adhesive method [Wu
et al. 2020], the latter of which is particularly useful for static fric-
tions. We note that our simulators handle collisions and frictions
fast, but not safely nor accurately. They can be strengthened by
applying safer and more accurate methods, but that is irrelevant to
the speedup provided by our preconditioner in this work.
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Fig. 4. The performances of preconditioners with the PCG solver and the
performance of the AmgX solver on a GPU. While the AmgX preconditioner
has the fastest convergence rate, the MAS preconditioner achieves the
highest convergence speed. Here we define the relative error of the result
x[𝑘 ] in the 𝑘-th iteration as

(
𝐸 (x[𝑘 ] ) −𝐸 (x∗)

)
/
(
𝐸 (x[0] ) −𝐸 (x∗)

)
, in which

𝐸 is the quadratic objective of the linear system and x∗ is the exact solution
obtained after many iterations. By default, we use the T-shirt example for
evaluation in this paper. Note that the curves start to oscillate below 10−5,
due to numerical errors in residual vectors and objective evaluation.

A critical problem is how to represent the large, sparse system
matrix A involved in simulation. Our answer to this question is
a hybrid matrix representation: the static ELLPACK format [Bell
and Garland 2008] for storing the total of the mass matrix and the
tangent stiffness matrix, and an extra array for storing contact node
pairs and their contributions to A. Given this representation, we
can handle dynamic contacts over time by modifying the node pairs
in the array. To perform matrix-vector multiplication as needed by
many solvers, we first calculate the products with the ELLPACK
matrix and the array matrix separately, and then sum them up.

4.3 Preconditioning in Simulation
Our MAS preconditioner can be used by simulators in many ways.
Perhaps the most straightforward way is to use it together with the
PCG solver and solve the linear system of a single Newton iteration
in every time step [Baraff and Witkin 1998]. Fig. 4 compares the
performances of multiple preconditioners with the PCG solver and
the performance of the multigrid AmgX solver [Naumov et al. 2015]
on a GPU. It shows that our MAS preconditioner is approximately
four times faster than the others when reaching the same conver-
gence goal, thanks to a high convergence rate and a low runtime
preconditioning cost. What is not illustrated in Fig. 4 is that our
preconditioner also has a low construction/precomputation over-
head: only 6.267ms. In comparison, the AmgX preconditioner/solver
needs 161.7ms/176.6ms to preprocess the system, respectively.
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(a) The convergence rate
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(b) The convergence speed (GPU)
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(c) The convergence rate
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(d) The convergence speed (GPU)

Fig. 5. The performances of various preconditioners with GPU-based
nonlinear solvers. This figure shows that our MAS preconditioner pro-
vides convergence improvements to all of these nonlinear solvers. Here
we define the relative error of the state q[𝑘 ] in the 𝑘-th iteration as(
𝐹 (q[𝑘 ] ) − 𝐹 (q∗)

)
/
(
𝐹 (q[0] ) − 𝐹 (q∗)

)
, in which 𝐹 is the nonlinear sim-

ulation objective and q∗ is the exact solution.

When the computational budget is tight, it is efficient to just solve
the linear system of a single Newton iteration by (linear) PCG as
shown in Fig. 5b, thanks to small matrix evaluation and precompu-
tation costs. But for accurate simulation, especially if the time step
is large, we cannot overlook the nonlinearity of the optimization
objective and we should apply more Newton iterations or switch
to use other nonlinear solvers. We can apply our preconditioner to
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(a) Sorted Nodes by Morton codes (b) With artifact (c) Without artifact

Fig. 6. A 2D example illustrating the use of Morton codes in domain parti-
tioning and coarse space construction. When we use a uniform supernode
size (𝑆 = 4) to construct the coarse space, two disjoint nodes may be grouped
into the same supernode as shown in (a). As a result, user interaction with
one cloth patch can falsely disturb another, as (b) shows.

improve the convergence of other nonlinear solvers as well, such as
accelerated gradient descent [Wang and Yang 2016], L-BFGS and
nonlinear PCG. Since our preconditioner relies on the system ma-
trix, we must redo MAS precomputation once the system matrix
is updated. To prevent this from greatly affecting the simulation
performance, we choose to redo MAS precomputation once every
eight nonlinear iterations. Fig. 5 demonstrates the effectiveness of
our preconditioner with nonlinear solvers in the “Schwarz" example
and it confirms with [Wang and Yang 2016] that accelerated gradient
descent, L-BFGS and nonlinear PCG have similar performances. In
practice, we give our preference to an inexact Newton method with
a fixed number of inner PCG iterations per Newton step, due to its
close relationship with a PCG solver.

