
Inexact Descent Methods for Elastic Parameter Optimization

GUOWEI YAN, The Ohio State University, USA
WEI LI, University of Kentucky, USA
RUIGANG YANG, University of Kentucky, USA
HUAMIN WANG, The Ohio State University, USA

(a) The 3D object and the data samples

Soft

Stiff

Soft

Stiff

(b) The ground truth

Soft

Stiff

Soft

Stiff

(c) The result

Fig. 1. Given the synthetic data generated by multiple local contacts (such as those shown in red arrows) with the face, an inexact descent method estimates
the shear moduli and detects the rigid skull underneath soft skin in 2.5 hours, as (c) shows. This example contains 150K tetrahedra, 150K elastic parameters,
168 data samples, and each sample uses 25K markers. Such a large example would take days or even weeks to handle by previous techniques.

Elastic parameter optimization has revealed its importance in 3D modeling,

virtual reality, and additive manufacturing in recent years. Unfortunately,

it is known to be computationally expensive, especially if there are many

parameters and data samples. To address this challenge, we propose to intro-

duce the inexactness into descent methods, by iteratively solving a forward

simulation step and a parameter update step in an inexact manner. The devel-

opment of such inexact descent methods is centered at two questions: 1) how

accurate/inaccurate can the two steps be; and 2) what is the optimal way

to implement an inexact descent method. The answers to these questions

are in our convergence analysis, which proves the existence of relative error

thresholds for the two inexact steps to ensure the convergence. This means

we can simply solve each step by a fixed number of iterations, if the iterative

Authors’ addresses: Guowei Yan, The Ohio State University, Columbus, OH, USA; Wei

Li, University of Kentucky, Lexington, KY, USA; Ruigang Yang, University of Kentucky,

Lexington, KY, USA; Huamin Wang, The Ohio State University, Columbus, OH, USA,

whmin@cse.ohio-state.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2018/11-ART253 $15.00

https://doi.org/10.1145/3272127.3275021

solver is at least linearly convergent. While the use of the inexact idea speeds

up many descent methods, we specifically favor a GPU-based one powered

by state-of-the-art simulation techniques. Based on this method, we study a

variety of implementation issues, including backtracking line search, initial-

ization, regularization, and multiple data samples. We demonstrate the use

of our inexact method in elasticity measurement and design applications.

Our experiment shows the method is fast, reliable, memory-efficient, GPU-

friendly, flexible with different elastic models, scalable to a large parameter

space, and parallelizable for multiple data samples.

CCS Concepts: • Computing methodologies→ Physical simulation;

Additional Key Words and Phrases: quasistatic simulation, constrained opti-

mization, inexact method, heterogeneity, nonlinear elasticity

ACM Reference Format:
Guowei Yan,Wei Li, Ruigang Yang, and HuaminWang. 2018. Inexact Descent

Methods for Elastic Parameter Optimization. ACM Trans. Graph. 37, 6, Arti-
cle 253 (November 2018), 14 pages. https://doi.org/10.1145/3272127.3275021

1 INTRODUCTION
Accurate design, measurement, and simulation of real-world elastic

materials is highly demanded by virtual reality applications. While

elastic body simulation has been extensively studied in the past, elas-

ticity measurement and design are much less explored. Given a set

of measurement or user-specified data, elasticity measurement and

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275021
https://doi.org/10.1145/3272127.3275021

253:2 • G. Yan et. al.

design can be formulated into a parameter optimization problem,

whose goal is to find the parameters that minimize the discrepancy

between the simulation and the data. This optimization problem is

computationally challenging, due to the highly nonlinear and het-

erogeneous force-displacement relationships of real-world elastic

bodies. High nonlinearity increases the complexity of the optimiza-

tion problem and deteriorates the convergence rate of an iterative

solver. Meanwhile, high heterogeneity requires multiple material

parameters and data samples, which further raises the computa-

tional burden. To address high nonlinearity and high heterogeneity,

we need a fast, robust, and scalable optimization method that is

suitable for a variety of elastic models.

Elastic parameter optimization is often solved by descent methods
in computer graphics, mechanical engineering, biomechanics, and

other areas, thanks to their flexibility and conceptual simplicity. In

that case, a descent method typically needs to handle two steps

in each of its iterations. In the forward step, it reaches quasistatic

equilibrium using the current parameters; in the update step, it

then modifies the parameters by classical methods, such as Nelder-

Mead [Wang et al. 2015], Gauss-Newton [Bickel et al. 2009; Miguel

et al. 2016], or L-BFGS [Casati et al. 2016]. Unfortunately, existing

descent methods are notorious for their large computational costs,

when they deal with highly nonlinear and heterogeneous bodies.

Gradient-free methods and Gauss-Newton are too computationally

expensive, as the parameter space gets large. Meanwhile, gradient

descent and L-BFGS cannot converge fast and require too many

forward steps.

In this paper, we explore the use of the inexact idea to accelerate

descent methods. Our basic strategy is to approximate the solutions
to both steps in an inexpensive manner, rather than to solve them
exactly. If these approximations can reduce the step costs without

significantly deteriorating the convergence rate, the resulting in-

exact method should be able to obtain a performance gain. While

the inexact idea is simple, the success of developing inexact descent

methods relies on two critical issues.

• How accurate should the two steps be? Making the steps too

accurate would reduce the inexactness and the performance

gain. On the other hand, making the steps too inaccurate

would render the parameter update meaningless and poten-

tially trigger the divergence issue.

• What is the optimal way to implement the two steps? While

inexact methods are consistently faster than their exact coun-

terparts, the optimal inexact method requires a good balance

between the computational cost and the convergence rate,

and it must take parallelization into consideration.

The inexact idea has been extensively studied in numerical literature

before. However, an inexact descent method for elastic parameter

optimization is one of its kind and it cannot be classified into any

of the existing inexact methods, as far as we know. The main issue

is that the forward step serves as the prerequisite of the update

step, which fails if the forward step is inexact. This issue becomes

more complicated, once we start to introduce the inexactness into

the update step as well. Here we focus our research on both the

theoretical and practical aspects of an inexact descent method. Our

technical contributions can be summarized as follows.

• Analysis. We analyze the convergence of an inexact de-

scent method. The analysis shows the method is guaranteed

to be locally linear convergent, if the relative error drops

below a fixed threshold in every inexact step. This conclu-

sion is crucial to practical implementation, as it allows the

inexactness to be controlled by a fixed number of iterations,

if the iterative solver is at least linearly convergent.

• Implementation. Inexact descent methods can be imple-

mented in different ways, according to their solvers. We argue

that the optimal method should choose a fixed-point iterative

solver with Chebyshev acceleration, which is highly compati-

ble with the GPU [Wang and Yang 2016]. Compared with the

optimal exact method using a direct solver with L-BFGS, our

method runs orders-of-magnitude faster.

• Improvements. Finally, we study a series of practical topics

to improve the convergence and the performance of our de-

scent method. These topics include backtracking line search,

initialization, regularization, and parallelization of multiple

data samples.

In summary, we introduce the inexact idea into the development of

descent methods for elastic parameter optimization, and we show

that the inexactness can be safely achieved by fixed numbers of

iterations. We then present a unique inexact method, which is fast,

reliable, free of pre-computation or heavy memory usage, scalable

to a large parameter space, GPU-friendly and parallelizable for mul-

tiple data samples. The method can flexibly handle a variety of

hyperelastic models. The experiment reveals the use of our method

in elasticity measurement (in Fig. 1) and interactive material design

(in Fig. 12). Our concept is not restricted to elastic parameters and

it is applicable to other inverse problems in the future.

2 OTHER RELATED WORK
Elastic body simulation. The pioneer work by Terzopoulos and

colleagues [1987] has motivated graphics researchers to study elastic

body simulation over the last thirty years. Early simulation tech-

niques [O’Brien and Hodgins 1999; Teran et al. 2003] based on

explicit time integration must choose small time steps to avoid the

numerical instability issue. To take large time steps, simulators can

use implicit integration and formulate a nonlinear system for every

time step. Since it is too expensive to solve each nonlinear system

exactly, Baraff and Witkin [1998] proposed to run a single Newton

iteration only. This practice, commonly adopted by many simula-

tors, has a risk of accumulating too much error over time, when the

time step is large or the object deforms fast. A Newton iteration

is essentially a linear system, whose matrix contains the Jacobian

matrix of the elastic force. Teran and colleagues [2005] developed

a matrix evaluation scheme for hyperelastic materials. Xu and col-

laborators [2015b] presented a matrix evaluation scheme for elastic

models that can be formulated by principal stretches. We use their

scheme in this work, thanks to its simplicity and generality.

The challenges in elastic body simulation are largely caused by

the complexity of elastic models. An interesting idea is to replace

elastic models partially or fully by positional constraints, also known

as holonomic constraints [Müller 2008; Müller et al. 2005; Provot

1996; Thomaszewski et al. 2009; Wang et al. 2010]. The cost of doing

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

Inexact Descent Methods for Elastic Parameter Optimization • 253:3

this, however, is that the simulation loses its physical meaning and

the stiffness becomes dependent of the iteration count. This problem

can be addressed by formulating each positional constraint into an

elastic energy, known as projective dynamics [Bouaziz et al. 2014;

Liu et al. 2013]. Narain and colleagues [2016] demonstrated that

projective dynamics can be considered as a special example of the

alternating direction method of multipliers (ADMM). Wang [2015]

and Fratarcangeli and collaborators [2016] explored the implemen-

tation of projective dynamics on the GPU, by using iterative solvers

to solve each global iteration inexactly.

Elastic parameter optimization. In computer graphics, elastic pa-

rameter optimization is useful for elasticity measurement and design

applications. For elasticity measurement, researchers were often

more interested in data acquisition devices [Bhat et al. 2003; Bickel

et al. 2010; Miguel et al. 2012; Pai et al. 2001; Wang et al. 2015,

2011], than optimization methods. Based on descent methods, their

systems are typically restricted to sparsely sampled elastic parame-

ters [Bickel et al. 2009; Miguel et al. 2016; Wang et al. 2015], and/or

linear co-rotational models. For interactive elasticity design, the

computational cost can become a serious issue. Bickel and collabora-

tors [2010] proposed to model elastic material distribution in layers.