5 MULTILEVEL DOMAIN CONSTRUCTION
In the very first multilevel domain construction stage, the algorithm
is responsible for two tasks: partitioning nodes into domains, i.e.,
setting up the selection matrices

{
S𝑑

}
, and constructing the coarse

space, i.e., creating the coarseners
{
C(𝑙)

}
. We formulate this stage

by symbolically analyzing the system matrix.

5.1 Domain Partitioning
If we view every node as a 3×3 diagonal block and every node-node
connection as an off-diagonal block in the system matrix, we can
then treat an additive Schwarz preconditioner as an approximation
to the systemmatrix, with all of the node-node connections between
two different domains ignored. The key question is: how can we
minimize such inter-domain connections, so that the preconditioner
approximates the matrix well? A naïve idea is to create a domain as a
cluster of nodes in their reference states, as in [Wang 2021]. But this
idea fails to consider connection changes caused by contacts and
fractures. Inspired by linear bounding volume hierarchy [Lauterbach
et al. 2009], we choose to sort the nodes by their Morton codes first.
Specifically, we calculate the axis-aligned bounding box of the nodes,
and divide the box into 220 × 220 × 220 cells. We then obtain the
60-bit Morton code of each node by simply interleaving the bits of
its cell indices. After we sort the nodes by Morton codes, we achieve
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(a) Before sorting (b) After sorting

Fig. 7. The sparsity pattern of a 779K×779K matrix with 30.2M nonzero
entries. Before we sort the nodes by their Morton codes, off-diagonal blocks
are scattered as shown in (a). After we sort the nodes, they become closer to
the diagonal line, as shown in (b). This practice allows our preconditioner
to be highly effective. This figure is based on the T-shirt example.

better spatial locality among the nodes, as a 2D example shows in
Fig. 6a. Therefore, we can partition them immediately in a linear
fashion. Intuitively, as spatial locality improves, the likelihood of a
connection between two distant nodes in the sorted array drops. As
a result, off-diagonal blocks should be closer to the diagonal of the
system matrix as illustrated in Fig. 7b, making the preconditioner a
better approximation to the matrix. Without Morton code sorting,
our preconditioner exhibits an extremely low convergence rate
when it directly handles the matrix in Fig. 7a.

In our implementation, we use radix sort for sorting. Because of
its high performance on a GPU, our approach can work at runtime
based on node positions in the current state. This allows our parti-
tioning to correctly address contacts and fractures among spatially
close but topologically distant nodes, which evolve over time.

5.2 Coarse Space Construction
Thanks to the spatial locality achieved by Morton code sorting, we
propose to construct a Nicolaides’ coarse space by grouping nodes
(or supernodes) sequentially and hierarchically into supernodes.
Fig. 8 illustrates the concept of our coarse space, when both the
domain size𝑀 and the supernode size 𝑆 are equal to four, i.e., four
supernodes at level 𝑙 grouped into the same supernode at level 𝑙 + 1.
This coarse space provides an effective coverage of the whole system
matrix, by placing many off-diagonals in the domains at finer levels
while only a few off-diagonals in the domains at coarser levels.

The simplicity of our coarse space enables us to represent it in a
compact form as map𝑙→𝑙+1 [𝑖], i.e., a coarsening map that converts
the index of every supernode 𝑖 at level 𝑙 to the index of its parent
supernode at level 𝑙 + 1. We collapse

{
map𝑙→𝑙+1

}
to compute map(𝑙) ,

the coarsening map from level 0 directly to every level 𝑙 . Using
these maps, we can easily coarsen a vector by atomic additions and
prolongate a coarsened vector by retrieving multiple copies of data
on a GPU. We can also easily coarsen the system matrix A to A(𝑙) ,
which will be discussed later in Subsection 6.2.

By default, we prefer the supernode size 𝑆 to be equal to the
domain size𝑀 , so that a domain naturally becomes a supernode at
the coarser level. But a naïve implementation of this idea suffers
from false coupling artifacts, commonly found between two disjoint

(a) Level 0 (b) Level 1 (c) Level 2

Fig. 8. A matrix pattern and the MAS preconditioner applied to it. In this
figure, every pixel represents a node or a supernode, and every dark frame
represents a domain with four nodes (or supernodes) at one level. The pixel
intensity illustrates the magnitude of a non-zero node (or supernode).

bodies as Fig. 6b shows. On the surface, they are caused by the
residual error when the number of iterations is not sufficiently
large; but fundamentally, the reason is because two adjacent nodes
in the same supernode may be well apart and the search direction
would fail to treat them separately, as shown in Fig. 6a. To fix this
problem, one solution is to check the Euclidean distance between
two adjacent nodes (or the distance between the bounding boxes
of two adjacent supernodes), and use that as a metric to decide if
it is an acceptable split for a supernode at the coarser level. But
this solution needs proper distance thresholds at different levels,
which are often difficult to find in practice. Our solution instead is
to use node-node connections. Specifically, two nodes at level 0 are
connected if they are linked by an off-diagonal block in the system
matrix, due to topological proximity or contact. According to these
connections, we check every domain-sized supernode candidate at
level 1 and split it into multiple supernodes, if they are not actually
connected. We then construct the coarsening map at level 1. After
that, we coarsen node-node connections to level 1 and repeat the
process to construct more maps at coarser levels hierarchically. This
solution removes false coupling artifacts as shown in Fig. 6c.