Xu and colleagues [2015a] suggested to design material distribution

in a reduced subspace. Recently, Miguel and collaborators [2016]

advocated the use of energy constraints for modeling more plau-

sible elastic behaviors, but they did not specifically address the

computational burden.

In civil and mechanical engineering, researchers have studied

elasticity parameter optimization for identifying cracks and defects

within solid objects. Since these objects are highly stiff, their re-

search [Bonnet and Constantinescu 2005; Khodadad and Ardakani

2009] was focused on small deformations and linear elastic models.

Our work is more closely related to elastography in biomechanics,

which tries to identify tumors within soft tissues through elastic

parameter optimization. Lonbani [2010] and Doyley [2012] surveyed

optimization techniques in this field, including descent methods.

Berger [2009] studied elastic parameter optimization with boundary

element discretization. Gockenbach and colleagues [2015] studied

the use of proximal methods to solve a residual force formulation,

under the assumption that the displacement field is densely sampled.

O’Hagan, Samani and collaborators [2011; 2008] proposed to solve

the update step of a descent method by a slope variation approach or

the Nelder-Mead method. Their technique avoids expensive gradi-

ent and matrix evaluations, at the cost of extra difficulty in handling

heterogeneous solids.

In summary, researchers have applied descent methods in a wide

range of elastic parameter optimization applications. However, they

were forced to sacrifice nonlinearity or heterogeneity in these meth-

ods, due to the computational burden. By adopting the inexact idea,

our research allows descent methods to reach their full potentials.

Elastic shape design. Our research is also closely related to elastic

shape design, which treats the reference shape as the optimiza-

tion variables. This field has been increasingly active in computer

graphics, due to its potential use in additive fabrication of elastic

objects. Over the past few years, researchers have studied a variety

of topics, including flexible rods [Pérez et al. 2015], an asymptotic

method [Chen et al. 2014], garments and sewing patterns [Casati

et al. 2016; Umetani et al. 2011; Wang 2018], design objectives and

tools [Megaro et al. 2017], Kirchhoff-Plateau surfaces [Pérez et al.

2017], and silicone composites [Zehnder et al. 2017]. While many of

these works can potentially benefit from the use of inexact descent

methods, we do not investigate them in this work, because the in-

verse problem alone is only one of the problems involved in elastic

shape design.

Inexact methods. The inexact idea is not new and it has been

widely explored by the numerical optimization community. For

most of the numerical methods, researchers have developed their

inexact counterparts, including inexact Newton methods [Dembo

et al. 1982; Eisenstat and Walker 1994], inexact Quasi-Newton meth-

ods [Bergamaschi et al. 2001; Birgin et al. 2003], inexact Newton-

Dogleg methods [Pawlowski et al. 2008], inexact SQPmethods [Byrd

et al. 2008], and inexact proximal point methods [Burachik andDutta

2010; Solodov and Svaiter 2001]. It should be noted that the descent

methods discussed in this work look similar to many splitting meth-

ods, such as the alternating direction method of multipliers (ADMM)

and proximal point methods, but they are fundamentally different

due to the strong dependency of descent methods on the exactness

of the forward simulation step. Because of that, inexact descent

methods are fundamentally different from existing inexact splitting

methods as well.

Despite their popularity in numerical optimization, inexact meth-

ods are relatively uncommon in graphics research. Wang [2015] de-

scribed the inexact idea when he developed a GPU-based accelerator

for projective dynamics and position-based dynamics. Fratarcangeli

and colleagues [2016] strengthened this technique by multi-color

Gauss-Seidel solvers. Wang and Yang [2016] applied the same idea

to the simulation of hyperelastic bodies, which can be considered

as a special example of inexact Newton methods.

The use of inexact methods in solving inverse problems, espe-

cially elastic parameter optimization, is quite limited. Lund and

colleagues [2003] used an inexact Jacobian matrix in sensitivity

analysis for solving an inverse fluid shape design problem. Haber

and colleagues [2004] proposed to solve forward simulation inex-

actly to speed up the inversion of electromagnetic data. Unlike

descent methods, their method is based on sequential quadratic

programming using the primal-dual formulation of constrained

optimization. Quirynen and collaborators [2017] considered inex-

act forward simulation with the primal-dual formulation as well,

and they developed an inexact Newton-type method with iterative

sensitivities for preserving local convergence properties. Recently,

Wang [2018] proposed a unique inexact descent method for solving

the inverse sewing pattern design problem, by applying inexact for-

ward simulation with the primal formulation. While his method has

demonstrated its high performance, it comes with no convergence

analysis or justification. In this work, we not only introduce the

inexactness into both forward simulation and sensitivity analysis,

but also systematically explore the convergence issue caused by the

inexactness. Our research enables descent methods to achieve much

higher performance.

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

253:4 • G. Yan et. al.

External
Node

External
Force

xi

Observed Vertex
(marker)

Fig. 2. A data sample. This sample contains three observed vertices (in
black) and all of the external forces (in red) applied on the vertices, most
of which are gravity forces. The spring forces attaching bottom vertices to
external nodes (in blue) are treated as unknown internal forces.

3 PROBLEM DEFINITION
The goal of elastic parameter optimization is to find the optimal

elastic parameters, using which the simulation becomes consistent

with the data. For simplicity, we will focus our discussion mostly

on a single data sample in this section. The extension to multiple

samples will be studied in Subsection 5.5.

Given an elastic body whose elastic parameters are unknown, we

define a data sample as a set of observed vertices (i.e., markers) and

all of the external forces applied on the vertices, as Fig. 2 shows.

We assume that certain vertices are attached to external boundary

nodes by stiff springs and we treat these spring forces as unknown

internal forces. This is slightly more straightforward to implement

than removing the degrees of freedoms caused by fixed vertices. We

assume that data samples are collected in quasistatic equilibrium.

Let x ∈ R3N be the simulated vertex vector satisfying the qua-

sistatic condition: f(k, x) = 0, in which k ∈ RM is a set ofM elastic

parameters and f is the conservative force vector as a function of k
and x. Let y ∈ Rn be the vector containing observed markers in the

data sample. The goal is to find k, such that: Sx = y and f(k, x) = 0,
where S ∈ Rn×3N selects observed coordinates. There are three

typical ways to formulate this problem mathematically.

Nonlinear least squares. Perhaps the most straightforward way is

to formulate the problem in a nonlinear least squares (NLS) fashion:

{x, k} = argmin

{x,k}

1

2

{
∥Sx − y∥2 + ∥f(k, x)∥2

}
+ R(k), (1)

in which R(k) is a regularization term protecting the problem from

being under-constrained. Unfortunately, Equation 1 is ill-conditioned

and contains toomany local minima, whichmakes typical NLSmeth-

ods, such as Gauss-Newton, difficult to find meaningful solutions.

Residual error minimization. Alternatively, parameter optimiza-

tion can be formulated as the minimization of the quasistatic resid-

ual [Becker and Teschner 2007]:

k = argmin

k

1

2

{
∥Sf(k, x)∥2

}
+ R(k), (2)

in which x is the quasistatic equilibrium state subject to boundary

constraints: Sx = y. The problem with this formulation is that it is

also sensitive to the local minimum issue. In particular, a descent

method applied to this formulation prefers to decrease the stiffness

locally near the observations first. This quickly reduces the objective,

but the final result can be far away from a global solution.

Output least squares. Eventually we choose to formulate elastic

parameter optimization by minimizing the difference between the

observation and the simulation output:

k = argmin

k

1

2

{
∥Sx − y∥2

}
+ R(k), subject to f(k, x) = 0. (3)

A classical way of solving constrained optimization is to introduce

Lagrangian multipliers and solve the resulting KKT conditions as a

nonlinear system. The main issue is that the Jacobian of the KKT

conditions, i.e., the Hessian of the Lagrangian function, is indefinite.

This causes many nonlinear solvers to be ineffective or inefficient.

Finding a suitable merit function without undermining the conver-

gence rate [Nocedal and Wright 2006] is another difficult problem.

For example, using Newton’s method to solve the KKT conditions,

known as sequential quadratic programming (SQP), performs much

worse than descent methods as Fig. 5d shows.

Existence, uniqueness, and local minima. Before we begin our

study on descent methods, we would like to discuss the limitations

of the output least squares problem in Equation 3. Being in a con-

strained nonlinear least squares form, this problem is guaranteed

to have a global minimum. However, the global minimum may not

be meaningful, i.e., not satisfying Sx ≈ y. The global minimum may

not be unique either, depending on how the regularization term is

defined. Perhaps the biggest limitation of Equation 3 is the local

minima. While it contains substantially fewer local minima than

other formulations, it is still not free of them. One of the reasons is

because the elastic energy may not be convex, e.g., when the body

bends under compression.

We would like to emphasize that these issues are intrinsic to elas-

tic parameter optimization and they exist in almost every previous

work. In this research, we do not focus our study on solving these is-

sues. Instead, we assume that elastic parameters have been properly

initialized, and our goal is to develop a fast method for finding the

corresponding local minimum. In our experimental settings, data

samples are collected from local contacts and the local minimum

issue is not severe in practice.

4 METHODOLOGY
Our research is focused on finding an efficient and robust way to

solve the problem formulated in Equation 3. To begin with, we

will describe descent methods and explain why they are inefficient.

Next in Subsection 4.2, we will present the idea of inexact descent

methods and provide the error conditions for their convergence.

These conditions are critical to the performances of their practical

implementations discussed later in Section 5.