5.3 A Skipping Approach
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Fig. 9. The convergence of PCG with
our MAS preconditioner, when it uses
nodes sorted at different times.

The computational cost of the
whole multilevel domain con-
struction stage is low but still
not negligible. Since it starts
from Morton code sorting and
Morton codes rely on node po-
sitions, an interesting question
is whether we can skip the con-
struction stage in a number of
time steps, assuming that ob-
ject movement within a single
time step is small. Fig. 9 shows
that the convergence of PCG

with our preconditioner deteriorates, as it starts to use nodes sorted
earlier in time. On the other hand, even if it uses the nodes sorted
60 time steps earlier, the convergence is still not terribly bad. This
is because spatial locality among topologically close nodes is still
preserved in every set of sorted nodes, regardless of when they are
sorted. What is not preserved is spatial locality among contact node
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(b) The convergence speed (GPU)

Fig. 10. The performances of AS and MAS preconditioners with different
choices of 𝑀 . There exist two ways to reduce the error associated with
inter-domain connections: using a large𝑀 as (a) shows, and using coarse
space corrections. Overall, we think it is more efficient to use a small 𝑀
with coarse space corrections, so that our MAS preconditioner can be highly
compatible with GPU acceleration.

pairs, which vary over time. Therefore, we anticipate the conver-
gence problem associated with our skipping approach to become
severer in collision-intensive scenes. To play safe, we choose to run
the multilevel domain construction stage once every ten time steps,
and this effectively reduces its overhead from six percent of the total
solver cost to under one percent.

6 MATRIX PRECOMPUTATION
Before we are able to perform runtime preconditioning in a solver,
we must obtain the sub-matrix A𝑑,(𝑙) = S𝑑A(𝑙)ST𝑑 of each domain 𝑑
at every level 𝑙 , and then formulate the per-domain preconditioner
M−1
𝑑,(𝑙) . To begin with, we will discuss the choice of the domain size

𝑀 and how that affects the formulation of our preconditioner in
Subsection 6.1. In Subsection 6.2 and 6.3, we will then present fast
algorithms to compute and maintain the sub-matrix inverse of each
domain, as the precomputation stage.

6.1 The Choice of the Domain Size𝑀
Perhaps the most significant choice involved in the design of our
preconditioner is the choice of the domain size 𝑀 . In computer
graphics and computational mathematics literature, most of the
domain decomposition methods prefer using large domains over
small domains. The use of large domains reduces the error associated
with inter-domain connections, at the cost of more difficulty in
solving each sub-problem. Fig. 10a justifies this idea by showing
that an AS preconditioner achieves a faster convergence rate as
the domain size 𝑀 grows from 256 to 3,820. Since it becomes less

ALGORITHM 1: Matrix Precomputation
Input: System matrix A and coarsening maps

{
map(𝑙 )

}
Result: Sub-matrix inverses

{
M−1

𝑑,(𝑙 )
}{

A𝑑,(𝑙 )
}
← 0;

foreach node i and node j and level l do
if ⌊map(𝑙 ) [𝑖 ]/32⌋ = ⌊map(𝑙 ) [ 𝑗 ]/32⌋ then

𝑑 ← ⌊map(𝑙 ) [𝑖 ]/32⌋;
𝑖′ ← map(𝑙 ) [𝑖 ] − 32𝑑 ;
𝑗 ′ ← map(𝑙 ) [ 𝑗 ] − 32𝑑 ;
A𝑑,(𝑙 ) [𝑖′, 𝑗 ′] ← A𝑑,(𝑙 ) [𝑖′, 𝑗 ′] + A[𝑖, 𝑗 ] ;

end
end
foreach domain d and level l do{

L−1
𝑑,(𝑙 ) ,D𝑑,(𝑙 )

}
← Gauss_Jordan_Elimination(A𝑑,(𝑙 ) ) ;

end
foreach domain d and level l do

M−1
𝑑,(𝑙 ) ← L−T

𝑑,(𝑙 )D
−1
𝑑,(𝑙 )L

−1
𝑑,(𝑙 ) ;

end

practical to solve each domain exactly when𝑀 gets large, we define
the preconditioning process of each domain as eight multi-color
Gauss-Seidel iterations, for𝑀 > 32.
But the situation becomes different once we begin to consider

parallel computing and coarse space corrections. If there are many
small domains, we can explore their parallelization on a GPU and
even achieveM−1

𝑑,(𝑙) = A−1
𝑑,(𝑙) by computing each sub-matrix inverse

directly. Meanwhile, we can also effectively lessen the inter-domain
connection issue by coarse space corrections. In fact, if a MAS
preconditioner is able to solve its coarse-level problem exactly, it
would converge even faster as 𝑀 gets smaller as Fig. 10 shows.
Essentially, we need a suitable domain size 𝑀 , which should be
sufficiently small to take the aforementioned benefits, while still be
large enough to minimize the inter-domain connection error. In this
work, we set 𝑀 = 32. This number provides the right sub-matrix
size for our algorithm in Subsection 6.2 to utilize the shared memory
in the computation of the sub-matrix inverse. Fig. 10b shows that
our MAS preconditioner with𝑀 = 32 and 𝐿 = 4 outperforms others,
even though it does not solve each coarse problem exactly. Here 𝐿
is the number of levels.

6.2 Per-Domain Sub-Matrix Inverse Calculation

96

64

𝐋ିଵ

𝐋ିଵ𝐃

𝑖଴ 𝑖ଵ

Fig. 11. A compact format
of a lower triangular ma-
trix. We use this format to
do matrix multiplication in
the shared memory.

Alg. 1 provides the pseudo code that pre-
computes the submatrix inverse of every
domain in three steps. In the first step, we
check every 3 × 3 system matrix block
A[𝑖, 𝑗] and add it into the 96 × 96 sub-
matrix A𝑑,(𝑙) , if node 𝑖 and node 𝑗 are
mapped to the same domain 𝑑 at level
𝑙 . In the second step, we apply Gauss-
Jordan elimination to row-reduce the
96 × 192 matrix

[
A𝑑,(𝑙)

�� I ] into a row
echelon form

[
U𝑑,(𝑙)

��L−1
𝑑,(𝑙)

]
, such that

L𝑑,(𝑙)U𝑑,(𝑙) = A𝑑,(𝑙) . To decrease the
memory footprint, we apply elimination
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to the 96 × 96 matrix A𝑑,(𝑙) directly, and overwrite it by U𝑑,(𝑙) and
L−1
𝑑,(𝑙) . Since A𝑑,(𝑙) is symmetric, U𝑑,(𝑙) = D𝑑,(𝑙)LT𝑑,(𝑙) and D𝑑,(𝑙)
is the diagonal of U𝑑,(𝑙) . The output is a lower triangular matrix
stored in a compact format, as Fig. 11 shows. Finally, in the third
step, we calculate L−T

𝑑,(𝑙)D
−1
𝑑,(𝑙)L

−1
𝑑,(𝑙) by visiting every two columns

𝑖0 and 𝑖1 in parallel. Thanks to this format, we can perform the third
step completely in the GPU shared memory. The final output is a
per-domain submatrix inverse M−1

𝑑,(𝑙) = A−1
𝑑,(𝑙) , stored back to the

global memory in an alternative compact format to be discussed in
Subsection 7.1.
The reason we do not use Gauss-Jordan elimination to obtain

A−1
𝑑,(𝑙) directly is because doing so requires two row-reductions.

Every row-reduction involves 32
∑31
𝑖=1 𝑖 ≈

1
232

3 node-node matrix
multiplications and the rows must be visited sequentially. In com-
parison, the L−T

𝑑,(𝑙)D
−1
𝑑,(𝑙)L

−1
𝑑,(𝑙) product uses

∑32
𝑖0=1

∑𝑖0
𝑖1=1 𝑖1 ≈

1
632

3

node-node multiplications and it can be well parallelized. We also
note that we do not store a lower triangular matrix linearly by col-
lapsing all of the rows, because such a format is less efficient to visit
as our experiment indicates, probably due to bank conflicts in the
shared memory.

6.3 Selective Sub-Matrix Inverse Update
Since the evaluation of the tangent stiffness matrix can be expen-
sive, researchers have also developed simulation techniques that
temporarily or permanently skip stiffness matrix updates, such as
quasi-Newton methods [Brown and Brune 2013; Wang and Yang
2016] and projective dynamics [Bouaziz et al. 2014]. These methods
may still need to update the whole system matrix as in [Fratarcan-
geli et al. 2016], to more properly handle contacts over time. We
make our preconditioner suitable for these methods by developing
a selective matrix inverse update function. To do so, we use the
changed contact pairs to detect the domains with changes and recal-
culate the matrix inverses of those domains only. In our experiment,
when the stiffness matrix stays unchanged, this practice reduces
the cost of matrix precomputation to be under five percent of its
original cost.