4.1 Descent methods
For elastic parameter optimization, the basic idea behind a descent

method is to eliminate the constraint and treat x as a function of k:
x = X(k). The resulting objective becomes unconstrained:

C(k) =
1

2

{
∥S · X(k) − y∥2 + R(k)

}
. (4)

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

Inexact Descent Methods for Elastic Parameter Optimization • 253:5

ALGORITHM 1: Elastic Parameter Optimization

Input: The selection matrix S, the observation y, the initial parameters

k(0), the initial step length S , and the numbers of inner

iterations A and B .
Output: The final parameters k.
x(0) ← X(k(0)); s (−1) ← S ; l ← 0;

repeat
Jk ← ∂f(k(l), x(l))/∂k;
Jx ← ∂f(k(l), x(l))/∂x;
a(l) ← Linear_Solver (JTx, ST(Sx(l) − y), B); // inner loop
g(l) ← −JTka

(l) + ∇R(k(l));
s (l) ← min(S , s (l−1)/β);
repeat

k(l+1) ← k(l) − s (l)g(l);
x(l+1) ← Simulator (x(l), k(l+1), A); // inner loop
s (l) ← βs (l);

until Some sufficient decrease condition is satisfied;
l ← l + 1;

until

f(k(l), x(l))

 < ϵ0 and

g(l)

 < ϵ1;
return k(l+1);

Its gradient, used as the source of the search direction, is:

∇C(k) =
(
∂C(k)
∂k

)T
=

(
∂X(k)
∂k

)T
ST (S · X(k) − y) + ∇R(k). (5)

Since f(k,X(k)) ≡ 0, we apply the implicit function theorem to

establish the sensitivity between X(k) and k:

∂X(k)
∂k

= −J−1x (k,X(k)) · Jk(k,X(k)), (6)

in which Jx = ∂f/∂x ∈ R3N×3N and Jk = ∂f/∂k ∈ R3N×M are the

Jacobian matrices of f . By formulating two functions:

G(k, x, a) = −JTk(k, x) · a + ∇R(k),
A(k, x) = J−Tx (k, x) · ST(Sx − y),

(7)

we define the gradient as ∇C(k) = G(k,X(k),A(k,X(k))), in which

A(k,X(k)) is known as the adjoint state.
According to the above description, we process every iteration

of a descent method in two steps. In the forward step, it calculates

the quasistatic equilibrium state X(k) using the current k first. In

the update step, it then computes ∇C(k) and uses that to obtain the

search direction for updating k. In this paper, we simply treat the

opposite of the gradient as the search direction, known as gradient
descent. While the inexact idea is not restricted to gradient descent,

other methods, such as Gauss-Newton [Bickel et al. 2009; Miguel

et al. 2016] andNewton-typemethods, often require intensivematrix

evaluation of JTkJ
−T
x J−1x Jk, which is unaffordable if the parameter

space is large. For instance, MKL PARDISO needs 24.3ms to solve

a linear system for the teddy bear example in Fig. 4. The example

contains 49K parameters, and the calculation of the whole matrix

would take 20 minutes per iteration per data sample. In contrast,

gradient descent is free of intensive matrix evaluation.

A
64 128 256 512 1024

B

64

128

256

512

1024
100

10-2

10-1

R
esidual Error

Fig. 3. The performance of an inexact method when using different A and
B values. This plot shows that reducing A and B improves the performance,
before the method hits the divergence issue. Here the errors are reported
from the teddy bear example, after running the samemethod for 10 minutes.

4.2 Inexact Descent Methods
A descent method contains two computational bottlenecks: qua-

sistatic simulation involved in the forward step and the linear sys-

tem for calculating the adjoint state in the update step, both of which

need to run multiple inner iterations. To incorporate the inexactness

into such a method, the natural idea is to simply restrict the numbers

of inner iterations A and B, as shown in Algorithm 1. By reducing

the cost per outer iteration without significantly undermining the

convergence rate, an inexact descent method is expected to achieve

higher performance than its exact counterpart. Fig. 3 further shows

that an inexact method runs faster as A and B become smaller, until

the divergence issue occurs. Here two key questions are:

• How to adjust A and B to their minimal values without caus-

ing divergence?

• How often do A and B need to be adjusted?

The second question is of particular importance, because if the

adjustment is frequent, its overhead could potentially destroy the

performance gain brought by the inexactness.

Fortunately, we will show in the following analysis that there

exists lower bounds on A and B, for an inexact descent method to

converge safely as a standard line search method. This allows us to

monotonically and dynamically increase A and B using a backtrack-

ing strategy during optimization. In our implementation, we carry

out this adjustment together with step length adjustment, using

long-range backtracking as discussed later in Subsection 5.2. The

total adjustment overhead is bounded, since A and B are bounded.

Table 1 summarizes the notations to be used in the analysis.

4.2.1 Error conditions. To begin with, we would like to formulate

the conditions for an inexact descent method to converge. Unlike

other methods, especially proximal point methods [Burachik and

Dutta 2010; Solodov and Svaiter 2001], a descent method relies

on the implicit function theorem to bridge between its two steps.

Since the theorem becomes invalid if the forward step is inexact, we

cannot analyze the inexactness of the two steps in an independent

fashion. Instead, we establish our analysis by viewing a descent

method fundamentally as a line search method. For a line search

method to work, we have to make sure that the calculated inexact

gradient g(l) = G
(
k(l), x(l), a(l)

)
, which uses an inexact quasistatic

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

253:6 • G. Yan et. al.

Table 1. Notations of exact and inexact variables. Our convergence analysis
uses the following notations in Subsection 4.2 and appendices.

Description Exact Variable Inexact Variable

Parameters k -

Quasistatic state X(k) x

Adjoint state A(k,X(k))
A(k, x)

a

Gradient

∇C(k) =
G(k, X(k), A(k, X(k)))

G(k, x, a)
G(k, x,A(k, x))

state x(l) and an inexact adjoint state a(l), is always a valid descent

direction:

− g(l) · ∇C(k(l)) < 0. (8)

Suppose that G(k, x,A(k, x)) is Lipschitz continuous with respect

to x, and G(k, x, a) is Lipschitz continuous with respect to a. Equa-
tion 8 is satisfied, if the errors of the two steps meet the following

conditions (Lemma A.1, Appendix A):

x(l) − X(k(l))

 < 1

2Lgx

∇C(k(l))

 ,

a(l) − A(k(l), x(l))

 < 1

2Lga

∇C(k(l))

 , (9)

where Lgx and Lga are the Lipschitz constants. Intuitively, if the

errors are small, the inexact gradient must be close to the exact

gradient and it must still be a valid descent direction.

4.2.2 Relative error conditions. An inexact method cannot enforce

the error conditions in Equation 9 directly, since it cannot calculate

∇C(k(l)), X(k(l)), or A(k(l), x(l)) exactly. Instead, we show in the

following theorems that these conditions can be maintained through

the optimization process, by enforcing thresholds on the decreases

of relative errors between two consecutive iterations. We name

these thresholds as relative error conditions.

Theorem 4.1. Let G(k, x,A(k, x)) be Lipschitz continuous with
respect to x, G(k, x, a) be Lipschitz continuous with respect to a, and
∇C(k) and X(k) be Lipschitz continuous with respect to k. If the error
conditions are met in the l-th outer iteration, there exists a constant µ,
such that

x(l+1) − X(k(l+1))

 ≤ 1

2Lgx

∇C(k(l+1))

, if x(l+1) satisfies

x(l+1) − X(k(l+1))

 ≤ µ

x(l) − X(k(l+1))

.

Proof. See Theorem A.2, Appendix A. �

Theorem 4.2. Let G(k, x,A(k, x)) be Lipschitz continuous with
respect to x, G(k, x, a) be Lipschitz continuous with respect to a, ∇C(k),
X(k) and A(k, x) be Lipschitz continuous as well. If the error condi-
tions are met in the l-th outer iteration and the first error condition
is met in the next outer iteration, there exists a constant ξ , such that

a(l+1) − A(k(l+1), x(l+1))

 ≤ 1

2Lga

∇C(k(l+1))

, if a(l+1) satisfies

a(l+1) − A(k(l+1), x(l+1))

 ≤ ξ

a(l) − A(k(l+1), x(l+1))

.

Proof. See Theorem A.3, Appendix A. �

Since most solvers are at least linearly convergent, Theorem 4.1

and 4.2 are equivalent to saying that lower bounds on the numbers

of inner iterations exist, for keeping the calculated gradient as a

(a) The 3D object (b) The result of an exact Type-I method

(c) The result of an inexact Type-II method (d) The result of an inexact Type-III method

Fig. 4. The teddy bear example. In this example, we generate synthetic data
samples by touching the surface of a teddy bear at 20 contact points. This
figure shows that all of the methods produce nearly the same heterogeneous
result, which reveals the rigid candy hidden inside of the bear. In the rest of
the paper, we use this example for evaluation by default.

valid descent direction. Unfortunately, while these lower bounds are

derivable from the proofs, they are not easily calculable in practice.

This is why we apply a backtracking strategy to adjust the numbers

of inner iterations, A and B, in a monotonic and dynamic fashion,

as discussed later in Subsection 5.2.

Like other line search methods, inexact descent methods are

globally linear convergent, if the line search is exact ([Nocedal

and Wright 2006], Theorem 3.4). In reality, exact line search is too

expensive and we use backtracking line search instead. Appendix B

proves that the resulting inexact methods preserve the locally linear

convergence property.

5 PRACTICAL IMPLEMENTATIONS
In this section, we would like to investigate practical issues related

to the implementations of inexact descent methods. First we present

three types of basic descent methods, whose steps use direct and it-

erative solvers respectively. Among them, we advocate a GPU-based

implementation with fixed-point iterative solvers and Chebyshev ac-

celeration. Based on this unique method, we then explore a number

of additional issues, such as backtracking line search, initialization,

regularization, and multiple data samples.