7 RUNTIME PRECONDITIONING
Our runtime preconditioning process handles all of the domains at
all of the levels in three steps: first, it coarsens the input vector into
different copies at all of the levels; second, it performs precondition-
ing inside of each domain; and finally, it sums up the results at all
levels into a joint output. Among the three steps, the second step is
the most complex and expensive one. Since runtime preconditioning
is executed in every iteration, we require it, especially its second
step, to be fast.

7.1 Per-Domain Preconditioning
The preconditioning task inside of each domain is essentially matrix-
vector multiplication by the submatrix inverse A−1

𝑑,(𝑙) , precomputed
in Subsection 6.2. While the MAS framework allows us to easily
parallelize these tasks for all of the domains at different levels, we
still would like to know if there exists a faster way to perform
matrix-vector multiplication here.

Hold y[j]

Hold 
y[i]

Write y[j]

Write y[j]

\Pass 1

\Pass 3

\Pass 2

Write
y[i]

Hold y[i]

(a) Phase 1

Hold y[j]

Hold 
y[i]

Write y[j]

Write y[j]

\Pass 1

\Pass 3

\Pass 2

Write
y[i]

Hold y[i]

(b) Phase 2

Fig. 12. The phases involved in a pass. Our symmetric-matrix-vector multi-
plication method parallelizes the 32 threads (shown as dots) in the same
warp with balanced workload and zero write conflict.

Our basic idea is to halve the memory access by exploring matrix
symmetry, so hopefully we can halve the computational time as well.
But since our matrix is only 96×96, we cannot simply launch threads
as blocks along matrix rows or columns like [Nath et al. 2011], or
that would introduce too much load imbalance and write conflict.
In the T-shirt example, the experiment shows our implementation
of full-matrix-vector multiplication takes about 400𝜇s, while a naïve
implementation of symmetric-matrix-vector multiplication outlined
above takes even more time, i.e., 802𝜇s.

Hold j
Hold i

Write j

Write j
\Pass 1

\Pass 3

\Pass 2

Fig. 13. The three passes in
per-domain preconditioning.

Our solution is a novel symmetric-
matrix-vector multiplication method
with balanced workload and zero write
conflict, as Fig. 12 and 13 show. In this
approach, the multiplication process is
performed through three passes, each
of which covers 32 rows and contains
three phases. Without loss of general-
ity, let us consider the second pass in
Fig. 12a. In Phase 1, 32 (white) threads
in the same warp process 32 matrix

rows backward from the diagonal. Let x and y be input and output
vectors in the shared memory, andM[𝑖, 𝑗] be the matrix entry cur-
rently processed by one thread. This thread calculatesM[𝑖, 𝑗]x[𝑖]
and M[𝑖, 𝑗]x[ 𝑗], and needs to add the two products into y[ 𝑗] and
y[𝑖] respectively. But instead of writing both y[ 𝑗] and y[𝑖] in the
shared memory immediately, the thread writes y[ 𝑗] only while ac-
cumulates M[𝑖, 𝑗]x[ 𝑗] in its own register. Since every thread writes
different y[ 𝑗], there is no write conflict. In Phase 2, a top (gray)
thread reaches the left side of the matrix and begins to process ma-
trix columns upward starting from the lower left corner, as Fig. 12b
shows. This shifted thread uses a different write/hold strategy: it
adds M[𝑖, 𝑗]x[ 𝑗] into y[𝑖] in the shared memory, while accumu-
latesM[𝑖, 𝑗]x[𝑖] in another register. Again, there is no write conflict
among the threads. Finally in Phase 3, the method disables the
shifted threads and finishes the last 16 matrix entries. After the
three phases, the 32 threads write the values in their registers back
to y in the shared memory, with no write conflict. The experiment
shows that this method reduces the multiplication time to 220𝜇s,
almost half of the full-matrix-vector multiplication time.
According to the visiting order described by our multiplication

method, we arrange the entries in A−1
𝑑,(𝑙) to achieve optimal spatial

locality. This is also the compact format of A−1
𝑑,(𝑙) for the precompu-

tation stage in Subsection 6.2 to output.
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(a) The convergence of linearized examples
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(b) The convergence of nonlinear examples

Fig. 14. The convergence of our simulator. This figure summarizes the con-
vergence of our simulator in all of the examples, including both linearized
(with one linear system per time step) and nonlinear ones. Note that their
convergence rates are different, due to different relative error definitions.