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

Inexact Descent Methods for Elastic Parameter Optimization • 253:7

‐3

‐2

‐1

0

0 2000 4000 6000 8000

‐3

‐2

‐1

0

0 2000 4000 6000 8000

‐3

‐2

‐1

0

0 100 200 300 400

Exact GPU Iterative

Inexact GPU Iterative

‐3

‐2

‐1

0

0 2000 4000 6000 8000

0 4000 8000
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact direct (CPU)

SQP

Inexact direct (CPU)

Exact iterative
Inexact iterative

0 200 400
Iterations

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact direct (CPU, L-BFGS)

Inexact direct (CPU, L-BFGS)

0 4000 8000
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact direct (CPU, L-BFGS)

Inexact iterative (GPU)

0 4000 8000
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact iterative (CPU)

Inexact iterative (CPU)

Exact iterative (GPU)

Inexact iterative (GPU)

Inexact forward (GPU)

(a) The performance of Type-I methods

‐3

‐2

‐1

0

0 2000 4000 6000 8000

‐3

‐2

‐1

0

0 2000 4000 6000 8000

‐3

‐2

‐1

0

0 100 200 300 400

Exact GPU Iterative

Inexact GPU Iterative

‐3

‐2

‐1

0

0 2000 4000 6000 8000

0 4000 8000
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact direct (CPU)

SQP

Inexact direct (CPU)

Exact iterative
Inexact iterative

0 200 400
Iterations

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact direct (CPU, L-BFGS)

Inexact direct (CPU, L-BFGS)

0 4000 8000
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact direct (CPU, L-BFGS)

Inexact iterative (GPU)

0 4000 8000
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact iterative (CPU)

Inexact iterative (CPU)

Exact iterative (GPU)

Inexact iterative (GPU)

Inexact forward (GPU)

(b) The convergence of Type-II methods

‐3

‐2

‐1

0

0 2000 4000 6000 8000

‐3

‐2

‐1

0

0 2000 4000 6000 8000

‐3

‐2

‐1

0

0 100 200 300 400

Exact GPU Iterative

Inexact GPU Iterative

‐3

‐2

‐1

0

0 2000 4000 6000 8000

0 4000 8000
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact direct (CPU)

SQP

Inexact direct (CPU)

Exact iterative
Inexact iterative

0 200 400
Iterations

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact direct (CPU, L-BFGS)

Inexact direct (CPU, L-BFGS)

0 4000 8000
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact direct (CPU, L-BFGS)

Inexact iterative (GPU)

0 4000 8000
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact iterative (CPU)

Inexact iterative (CPU)

Exact iterative (GPU)

Inexact iterative (GPU)

Inexact forward (GPU)

(c) The performance of Type-II methods

‐3

‐2

‐1

0

0 2000 4000 6000 8000

‐3

‐2

‐1

0

0 2000 4000 6000 8000

‐3

‐2

‐1

0

0 100 200 300 400

Exact GPU Iterative

Inexact GPU Iterative

‐3

‐2

‐1

0

0 2000 4000 6000 8000

0 4000 8000
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact direct (CPU)

SQP

Inexact direct (CPU)

Exact iterative
Inexact iterative

0 200 400
Iterations

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact direct (CPU, L-BFGS)

Inexact direct (CPU, L-BFGS)

0 4000 8000
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact direct (Type-I)

Inexact iterative (Type-II)

0 4000 8000
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Exact iterative (CPU)

Inexact iterative (CPU)

Exact iterative (GPU)

Inexact iterative (GPU)

Inexact forward (Type-III)

(d) The performance of descent methods

Fig. 5. The performance of descent methods in the teddy bear example.
These methods differ in how the two steps are solved. Compared with other
methods, our inexact Type-II method runs the fastest thanks to a thorough
inexact implementation on the GPU.

5.1 Basic Methods
Descent methods can be implemented in different ways, according

to the solvers used by the two steps. Here we consider three types

of descent methods. As shown in Fig. 4 and 5, their difference is

mostly in performance, not optimization outcomes.

Type-I methods use direct LU factorization to solve the linear

systems involved in both steps. In that case, the update step is exact,

while the forward step can be made inexact by using fewer Newton

iterations, each of which leads to a linear system. Fig. 5a shows

that inexact Type-I methods are consistently faster than exact ones,

with and without L-BFGS acceleration. Here we implement Type-

I methods on the CPU only, since the performance of direct LU

factorization on the CPU is about the same as that on the GPU.

Type-II methods use iterative solvers to solve the linear system

in the update step and the nonlinear system in the forward step.

Specifically, we implement the methods using the Jacobi iterative

solver with Chebyshev acceleration [Golub and Van Loan 2012], in

which case the forward step is equivalent to the simulator proposed

by Wang and Yang [2016]. This implementation has a significantly

lower cost per iteration on the GPU, thanks to high parallelizability

of the Jacobi solver and Chebyshev acceleration. Fig. 5c shows that

the resulting inexact Type-II method reaches a small error fast, even

though it requires more iterations than the exact Type-II method as

shown in Fig. 5b.

Finally, Type-III methods use direct LU factorization in the exact

update step and a nonlinear iterative solver in the inexact forward

step. As before, we choose the Jacobi solver with Chebyshev acceler-

ation as our nonlinear iterative solver. Fig. 5d shows that an inexact

Type-III method, similar to the method developed by Wang [2018],

outperforms the exact Type-I method. But it is still slower than the

inexact Type-II method, due to less inexactness.

We would like to emphasize that the aforementioned methods are

only a subset of the descent methods that can benefit from adopting

the inexact idea. For example, Type-II methods can use other fixed-

point solvers, such as multi-color Gauss-Seidel [Fratarcangeli et al.

2016]. The methods can also use other solvers for the two steps.

Instead of enumerating all of the possibilities, we discuss the three

specific types, because they are sufficient for demonstrating the

importance of the inexactness. First, the inexactness improves the

performance of descent methods, regardless of their solvers. Second,

the inexactness enables the effective use of iterative solvers on

the GPU. In contrast, exact methods perform slowly with iterative

solvers, and they should choose direct solvers instead. In the rest of

this paper, we name the GPU-based Type-II method with the Jacobi

solver and Chebyshev acceleration as our method by default.

5.2 Backtracking Line Search
The analysis in Section 4.2 assumes that we can obtain the step

length by evaluating the Armijo condition exactly:

C(k(l) − s(l)g(l)) < C(k(l)) − αs(l)g(l) · ∇C(k(l)), (10)

which specifies a sufficient decrease of the objective function from

one iteration to another. However, the condition cannot be evaluated

exactly without using exact solvers, which would violate the inexact

philosophy. A natural idea is to use an inexact Armijo condition:

C̃(k(l+1), x(l+1)) < C̃(k(l), x(l)) − αs(l)

g(l)

2 , (11)

for C̃(k, x) = 1

2

{
∥Sx − y∥2 + R(k)

}
. Since C̃(k, x) is different from

C(k), the method potentially suffers from slow convergence or di-

vergence. Slow convergence occurs, when the exact condition is

satisfied but the inexact condition is not. As a result, the step length

becomes unnecessarily small due to the inexact condition. In con-

strained optimization, a similar issue is known as the Maratos ef-

fect [Maratos 1978], in which enforcing strict decrease of a merit

function inhibits the convergence rate. On the other hand, diver-

gence happens, when the inexact condition is satisfied but the ex-

act condition is not. This issue can be demonstrated as oscillation

around the solution, as the step length causes overshooting.

Our solution is a loosely defined inexact Armijo condition:

C̃(k(l+1), x(l+1)) < C̃(k(l), x(l)) − αs(l)

g(l)

2 + γ

g(l)

Sx(l) − y

 ,

(12)

where γ is a looseness constant. In every iteration, we initialize the

step length by the one used in the previous iteration, and keep adjust-

ing it until it satisfies Equation 12. The rationale behind Equation 12

comes from an estimate of the error:

1

2

(
∥Sx − y∥2 − ∥SX(k) − y∥2

)
≈ (Sx − SX(k)) · (Sx − y) ≤ ∥S∥

2Lgx ∥∇C(k)∥ ∥Sx − y∥ .
(13)

Therefore, γ is related to ∥S∥/(2Lgx). Since we cannot easily calcu-

late Lgx, we estimate γ by testing the difference between exact and

inexact objectives during pre-computation.

To guarantee that the exact objective decreases indeed, we per-

form exact quasistatic simulation and evaluate the exact objective

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

253:8 • G. Yan et. al.

‐3

‐2

‐1

0

0 100 200 300 400 500 600 700 800

‐3

‐2

‐1

0

0 200 400 600 800 1000

Uniform Step Length

Biphasic Step Length

Biphasic Exact Evaluation

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

0 200 400 800
Iterations

600 1000

Single step length
Dual step length
Dual step length (exact objective)

-3

-2

-1

0

0 50 100 150 200 250 300 350 4000

100

100 200 300 400

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Iterations

162K Tets
81K Tets

648K Tets
324K Tets

0 200 400 800
Time (s)

600

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Shear moduli × 1
Shear moduli × 10
Shear moduli × 100
Shear moduli × 1000

‐3

‐2

‐1

0

0 100 200 300 400 500 600 700 8000 200 400 800
Time (s)

600

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

η = 0.0

η = 0.9
Optimized η

η = 1.0

Fig. 6. The effects of step length schemes. By using a larger step length
in the regions where the stiffness increases, our dual step length scheme
improves the convergence rate of our inexact method. This plot also shows
that exact objectives are different from inexact objectives.

in every P iterations. If the exact objective fails to decrease, we per-

form long-range backtracking and redo the last P iterations, with a

smaller step length and more inner iterations, A and B. This prac-
tice is also known as the watchdog strategy [Nocedal and Wright

2006]. In our experiment, we choose the number P between 32

and 64. Long-range backtracking ensures that our inexact method

converges, as it becomes the exact method in the worst case.

The aforementioned procedure works as a fail-safe to our method.

If the initial step length and the numbers of inner iterations are

appropriate, long-range backtracking will never occur, as shown in

Fig. 6. In our experiment, we set A = B = 256 as our initialization

by default.

A dual step length scheme. An unsurprising observation from our

experiment is that the quasistatic shape changes more dramatically

in the spatial regions where the stiffness decreases. This inspires us

to use two step lengths: a smaller one in the regions where elastic

parameters decrease; and a larger one in the regions where elastic

parameters increase. In our examples, the larger one is typically 50

to 100 percent greater than the smaller one. We adjust them together

when backtracking occurs. Fig. 6 shows the effectiveness of this

dual step length scheme on the convergence rate.

We note that the dual step length scheme is mathematically equiv-

alent to preconditioning the calculated gradient by a scaling matrix.

Although we do not have a rigid proof yet, we believe it does not

affect the conclusions given by the analysis in Subsection 4.2.

5.3 Initialization
The accuracy of the two steps also depends on the initializations

of the unknowns. A natural idea is to treat their previous results

as warm starts for the next steps. In the forward simulation step,

this means x(l+1) is initialized as: x(l+1) = x(l) +η(x(l) −x(l−1)), and
in the update step, a(l+1) is initialized as a(l+1) = ηa(l). Here η is a

decay factor reducing the “temperature" of warm starts. Fig. 7 shows

that the method converges slowly when η = 0 or 1, as it requires

more inner iterations to achieve the accuracy requirement and avoid

the divergence issue, as discussed in Subsection 4.2. The method

converges fast when η = 0.9. However, it still exhibits noticeable

oscillation artifacts. To avoid parameter tuning, we propose to set η
as the one that minimizes the initial error. Take the linearized system

in quasistatic simulation for an example: Jx
(
x(l+1)−x(l)

)
= −f

(
x(l)

)
.

‐3

‐2

‐1

0

0 100 200 300 400 500 600 700 800

‐3

‐2

‐1

0

0 200 400 600 800 1000

Uniform Step Length

Biphasic Step Length

Biphasic Exact Evaluation

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

0 200 400 800
Iterations

600 1000

Single step length
Dual step length
Dual step length
(exact objective)

-3

-2

-1

0

0 50 100 150 200 250 300 350 4000

100

100 200 300 400

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Iterations

162K Tets
81K Tets

648K Tets
324K Tets

0 200 400 800
Time (s)

600

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Shear moduli × 1
Shear moduli × 10
Shear moduli × 100
Shear moduli × 1000

‐3

‐2

‐1

0

0 100 200 300 400 500 600 700 8000 200 400 800
Time (s)

600

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

η = 0.0

η = 0.9
Optimized η

η = 1.0

Fig. 7. The effect of the decay factor. The initializations of our fixed-point
iterative solvers need a suitable decay factor, to ensure the accuracy and
the convergence of the whole optimization process.

The optimal η is given by:

η = Clamp

(
argmin

ηJx(x(l) − x(l−1)) + f(x(l))

2 , 0,η0) , (14)

in which η0 = 0.9 in our experiment. The calculation of η in Equa-

tion 14 needs one matrix-vector product and two inner products,

both of which can be computed on the GPU. Fig. 7 compares the

convergence rates of the method when it uses different decay factors.

It shows that the optimized η leads to the most accurate results and

eliminates the oscillation issue.

5.4 Regularization
The regularization term in our method contains three components

for different purposes: R(k) = R1(k) + R2(k) + R3(k). The first com-

ponent, R1(k), is used to make the problem well-posed:

R1(k) = τ1 ∥k∥2 , (15)

where τ1 is a regularization strength constant. The second compo-

nent, R2(k), prevents parameters from being too small or large:

R2(k) = τ2
∑
i

��Clamp (ki ,kmin,kmax) − ki
��2, (16)

where τ2 is its strength constant and [kmin,kmax] is the range of

parameter values. Finally, the third component, R3(k), is used to

remove high-frequency noise caused by overfitting. When each

tetrahedron has its own parameters, we formulate R3(k) as:

R3(k) = τ3
∑
{i , j }

Vi+Vj
2

(
ki − kj

)
2

, (17)

in which τ3 is its strength constant, i and j are two adjacent tetrahe-
dra, and Vi and Vj are their rest volumes. To remove the overfitting

issue, τ3 must be sufficiently large. On the other hand, if τ3 is too
large, it can cause overly smoothing artifacts. Our solution is to

start with a large τ3 first, and then gradually reduce τ3 , until the
method converges with a small τ3.

5.5 Multiple Data Samples
When there are multiple data samples, we formulate the constrained

optimization problem as:

k = argmin

k

1

2

{∑
j

Sx[j] − y[j]

2 + R(k)} ,
subject to f [j](k, x[j]) = 0,

(18)

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

Inexact Descent Methods for Elastic Parameter Optimization • 253:9

Table 2. Statistics and timings. The number of tetrahedra, the number of data samples, and the number of iterations are the three major factors determining
the overall computational cost of an inexact descent method.

Name

Data

Type

of

Tetrahedra

of

Samples

of

Markers

Parameter

Type

Elastic

Model

Cost per

Iteration

of

Iterations

Total

Cost

Teddy bear Synthetic 49K 20 8,317 Shear neo-Hookean 0.71s 800 568.6s

Skull (3D) Synthetic 130K 168 24,939 Shear neo-Hookean 15.12s 600 9,072.5s

Skull (flat) Captured 52K 75 165 Shear neo-Hookean 2.21s 500 1,105.2s

Cube Synthetic 162K 3 5,401 Bulk neo-Hookean 0.32s 700 224.2s

Bridge User-specified 79K 1 3 1st Shear Mooney-Rivlin 0.12s 900 108.3s

Armadillo User-specified 55K 1 3 Shear neo-Hookean 0.05s Interactive Interactive

(a) The data capture device

Stiff

Soft

(b) The 3D object

Soft

Stiff

(c) The result

Fig. 8. The flat skull example. Our method is able to detect the buried skull
from the captured contact data. We use similar experimental settings to
generate our synthetic data sets.

where x[j] and y[j] are the quasistatic vertex state and the obser-

vation of sample j, and f [j] is the force function of sample j. Let
there be J data samples in total. Equation 18 needs J quasistatic
vertex vectors and it is subject to J quasistatic constraints specified
by the force functions. Like before, our method iteratively solves a

forward simulation step and an update step. The use of multiple data

samples does not affect the validity of our convergence analysis in

Section 4.2. It should be noted that both the quasistatic vertex state

(a) The ground truth (b) The stretched shape (c) The result

Fig. 9. The cube example. The high bulk moduli in the middle of this
cube causes the middle region to shrink more severely under stretching. By
using data samples to capture this effect, our descent method recovers the
heterogeneous bulk moduli as shown in (c).

and the adjoint state can be computed in parallel for multiple sam-

ples. This allows another level of parallelization, if computational

resources permit.

6 RESULTS
We use the Intel MKL PARDISO library for CPU computation and

the CUDA library for GPU computation. Our experiment runs on an

Intel Core i7-5930K 3.5GHz processor and an NVIDIA GeForce GTX

TITAN X graphics card. The total running time of each example

varies from seconds to hours, depending on the number of tetrahe-

dra, the number of data samples, and the number of iterations as

summarized in Table 2. We assign each tetrahedron with its own

elastic parameters in our experiments.

Elastic material measurement. An important application of elastic

parameter optimization is to measure elastic material properties of

heterogeneous solids, especially when the heterogeneity is buried

underneath the surface. The basic setup of our experiment is shown

in Fig. 8a. A rigid skull is buried underneath soft elastic gels. A

force probe makes contacts with the surface and our in-house data

capture device acquires the locations of the surface markers (in

white). Our synthetic data sets are acquired under similar settings,

except that we can flexibly add more markers inside of the object,

such as the 3D skull shown in Fig. 1.

In our experiment, we test two hyperelastic models: a compress-

ible neo-Hookean model [Ogden 1997] and a compressible Mooney-

Rivlin model [Macosko 1994]. Fig. 8c shows the optimized shear

moduli of the flat skull example. From the heterogeneous material

pattern, we can identify the buried solid skull object. Compared with

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

253:10 • G. Yan et. al.

(a) Ratio=100:1 (b) Ratio=50:1

(c) Ratio=10:1 (d) Ratio=5:1

Fig. 10. The results of different shear modulus ratios. In this example, we
change the ratio between the shear moduli of the two elastic materials. Our
method is able to recover the heterogeneous elastic material pattern, even
when the ratio is 5:1 only.

shear moduli, bulk moduli are more difficult to optimize, since their

effects are less noticeable in data samples. But if data samples do

capture the volume preservation effect well, our method is also able

to estimate bulk moduli, as the cube example demonstrates in Fig. 9.

We note that certain elastic parameters have similar behaviors and

they cannot be optimized together, such as the two shear moduli

under the Mooney-Rivlin model. Instead we fix one and optimize

the other.

We noticed from our experiment that the optimized result tends

to be smoother than the ground truth, due to limited numbers of

data samples and markers. Therefore we would like to know how

the result looks like, when the heterogeneous material properties

are not so distinctively different. In Fig. 10, we study this issue by

using four different ratios between the shear moduli of the two

materials. While the result becomes blurry as this ratio decreases,

we are still able to identify the solid from the heterogeneous pattern

recovered by our method, as shown in Fig. 10d.

Printable material design. We use the bridge example to evalu-

ate the usefulness of our method in designing the distribution of

printable 3D materials. In this example, the bottom vertices of the

bridge (in blue) are fixed to the ground floor, and the vertices on the

top (in red) receive additional loads caused by a 200g calibration

(a) The experimental setup (b) The model made of two materials

(c) The model made of Black 27A (d) The model made of Black 95A

Fig. 11. The bridge example.We estimate elastic parameters from fabricated
single-material models shown in (c) and (d). We then apply our method to
design the material distribution of this bridge, to achieve the deformation
goals set by dark dots in (a). The contour of the simulation result in each
photo illustrates its consistency with the fabricated model.

weight, as Fig. 11a shows. We distribute more forces to the sides of

the weight than the center, to account for the fact that the deformed

bridge floor contacts the weight mostly near the sides. We print

the model using two Stratasys PolyJet materials: Black 27A with a

tensile strength between 0.8MPa and 1.5MPa, and Black 95A with a

tensile strength between 8.5MPa and 10MPa. Since we do not know

the exact physical properties of the two materials, we print two

single-material models as shown in Fig. 11c and 11d, and then apply

our method to obtain the common parameters from observations.

The estimated tensile strengths of Black 27A and Black 95A are

1.1MPa and 9.5MPa, respectively.

Our design goal is to lower the center of the bridge floor without

affecting the two ends, which can be described as a data sample with

three observed vertices (in dark), as Fig. 11a shows. Although we

can formulate the design as a discrete optimization problem [Bickel

et al. 2010], it is more efficient to handle it by continuous material

optimization as Xu and colleagues [2015a] pointed out. The difficulty

is how to convert the continuous result into a discrete material

distribution without introducing too much error. Simply placing

a threshold on material parameters would cause the error, i.e. the

average vertex difference, to increase from 1.5mm to 5.4mm. This

issue can be lessened by dithering [Xu et al. 2015a], but it will cause

disconnected regions that cannot be fabricated by many printers.