8 RESULTS AND DISCUSSIONS
We implement our MAS preconditioner with single-precision float-
ing point accuracy for both GPUs and CPUs. Our GPU implementa-
tion uses CUDA 11.51 and our CPU implementation uses OpenMP
and SIMD SSE. To perform fast multiplication with a large system
matrix on a CPU, we adopt the two-step approach [Gkountouvas
et al. 2013]. Table 1 provides the statistics and the performances
of our examples, and Fig. 14 summarizes their convergence behav-
iors. Fig. 15 illustrates our deformable body simulation examples,
including those simulated by nonlinear solvers. We evaluate the per-
formances of our preconditioner in these examples on an NVIDIA
GeForce RTX 3080 GPU and an Intel Core i7-9700 3.0GHz CPU. By
default, we simulate linearized examples by the PCG solver, and we
simulate nonlinear examples by the inexact Newton solver with 32
inner PCG iterations per Newton step. All of our examples use the
same time step Δ𝑡 = 1/100s, and fixed numbers of Newton steps
and (inner) PCG iterations per time step, as shown in Table 1. In all
of the examples, the ratio between material stiffness and collision
repulsion stiffness is 1:1000.
According to NVIDIA Nsight profiler, the memory SOL of our

preconditioner in the runtime preconditioning stage is 92%, very
close to the maximum theoretical throughout.

8.1 Performance Evaluation on a CPU
While our preconditioner is designed for a GPU, it is also effective on
a CPU. In the following experiment, we compare the performance of
our preconditioner with those of factorization-based precondition-
ers, including vanilla incomplete LU (ILU0) provided by Intel Math
Kernel Library, multiscale incomplete Cholesky [Chen et al. 2021]

(a) Squishy ball (b) “Schwarz"

(c) Armadillos (d) Dragons

Fig. 15. The deformable body simulation examples. OurMAS preconditioner
is compatible with a variety of nonlinear solvers in the simulation of these
examples, ranging from 52K vertices to 707K vertices.
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(a) The convergence rate
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(b) The convergence speed (CPU)

Fig. 16. The performances of various preconditioners on a CPU. Although
our preconditioner does not achieve the fastest convergence rate, its runtime
performance is the highest as (b) shows, because of its low preconditioning
cost. In this experiment, we test multiple parameter values and find 𝜌 = 3.5
and droptol=10−4 to be the optimal ones for ichol and ILUT. Note that ichol
does not always work at 𝜌 = 3.5. In the rest of the paper, we choose other 𝜌
values, if ichol fails at 𝜌 = 3.5.

and dual threshold incomplete LU (ILUT) [Saad 1994] provided by
the Eigen library. The experiment shows that our preconditioner
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Table 1. The statistics and the performances of our examples. We simulate linearized examples by using 64 to 96 PCG iterations to solve a single Newton step,
and nonlinear examples by using 32 inner PCG iterations to solve each of the three Newton steps. This table summarizes the total computational costs spent
in one time step. Here𝐶1,𝐶2 and𝐶solver are matrix precomputation, runtime preconditioning and intrinsic PCG costs per call.

Name #Verts. Model Nonzero Condition Const. MAS-preconditioned solver (ms) Total
(#Tri. or #Tet.) type rate number cost (ms) #Newton ×(𝐶1+ #Inner ×(𝐶2 +𝐶solver)) = 𝐶total cost (ms)

School dress 96K (191K) Linearized 0.0135% 2.64 × 107 0.206 1 × (3.388 + 64 × (0.133 + 0.164)) = 22.427 31.523
Party dress 76K (151K) Linearized 0.0170% 1.52 × 106 0.158 1 × (2.519 + 64 × (0.114 + 0.143)) = 18.967 25.889
Wool coat 92K (182K) Linearized 0.0141% 2.23 × 106 0.214 1 × (2.918 + 64 × (0.129 + 0.152)) = 20.902 27.013
Leather coat 140K (278K) Linearized 0.0093% 8.96 × 106 0.230 1 × (6.999 + 64 × (0.196 + 0.245)) = 35.223 46.190
Down coat 467K (924K) Linearized 0.0029% 2.75 × 108 0.638 1 × (15.322 + 64 × (0.599 + 0.767)) = 102.746 146.049

Hiking jacket 80K (158K) Linearized 0.0165% 1.06 × 108 0.156 1 × (3.065 + 64 × (0.122 + 0.149)) = 20.409 26.069
T-shirt 260K (519K) Linearized 0.0050% 3.34 × 106 0.319 1 × (8.292 + 64 × (0.331 + 0.544)) = 64.292 79.211