Thanks to the high performance of our system, we can now use

an interval approach. Tetrahedra with elastic parameters outside

of the interval are assigned with materials first. Otherwise, their

parameters remain as unknowns. We reduce the interval and run the

optimization at the same time, until all of the tetrahedra are assigned

with materials. Fig. 11b shows this approach avoids disconnections

and it increases the error from 1.5mm to 3.5mm only.

Interactive material design. If the number of data samples is small,

our method can also be used for interactive material design of elastic

objects, as shown in Fig. 12. In this example, we allow the user to

specify desired finger tip heights of an armadillo model, and we

run our method to achieve these goals through elastic parameter

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

Inexact Descent Methods for Elastic Parameter Optimization • 253:11

Soft

Stiff

Soft

Stiff

(a) Before optimization

Soft

Stiff

Soft

Stiff

(b) After optimization

Fig. 12. The armadillo example. In this interactive example, the user speci-
fies the desired heights of the finger tips (in black), and the method opti-
mizes the shear modulus of every tetrahedron to reach these goals in the
quasistatic state, as shown in (b).

‐6

‐5

‐4

‐3

‐2

‐1

0

0 5 10 15 20 25 30
‐3

‐2

‐1

0

0 200 400 600 800

-3

-2

-1

0

0 100 200 300 400

162K Tets
81K Tets

648K Tets
324K Tets

Shear moduli × 1000
Shear moduli × 100

Shear moduli × 10
Shear moduli × 1

0 400 800
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Shear moduli × 1000
Shear moduli × 100

Shear moduli × 10
Shear moduli × 1

0 400 800
Time (s)

100

10-2

10-4

10-6

R
el

at
iv

e
Er

ro
r

0 200 400
Iterations

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

‐6

‐4

‐2

0

0 25 50 75 100

162K Tets
81K Tets

648K Tets
324K Tets

0 50 100
Iterations

100

10-2

10-4

10-6

R
el

at
iv

e
Er

ro
r

(a) The performance of our method

‐6

‐5

‐4

‐3

‐2

‐1

0

0 5 10 15 20 25 30
‐3

‐2

‐1

0

0 200 400 600 800

-3

-2

-1

0

0 100 200 300 400

162K Tets
81K Tets

648K Tets
324K Tets

Shear moduli × 1000
Shear moduli × 100

Shear moduli × 10
Shear moduli × 1

0 400 800
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Shear moduli × 1000
Shear moduli × 100

Shear moduli × 10
Shear moduli × 1

0 400 800
Time (s)

100

10-2

10-4

10-6

R
el

at
iv

e
Er

ro
r

0 200 400
Iterations

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

‐6

‐4

‐2

0

0 25 50 75 100

162K Tets
81K Tets

648K Tets
324K Tets

0 50 100
Iterations

100

10-2

10-4

10-6

R
el

at
iv

e
Er

ro
r

(b) The performance of our simulator

Fig. 13. The performance of our method and our forward simulator at
different stiffness levels. The performance drop of our simulator is one of
the main reasons for the performance drop of our method, as the shear
moduli increase.

optimization on the fly. Fig. 12b shows that the method decreases

the shear moduli of the left arm, while increases the shear moduli

of the right arm. Doing this lowers the left arm and raises the right

arm in the quasistatic shape, as expected.

Scalability analysis. The performance of the quasistatic simula-

tor [Wang and Yang 2016] drops as the material stiffness increases,

as Fig. 13b shows. Therefore, the performance of our method also

decreases as the shear moduli increase, as Fig. 13a shows.

Besides the material stiffness, the mesh resolution is another

critical factor to our system performance. Here we test the scalability

of our method with respect to the mesh resolution in the cube

example. To prevent the convergence rate from being affected by the

ratio of markers to vertices, we maintain the ratio in this experiment

by using more markers at higher resolutions. Fig. 14a shows that the

convergence rate of our method drops as the number of tetrahedra

increases. This is consistent with the convergence rate drop of our

simulator shown in Fig. 14b.

The aforementioned analysis implies that the scalability of our

method is mostly determined by our forward simulator, rather than

by our inexact descent optimization strategy. As quasistatic simu-

lators become more scalable to the material stiffness and the mesh

resolution, we will investigate their uses in the development of

fast inexact descent methods for solving high stiffness and high

resolution problems in the future.

‐6

‐5

‐4

‐3

‐2

‐1

0

0 5 10 15 20 25 30
‐3

‐2

‐1

0

0 200 400 600 800

-3

-2

-1

0

0 100 200 300 400

162K Tets
81K Tets

648K Tets
324K Tets

Shear moduli × 1
Shear moduli × 10

Shear moduli × 100
Shear moduli × 1000

0 400 800
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Shear moduli × 1
Shear moduli × 10

Shear moduli × 100
Shear moduli × 1000

0 400 800
Time (s)

100

10-2

10-4

10-6

R
el

at
iv

e
Er

ro
r

0 200 400
Iterations

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

‐6

‐4

‐2

0

0 25 50 75 100

162K Tets
81K Tets

648K Tets
324K Tets

0 50 100
Iterations

100

10-2

10-4

10-6

R
el

at
iv

e
Er

ro
r

(a) The convergence of our method

‐6

‐5

‐4

‐3

‐2

‐1

0

0 5 10 15 20 25 30
‐3

‐2

‐1

0

0 200 400 600 800

-3

-2

-1

0

0 100 200 300 400

162K Tets
81K Tets

648K Tets
324K Tets

Shear moduli × 1
Shear moduli × 10

Shear moduli × 100
Shear moduli × 1000

0 400 800
Time (s)

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

Shear moduli × 1
Shear moduli × 10

Shear moduli × 100
Shear moduli × 1000

0 400 800
Time (s)

100

10-2

10-4

10-6

R
el

at
iv

e
Er

ro
r

0 200 400
Iterations

100

10-1

10-2

10-3

R
el

at
iv

e
Er

ro
r

‐6

‐4

‐2

0

0 25 50 75 100

162K Tets
81K Tets

648K Tets
324K Tets

0 50 100
Iterations

100

10-2

10-4

10-6

R
el

at
iv

e
Er

ro
r

(b) The convergence of our simulator

Fig. 14. The convergence of our method and our simulator at different mesh
resolutions. The convergence rate of our method decreases as the mesh
resolution increases. This behavior is consistent with that of our simulator.

The outcome of parameter initialization. As ourmethod potentially

suffers from the local minimum issue, we want to know how bad this

issue is and how sensitive the result is to parameter initialization. To

answer these questions, we run the same optimizationmultiple times

with different initial material distributions, as shown in Fig. 15a

and 15b. Fig. 15c and 15d reveal that the method produces nearly

identical results. We also notice that the remaining difference is

mostly caused by a lack of data samples. The method tends to leave

parameters untouched in the regions where deformation effects are

not observed. This problem can be resolved once we use more data

samples.

6.1 Limitations
Perhaps the biggest issue with our inexact descent method is that it

cannot evaluate the objective function exactly. As a result, it requires

multiple practical ways to guarantee its convergence, such as those

described in Subsection 5.2. The result of our method depends on the

data samples and it can become overly smoothed, if the regulariza-

tion term is strong or the data samples are insufficient. Our method

assumes that forces are applied at mesh vertices. This assumption

can introduce errors near surfaces, unless the mesh is adaptively

constructed. The effectiveness of our method is partly due to the

choice of a GPU-based iterative forward simulator. But this causes

the method to inevitably inherit many limitations of the simulator,

such as the scalability to the stiffness and the dependency on the

mesh quality. Currently, the method requires the reference shape of

the object to be known. This requirement is often difficult to meet

in real-world measurement cases, for example, when the object is

in self occlusion or when it sags under gravity. Finally, a real-world

object can exhibit viscoelastic, plastic, or frictional behaviors, none

of which has been considered by our method yet.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we propose to incorporate the inexact idea into the

development of a descent method for elastic parameter optimization.

Being one of its kind, our method still shares many similarities with

existing inexact methods, especially inexact proximal point methods.

Therefore, when the errors are small, it is not surprising to see that

the method is guaranteed to converge, and it runs substantially

faster than exact descent methods.

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

253:12 • G. Yan et. al.

(a) Random initialization (b) Uniform initialization

(c) The result of random initialization (d) The result of uniform initialization

Fig. 15. The results of different initializations. Our method produces nearly
identical elastic parameter patterns as shown in (c) and (d), regardless of
their initializations in (a) and (b).

In the near future, we would like to improve the performance

of our method by multiple GPUs and multigrid techniques. We

then plan to investigate the use of our method in elastic parame-

ter optimization with frictional contacts, in which case unilateral

constraints exist. In the long term, we are interested in developing

inexact methods for designing and measuring other solid material

properties, such as viscoelasticity and plasticity. Finally, we would

like to apply the inexact idea to solve more inverse elastic problems,

such as elastic shape design and space-time optimization.

ACKNOWLEDGMENTS
This work was funded by NSF grant CHS-1524992 and NSFC grant

61332017. The authors would also like to thank Adobe and NVIDIA

for additional equipment and funding supports.

REFERENCES
David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceed-

ings of the 25th annual conference on Computer graphics and interactive techniques
(SIGGRAPH ’98). ACM, New York, NY, USA, 43–54.

Markus Becker and Matthias Teschner. 2007. Robust and Efficient Estimation of Elas-

ticity Parameters Using the Linear Finite Element Method. In SimVis. 15–28.
Luca Bergamaschi, Igor Moret, and Giovanni Zilli. 2001. Inexact Quasi-NewtonMethods

for Sparse Systems of Nonlinear Equations. Future Generation Computer Systems 18,
1 (Sept. 2001), 41–53.

Hans-Uwe Berger. 2009. Inverse Problems in Soft Tissue Elastography using Boundary
Element Methods. Ph.D. Dissertation. University of Canterbury.

Kiran S. Bhat, Christopher D. Twigg, Jessica K. Hodgins, Pradeep K. Khosla, Zoran

Popović, and Steven M. Seitz. 2003. Estimating Cloth Simulation Parameters from

Video. In Proceedings of SCA. 37–51.
Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister,

Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of Materials

with Desired Deformation Behavior. ACM Trans. Graph. (SIGGRAPH) 29, 4, Article
63 (July 2010), 10 pages.

Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Wojciech Matusik, Hanspeter Pfister,

and Markus Gross. 2009. Capture and Modeling of Non-linear Heterogeneous Soft

Tissue. ACM Trans. Graph. (SIGGRAPH) 28, 3, Article 89 (July 2009), 9 pages.

Ernesto G. Birgin, Nataša Krejić, and José Mario Martínez. 2003. Globally Conver-

gent Inexact Quasi-Newton Methods for Solving Nonlinear Systems. Numerical
Algorithms 32, 2 (April 2003), 249–260.

Marc Bonnet and Andrei Constantinescu. 2005. Inverse Problems in Elasticity. Inverse
Problems 21, 2 (2005), 1–50.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.

Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. (SIGGRAPH) 33, 4, Article 154 (July 2014), 11 pages.

Regina Burachik and Joydeep Dutta. 2010. Inexact Proximal Point Methods for Varia-

tional Inequality Problems. SIAM Journal on Optimization 20, 5 (2010), 2653–2678.

Richard H. Byrd, Frank E. Curtis, and Jorge Nocedal. 2008. An Inexact SQP Method

for Equality Constrained Optimization. SIAM Journal on Optimization 19, 1 (2008),

351–369.

Romain Casati, Gilles Daviet, and Florence Bertails-Descoubes. 2016. Inverse Elastic
Cloth Design with Contact and Friction. Technical report. Inria Grenoble Rhône-Alpes,
Université de Grenoble.

Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An Asymptotic Numer-

ical Method for Inverse Elastic Shape Design. ACM Trans. Graph. (SIGGRAPH) 33, 4,
Article 95 (July 2014), 11 pages.

Ron S. Dembo, Stanley C. Eisenstat, and Trond Steihaug. 1982. Inexact NewtonMethods.

SIAM J. Numer. Anal. 19, 2 (April 1982), 400–408.
Marvin M. Doyley. 2012. Model-Based Elastography: A Survey of Approaches to the

Inverse Elasticity Problem. Physics in Medicine and Biology 57, 3 (2012), 35–73.

Stanley C. Eisenstat and Homer F. Walker. 1994. Globally Convergent Inexact Newton

Methods. SIAM Journal on Optimization 4, 2 (1994), 393–422.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A Practical

Gauss-Seidel Method for Stable Soft Body Dynamics. ACM Trans. Graph. (SIGGRAPH
Asia) 35, 6, Article 214 (Nov. 2016), 9 pages.

Mark S. Gockenbach, Baasansuren Jadamba, Akhtar A. Khan, Christiane Tammer, and

Brian Winkler. 2015. Proximal Methods for the Elastography Inverse Problem of

Tumor Identification Using an Equation Error Approach. In Advances in Variational
and Hemivariational Inequalities. Springer, Chapter 10, 173–197.

Gene H. Golub and Charles F. Van Loan. 2012. Matrix Computations (4th Ed.). Johns
Hopkins University Press, Baltimore, MD, USA.

Eldad Haber, Uri M. Ascher, and Douglas W. Oldenburg. 2004. Inversion of 3D Elec-

tromagnetic Data in Frequency and Time Domain Using an Inexact All-At-Once

Approach. Geophysics 69, 5 (2004), 1216–1228.
Tyler S. Kaster, Ira Sack, and Afshan Samani. 2011. Measurement of the Hyperelastic

Properties of ex vivo Brain Tissue Slices. Journal of Biomechanics 44, 6 (April 2011),
1158–1163.

Mahmud Khodadad and Mohsen Dashti Ardakani. 2009. Application of the Inverse

Elasticity Problem to Identify Irregular Interfacial Configurations. Engineering
Analysis with Boundary Elements 33, 6 (June 2009), 872–879.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast

Simulation of Mass-Spring Systems. ACM Trans. Graph. (SIGGRAPH Asia) 32, 6,
Article 214 (Nov. 2013), 7 pages.

Zohreh Barani Lonbani. 2010. Elastographic Reconstruction Methods for Orthotropic
Materials. Master’s thesis. University of Canterbury.

Erik Lund, Henrik Møller, and Lars A. Jakobsen. 2003. Shape Design Optimization

of Stationary Fluid-Structure Interaction Problems with Large Displacements and

Turbulence. Structural and Multidisciplinary Optimization 25, 5–6 (Dec. 2003), 383–

392.

Christopher W. Macosko. 1994. Rheology: Principles, Measurement and Applications.
VCH Publishers.

Nicholas Maratos. 1978. Exact Penalty Function Algorithms for Finite-Dimensional and
Control Optimization Problems. Ph.D. Dissertation. University of London.

Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus Gross, and Bern-

hard Thomaszewski. 2017. A Computational Design Tool for Compliant Mechanisms.

ACM Trans. Graph. (SIGGRAPH) 36, 4, Article 82 (July 2017), 12 pages.

Eder Miguel, Derek Bradley, Bernhard Thomaszewski, Bernd Bickel, Wojciech Matusik,

Miguel A. Otaduy, and Steve Marschner. 2012. Data-Driven Estimation of Cloth

Simulation Models. Comput. Graph. Forum (Eurographics) 31, 2 (May 2012), 519–528.

Eder Miguel, David Miraut, and Miguel A. Otaduy. 2016. Modeling and Estimation of

Energy-Based Hyperelastic Objects. Computer Graphics Forum (Eurographics) 35, 2
(May 2016), 385–396.

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

Inexact Descent Methods for Elastic Parameter Optimization • 253:13

MatthiasMüller. 2008. Hierarchical Position Based Dynamics. In Proceedings of VRIPHYS.
1–10.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.

Meshless Deformations Based on Shape Matching. ACM Trans. Graph. (SIGGRAPH)
24, 3 (July 2005), 471–478.

Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇ Projective

Dynamics: Fast Simulation of General Constitutive Models. In Proceedings of SCA.
21–28.

Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2rd Ed.). Springer.
James F. O’Brien and Jessica K. Hodgins. 1999. Graphical Modeling and Animation of

Brittle Fracture. In Proceedings of SIGGRAPH 98 (Annual Conference Series). 137–146.
Ray W. Ogden. 1997. Non-linear Elastic Deformations. Dover Publications, Inc.
Joseph J. O’Hagan and Afshan Samani. 2008. Measurement of the Hyperelastic Proper-

ties of Tissue Slices with Tumour Inclusion. Physics in Medicine and Biology 53, 24

(Dec. 2008), 7087–7106.

Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen Lang, John E. Lloyd, Joshua L.

Richmond, and Som H. Yau. 2001. Scanning Physical Interaction Behavior of 3D

Objects. In Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’01). 87–96.

Roger P. Pawlowski, Joseph P. Simonis, Homer F. Walker, and John N. Shadid. 2008.

Inexact Newton Dogleg Methods. SIAM J. Numer. Anal. 46, 4 (May 2008), 2112–2132.

Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational

Design and Automated Fabrication of Kirchhoff-Plateau Surfaces. ACM Trans. Graph.
(SIGGRAPH) 36, 4, Article 62 (July 2017), 12 pages.

Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal,

Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod

Meshes. ACM Trans. Graph. (SIGGRAPH) 34, 4, Article 138 (July 2015), 12 pages.

Xavier Provot. 1996. Deformation Constraints in a Mass-Spring Model to Describe

Rigid Cloth Behavior. In Proceedings of Graphics Interface. 147–154.
Rien Quirynen, Sebastien Gros, and Moritz Diehl. 2017. Inexact Newton-Type Opti-

mization with Iterated Sensitivities. SIAM Journal on Optimization 28, 1 (July 2017),

74–95.

Mikhail V. Solodov and Benar F. Svaiter. 2001. A Unified Framework for Some Inexact

Proximal Point Algorithms. Numerical Functional Analysis and Optimization 22, 7–8

(2001), 1013–1035.

Joseph Teran, Silvia Blemker, V Ng Thow Hing, and Ron Fedkiw. 2003. Finite Volume

Methods for the Simulation of Skeletal Muscle. In Proceedings of SCA. 68–74.
Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust

Quasistatic Finite Elements and Flesh Simulation. In Proceedings of SCA. 181–190.
Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically De-

formable Models. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 205–214.
Bernhard Thomaszewski, Simon Pabst, and Wolfgang Strasser. 2009. Continuum-Based

Strain Limiting. Computer Graphics Forum (Eurographics) 28, 2 (2009), 569–576.
Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun. 2011.

Sensitive Couture for Interactive Garment Modeling and Editing. ACM Trans. Graph.
(SIGGRAPH) 30, 4, Article 90 (July 2011), 12 pages.

Bin Wang, Longhua Wu, KangKang Yin, Uri Ascher, Libin Liu, and Hui Huang. 2015.

Deformation Capture and Modeling of Soft Objects. ACM Trans. Graph. (SIGGRAPH)
34, 4, Article 94 (July 2015), 12 pages.

Huamin Wang. 2015. A Chebyshev Semi-Iterative Approach for Accelerating Projective

and Position-Based Dynamics. ACM Trans. Graph. (SIGGRAPH Asia) 34, 6, Article
246 (Oct. 2015), 9 pages.

Huamin Wang. 2018. Rule-Free Sewing Pattern Adjustment with Precision and Effi-

ciency. ACM Trans. Graph. (SIGGRAPH) 37, 4, Article 53 (July 2018), 13 pages.

HuaminWang, James O’Brien, and Ravi Ramamoorthi. 2010. Multi-Resolution Isotropic

Strain Limiting. ACM Trans. Graph. (SIGGRAPH Asia) 29, 6, Article 156 (Dec. 2010),
10 pages.

Huamin Wang, James F. O’Brien, and Ravi Ramamoorthi. 2011. Data-Driven Elastic

Models for Cloth: Modeling and Measurement. ACM Trans. Graph. (SIGGRAPH) 30,
4, Article 71 (July 2011), 12 pages.

Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on the

GPU. ACM Trans. Graph. (SIGGRAPH Asia) 35, 6, Article 212 (Nov. 2016), 10 pages.
Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbič. 2015a. Interactive Material Design

Using Model Reduction. ACM Trans. Graph. 34, 2, Article 18 (March 2015), 14 pages.