Squishy ball 707K (2.21M) Linearized 0.0016% 8.78 × 107 1.212 1 × (28.161 + 96 × (0.861 + 1.158)) = 221.985 274.340
“Schwarz" 52K (222K) Baraff-Witkin 0.0242% 1.47 × 106 0.222 3 × (1.891 + 32 × (0.085 + 0.094)) = 22.857 32.033
Armadillos 122K (474K) neo-Hookean 0.0100% 2.13 × 109 0.287 3 × (4.520 + 32 × (0.166 + 0.223)) = 50.904 73.133
Dragons 125K (496K) neo-Hookean 0.0098% 6.92 × 106 0.308 3 × (6.411 + 32 × (0.171 + 0.295)) = 63.969 90.142

Collision detection
Force and matrix evaluation
MAS construction and precomputation
MAS preconditioning
Intrinsic PCG solver
Others

(a) GPU breakdown

Collision detection
Force and matrix evaluation
Schwarz: Precomputation
Schwarz: preconditioning
PCG solver
Others

(b) CPU breakdown

Fig. 17. The breakdowns of the computational time spent by our simulator
in the T-shirt example. This figure shows that runtime preconditioning and
intrinsic PCG solver are the two bottlenecks, on both a GPU and a CPU.

converges slower than ichol and ILUT in Fig. 16a, but it still outper-
forms them in Fig. 16b, thanks to its low runtime preconditioning
cost. In fact, our preconditioner outperforms other preconditioners
even without CPU parallelization. Another strength of our pre-
conditioner is a low construction/precomputation overhead: 0.118s
with parallelization or 0.549s without. In comparison, the factoriza-
tion costs of ILU0, ichol and ILUT are 2.50s, 33.8s and 154s, while
complete LU factorization by Intel MKL PARDISO takes 4.87s only.
Fig. 16 also suggests that the convergence speedup gained by the
use of an AS preconditioner does not outweight the cost of matrix-
vector multiplication on a CPU. This partially explains why AS
preconditioners were not popular in the past.

8.2 Breakdown Analysis
Fig. 17 shows the breakdowns of the computational time of one time
step in the T-shirt example. Compared with other components, MAS
preconditioning and intrinsic PCG solver are the two most expen-
sive ones, due to the number of iterations needed for reaching the
convergence. On a CPU, the portions contributed by the two com-
ponents are smaller as Fig. 17b shows, since the other components
are not well parallelized. We note that our simulator uses a simple
repulsive collision method and solves a single linear system per time
step in this example. If the simulator applies safe collision handling
and nonlinear solvers instead, it should spend more time on collision
handling, force/matrix evaluation and MAS precomputation.
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Fig. 18. The scalability of various preconditioners with respect to stiffness.
This experiment demonstrates the high scalability of our MAS precondi-
tioner with respect to stiffness, i.e., an 237% solver cost increase as stiffness
parameters become 1,000 times larger.

8.3 Scalability with Respect to Stiffness
To evaluate the scalability of our MAS preconditioner with respect
to stiffness, we increase stiffness parameters in the T-shirt exam-
ple and record the performance of the PCG method with different
preconditioners, as Fig. 18 shows. In this experiment, we set the
convergence condition to be



b−Ax[𝑘 ]

∞ ≤ 5× 10−4


b−Ax[0]

∞,

where x[0] is the initial state. The experiment shows the scalability
of icho is the best: an approximately 60% cost increase as stiffness
parameters grow from 0.1× to 100×. The scalability of our precon-
ditioner is comparable to that of AmgX: an approximately 200%
cost increase. In contrast, the solver costs associated with Jacobi
and AS preconditioners increase by 600% to 700%. We note that the
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(a) Mesh resolution vs. number of iterations
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(b) Mesh resolution vs. solver cost (GPU)

Fig. 19. The scalability of various preconditioners with respect to mesh
resolution in the T-shirt example. As the number of nodes becomes 16
times larger, the solver costs associated with Jacobi, AmgX, AS and MAS
preconditioners become 76, 4, 69 and 35 times larger, respectively.

increase of stiffness parameters is not proportional to the increase of
the condition number, once stiffness becomes sufficiently large. We
also note that we do not include ichol in Fig. 18b, 19b, 20b and 21b,
because it is CPU only.

8.4 Scalability with Respect to Mesh Resolution
In the next experiment, we evaluate the scalability of our precondi-
tioner with respect to mesh resolution in both cloth and deformable
body examples, as shown in Fig. 19 and 20 respectively. As mesh
resolution increases, both problem size and system stiffness increase.
In this experiment, we use the same convergence condition as in
Subsection 8.3. It shows that the scalability of our preconditioner
with respect to mesh resolution is better than those of Jacobi and
AS preconditioners, but worse than that of AmgX. Therefore, our
preconditioner may be outperformed by the AmgX preconditioner
in an example with multi-million nodes. But such an example is not
our focus yet and it is possible to optimize our preconditioner for
very high-resolution problems further.