Hongyi Xu, Funshing Sin, Yufeng Zhu, and Jernej Barbič. 2015b. Nonlinear Material

Design Using Principal Stretches. ACM Trans. Graph. (SIGGRAPH) 34, 4, Article 75
(July 2015), 11 pages.

Jonas Zehnder, Espen Knoop, Moritz Bächer, and Bernhard Thomaszewski. 2017.

Metasilicone: Design and Fabrication of Composite Silicone with Desired Mechani-

cal Properties. ACM Trans. Graph. (SIGGRAPH Asia) 36, 6, Article 240 (Nov. 2017),
13 pages.

A CONVERGENCE ANALYSIS
Lemma A.1. Let G(k, x,A(k, x)) be Lipschitz continuous with re-

spect to x, G(k, x, a) be Lipschitz continuous with respect to a, Lgx and

Lga be the Lipschitz constants. If

∇C(k(l))

 , 0,

x(l) − X(k(l))

 <
1

2Lgx

∇C(k(l))

 and

a(l) − A(k(l), x(l))

 < 1

2Lga

∇C(k(l))

, then
−g(l) · ∇C(k(l)) < 0.

Proof. From the given conditions, we get:

G(k(l), x(l),A(k(l), x(l))) − ∇C(k(l))

≤ Lgx

x(l) − X(k(l))

 < 1

2

∇C(k(l))

 , (19)

and,

g(l) − G(k(l), x(l),A(k(l), x(l)))

≤ Lga

a(l) − A(k(l), x(l))

 < 1

2

∇C(k(l))

 . (20)

Together, we know

g(l) − ∇C(k(l))

 <

∇C(k(l))

 and we have:

g(l) · ∇C(k(l))
=

(
∇C(k(l)) −

(
−g(l) + ∇C(k(l))

))
· ∇C(k(l))

≥

(

∇C(k(l))

 −

g(l) − ∇C(k(l))

)

∇C(k(l))

 > 0.

(21)

Therefore the statement is true. �

Theorem A.2. Let G(k, x,A(k, x)) be Lipschitz continuous with
respect to x, G(k, x, a) be Lipschitz continuous with respect to a, and
∇C(k) and X(k) be Lipschitz continuous with respect to k. If the error
conditions are met in the l-th outer iteration, there exists a constant µ,
such that

x(l+1) − X(k(l+1))

 ≤ 1

2Lgx

∇C(k(l+1))

, if x(l+1) satisfies

x(l+1) − X(k(l+1))

 ≤ µ

x(l) − X(k(l+1))

.

Proof. By definition, k(l+1) = k(l) − s(l)g(l), for s(l) ∈ (0, S].
Together with Lemma A.1, we have:

x(l+1) − X(k(l+1))

≤ µ
(

x(l) − X(k(l))

 +

X(k(l+1)) − X(k(l))

)

≤ µ
(

1

2Lgx

∇C(k(l))

 + s(l)Lx

g(l)

)
≤ µ

(
1

2Lgx + 2SLx
)

∇C(k(l))

 ,

(22)

in which Lx is the Lipschitz constant of X(k). Meanwhile, we build

a relationship between

∇C(k(l))

 and

∇C(k(l+1))

:

∇C(k(l+1))

 ≥

∇C(k(l))

 −

∇C(k(l+1)) − ∇C(k(l))

≥

∇C(k(l))

 − Lgk

k(l+1) − k(l)

≥

∇C(k(l))

 − s(l)Lgk

g(l)

≥ (1 − 2SLgk)

∇C(k(l))

 .
(23)

in which Lgk is the Lipschitz constant of ∇C(k). From Equation 22

and 23, we get:

x(l+1) − X(k(l+1))

 ≤ µ

(
1

2Lgx +2SLx
1−2SLgk

)

∇C(k(l+1))

 . (24)

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

253:14 • G. Yan et. al.

Therefore, the first error condition is met in the l+1-th iteration, if

0 ≤ µ ≤
1−2SLgk

1+4SLxLgx . �

Theorem A.3. Let G(k, x,A(k, x)) be Lipschitz continuous with
respect to x, G(k, x, a) be Lipschitz continuous with respect to a, ∇C(k),
X(k) and A(k, x) be Lipschitz continuous as well. If the error condi-
tions are met in the l-th outer iteration and the first error condition
is met in the next outer iteration, there exists a constant ξ , such that

a(l+1) − A(k(l+1), x(l+1))

 ≤ 1

2Lga

∇C(k(l+1))

, if a(l+1) satisfies

a(l+1) − A(k(l+1), x(l+1))

 ≤ ξ

a(l) − A(k(l+1), x(l+1))

.

Proof. By definition, k(l+1) = k(l) − s(l)g(l), for s(l) ∈ (0, S].
Together with Lemma A.1, we have:

a(l+1) − A(k(l+1), x(l+1))

≤ ξ

a(l) − A(k(l+1), x(l+1))

≤ ξ

(

a(l) − A(k(l), x(l))

 +

A(k(l+1), x(l)) − A(k(l), x(l))

+

A(k(l+1), x(l+1)) − A(k(l+1), x(l))

)
≤ ξ

(
1

2Lga

∇C(k(l))

 + SLak

g(l)

 + Lax

x(l+1) − x(l)

) ,
(25)

in which Lak and Lax are the two Lipschitz constants of A(k, x).
From Theorem A.2, we know:

x(l+1) − x(l)

≤

x(l) − X(k(l))

 +

x(l+1) − X(k(l+1))

 +

X(k(l+1)) − X(k(l))

≤ 1

2Lgx

(

∇C(k(l))

 +

∇C(k(l+1))

) + SLx

g(l)

 .
(26)

Combining Equation 23, 25, and 26, we obtain:

a(l+1) − A(k(l+1), x(l+1))

≤ ξ

(
1

2Lga +
Lax
2Lgx +2S (Lak+LaxLx)

1−2SLgk
+

Lax
2Lgx

)

∇C(k(l+1))

 . (27)

Therefore, the second error condition is met in the l+1-th iteration,

if 0 ≤ ξ ≤
(1−2SLgk)Lgx

Lgx+4S (Lak+LaxLx)LgxLga+Lax(2−2SLgk)Lga
. �

B LINEAR CONVERGENCE
Suppose that∇2C(k∗) is positive definite andm∗I ≼ ∇2C(k∗) ≼ M∗I,
in which k∗ is the exact solution. If the line search is exact, an inexact
descent method, fundamentally as a line search method, is globally

linear convergent ([Nocedal and Wright 2006], Theorem 3.4):

C(k(l+1)) −C(k∗) ≤
(
M∗ −m∗

M∗ +m∗

)
2 (
C(k(l)) −C(k∗)

)
. (28)

Unfortunately, this conclusion cannot be extended to backtracking

line search, due to saddle point traps and other issues. Instead, we

focus our analysis on the local convergence rate of the method

within a sufficiently small neighborhood of k∗. For any k in this

region, there existsm > 0 andM > 0, such thatmI ≼ ∇2C(k) ≼ MI.

In addition, we assume that the errors of the two steps are smaller:

x(l) − X(k(l))

 < 1

4Lgx

∇C(k(l))

 ,

a(l) − A(k(l), x(l))

 < 1

4Lga

∇C(k(l))

 , (29)

so the error of the gradient is smaller as well:

g(l) − ∇C(k(l))

 < 1

2

∇C(k(l))

 , (30)

and we have:

1

2

∇C(k(k))

2 < ∇C(k(l)) · g(l) < 3

2

∇C(k(k))

2 . (31)

We note that theorem A.2 and A.3 are still valid, but with different

variable values.

First, we derive a lower bound on the step length s(l), based on

the termination condition of Backtracking-Armijo line search.

Lemma B.1. Let α ∈ (0, 1/6] be the constant for the Armijo condi-
tion: C(k(l) − s(l)g(l)) < C(k(l)) − αs(l)g(l) · ∇C(k(l)), and β ∈ (0, 1)

be the decrease constant: s(l) ← βs(l). If s(l) ∈ (0, S], then s(l) ≥

min

(
S,

2β
9M

)
after termination.

Proof. Using the definition ofM , Equation 30 and 31, we know:

C(k(l) − s(l)g(l))

≤ C(k(l)) − s(l)∇C(k(l)) · g(l) +
M

(
s (l)

)
2

2

g(l)

2
< C(k(l)) + ©­«

9M
(
s (l)

)
2

8
− s (l)

2

ª®¬

∇C(k(l))

2

≤ C(k(l)) − 6α s (l)
4

∇C(k(l))

2
< C(k(l)) − αs(l)g(l) · ∇C(k(l)),

(32)

if s(l) ∈
(
0, 2

9M
]
. Therefore, backtracking line search terminates

with either s(l) = S , or s(l) ≥
2β
9M . �

Next we derive the local convergence rate.

Theorem B.2. Suppose that all of the previous assumptions are
satisfied. An inexact descent method has a linear convergence rate, if
k(l) is sufficiently close to k∗.

Proof. Using the definition ofm and Equation 31, we get:

C(k∗) ≥ C(k(l)) + ∇C(k(l)) · (k∗ − k(l)) + m
2

k∗ − k(l)

2
= C(k(l)) + m

2

k∗ − k(l) + 1

m∇C(k
(l))

2 − 1

2m

∇C(k(l))

2
> C(k(l)) − 1

m g(l) · ∇C(k(l)),
(33)

Together with Lemma B.1, we obtain:

C(k(l+1)) −C(k∗) ≤ C(k(l)) −C(k∗) − αs(l)g(l) · ∇C(k(l))
≤

(
1 −min

(
αmS,

2α βm
9M

)) (
C(k(l)) −C(k∗)

)
,

(34)

which indicates the local convergence rate is linear. �

ACM Trans. Graph., Vol. 37, No. 6, Article 253. Publication date: November 2018.

	Abstract
	1 Introduction
	2 Other Related Work
	3 Problem Definition
	4 Methodology
	4.1 Descent methods
	4.2 Inexact Descent Methods

	5 Practical Implementations
	5.1 Basic Methods
	5.2 Backtracking Line Search
	5.3 Initialization
	5.4 Regularization
	5.5 Multiple Data Samples

	6 Results
	6.1 Limitations

	7 Conclusions and Future Work
	Acknowledgments
	References
	A Convergence Analysis
	B Linear Convergence