8.5 Scalability with Respect to Collision Complexity
As collision complexity grows, the collision handling cost increases
and the overall performance gain of using our preconditioner drops.
Since more contact pairs introduce more off-diagonals in the system
matrix, we also would like to know how collision complexity affects
the solver cost directly. To do so, we design an example by draping a
square cloth patch with 200K vertices onto a rotating sphere, during
which the number of contact node pairs grows from 0 to 600K
over time. As before, we use the convergence condition outlined
in Subsection 8.3. Interestingly, Fig. 21 shows that the influence of
collision complexity on the number of iterations and the solver cost
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Fig. 20. The scalability of various preconditioners with respect to mesh
resolution in the armadillo example. As the number of nodes becomes 15
times larger, the solver costs associated with Jacobi, AmgX, AS and MAS
preconditioners become 24, 3, 23 and 14 times larger, respectively.
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Fig. 21. The scalability of various preconditioners with respect to collision
complexity. While the number of contact node pairs in a rotating sphere
example increases from 0 to 600K, the performance of a PCG solver barley
changes, regardless of its preconditioners.

is quite small, regardless of the preconditioners. We guess this is
because the residual error associated with collision repulsion is in
high frequency and can be quickly reduced by a PCG solver, even
when using the Jacobi preconditioner.
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Fig. 23. The convergence of ichol, AS and MAS preconditioners in hetero-
geneous material cases. The figure shows that the convergence rate of our
preconditioner is still acceptable when it handles a randomly heterogeneous
armadillo model, but decreases notably when it handles a model made of
eight stiffness regions shown in Fig. 22. This is a linearized example.

8.6 Effectiveness against Heterogeneity
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Fig. 22. An armadillo model with dif-
ferent stiffness values in eight regions.

Similar to other MAS precondi-
tioners, our preconditioner ex-
periences a performance drop
when it handles heteroge-
neous materials. To evaluate
this problem, we create three
armadillo models: a homoge-
neous one made of uniform
stiffness, a randomly heteroge-
neous one made by assigning
each tetrahedron with random
stiffness, and another hetero-

geneous one with different stiffness parameters in eight regions
shown in Fig. 22. The mean stiffness parameters of the three models
are the same. Fig. 23 shows that the performance of our precondi-
tioner barely changes when it handles the randomly heterogeneous
model, but drops notably when it handles the eight-region model.
Fundamentally, this is because stiff regions need more iterations to
solve and the construction of our coarse space offers limited help.

8.7 Limitations
Under the MAS framework, our preconditioner shares limitations
with other MAS preconditioners, such as incapability of running as
a standalone solver and ineffectiveness against heterogeneous mate-
rials as discussed in Subsection 8.6. Since its scalability with respect
to mesh resolution is limited as Subsection 8.4 shows, our precondi-
tioner should be less effective against adaptively refined meshes as
well. When our preconditioner works with nonlinear solvers, matrix
evaluation and precomputation can introduce large computational
costs, if the system matrix is updated in every nonlinear iteration.
Our current solution in Subsection 4.3 is to delay the system matrix
update by a fixed number of iterations, but a more plausible solution
is to decide the matrix update based on node changes. In this paper,
we design and evaluate the application of our preconditioner in
cloth and deformable body simulation only. It is possible that our
preconditioner can improve the convergence of linear/nonlinear
solvers in other nodal systems, but we are uncertain how it handles
general positive definite or nonlinear optimization problems.

9 CONCLUSIONS AND FUTURE WORK
In this paper, we demonstrate the power ofMAS preconditioning and
GPU computing in the development of an effective preconditioner
for cloth and deformable body simulation applications. A distinctive
difference between our preconditioner and previous ones is that
ours uses sufficiently small domains, so that each domain can be
directly solved with high-performance parallelism on a GPU. We
believe this idea is suitable for more advanced multilevel domain
decomposition techniques in the future.
Following this work, we would like to study how to incorpo-

rate matrix stiffness into coarse space construction, to make our
preconditioner more effective against heterogeneous materials and
adaptively refined meshes. We also would like to learn if there exists
a convenient way of adopting spectral coarse space construction,
to further improve our preconditioner’s performance. Currently,
our preconditioner is not well optimized for high-resolution prob-
lems and we plan to explore more advanced techniques for perfor-
mance improvement, such as other triangular matrix representa-
tions [Charara et al. 2017] and fast symmetric sparse matrix-vector
multiplication [Alappat et al. 2020]. Finally, we will investigate the
use of our preconditioner in more complex simulators and other
nodal systems, and develop its suitable variants if needed.
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