
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Interactive Liquid Splash Modeling by User Sketches

GUOWEI YAN, The Ohio State University, USA
ZHILI CHEN, ByteDance, USA
JIMEI YANG, Adobe Research, USA
HUAMIN WANG, The Ohio State University, USA

(a) The sketches drawn in a virtual reality environment (b) The front view of the model (c) The side view of the model

Fig. 1. An artistic liquid splash model in the butterfly shape generated by our interactive modeling system. Given captured user sketches in (a) as input, our
system runs a cGAN-based synthesizer to infer a volumetric splash model as output and applies model refinement processes to further improve the model
quality. The whole modeling process is straightforward, intuitive and typically takes only a few minutes even for quality results.

Splashing is one of the most fascinating liquid phenomena in the real world
and it is favored by artists to create stunning visual effects, both statically
and dynamically. Unfortunately, the generation of complex and specialized
liquid splashes is a challenging task and often requires considerable time
and effort. In this paper, we present a novel system that synthesizes realistic
liquid splashes from simple user sketch input. Our system adopts a condi-
tional generative adversarial network (cGAN) trained with physics-based
simulation data to produce raw liquid splash models from input sketches,
and then applies model refinement processes to further improve their small-
scale details. The system considers not only the trajectory of every user
stroke, but also its speed, which makes the splash model simulation-ready
with its underlying 3D flow. Compared with simulation-based modeling
techniques through trials and errors, our system offers flexibility, conve-
nience and intuition in liquid splash design and editing. We evaluate the
usability and the efficiency of our system in an immersive virtual reality
environment. Thanks to this system, an amateur user can now generate a
variety of realistic liquid splashes in just a few minutes.

CCS Concepts: • Computing methodologies→ Shape modeling;

Authors’ addresses: Guowei Yan, The Ohio State University, USA, ygwei05@gmail.com;
Zhili Chen, ByteDance, USA, iamchenzhili@gmail.com; Jimei Yang, Adobe Research,
USA, jimyang@adobe.com; Huamin Wang, The Ohio State University, USA, whmin@
cse.ohio-state.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/7-ART1 $15.00
https://doi.org/http://dx.doi.org/10.1145/8888888.7777777

Additional Key Words and Phrases: Sketch-based modeling, liquid modeling,
deep learning, generative adversarial network, virtual reality

ACM Reference Format:
Guowei Yan, Zhili Chen, Jimei Yang, and Huamin Wang. 2020. Interactive
Liquid Splash Modeling by User Sketches. ACM Trans. Graph. 36, 4, Arti-
cle 1 (July 2020), 13 pages. https://doi.org/http://dx.doi.org/10.1145/8888888.
7777777

1 INTRODUCTION
Liquid splashing, caused by the impact of a liquid flow on a solid
or liquid surface, is a common and fascinating natural phenome-
non in the real world. Artists love to use liquid splashes to create
exquisite images and artworks for various purposes and applica-
tions. But acquiring liquid splash photographs from the real world
is not a simple process, as it requires a photographer to possess
specialized equipment and perform considerable practice [Generico
2017]. On the other hand, the complex and rich details of real-world
liquid splashes, such as irregular droplets, rupturing splash fronts
and capillary waves, make them challenging to model by hand in
3D. Artists can easily spend hours, if not days, on making their
models aesthetically appealing and physically plausible, and they
cannot conveniently reuse their existing splash models for varying
environment setups.

Since the birth of physics-based fluid simulation, computer graph-
ics researchers have been investigating the use of physics-based
simulation techniques to model complex liquid phenomena, includ-
ing liquid splashing. While they have obtained a series of successes
in the simulation of thin liquid features [Da et al. 2016; Gao et al.
2018; Wojtan et al. 2010], their techniques are still computationally

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

https://doi.org/http://dx.doi.org/10.1145/8888888.7777777
https://doi.org/http://dx.doi.org/10.1145/8888888.7777777
https://doi.org/http://dx.doi.org/10.1145/8888888.7777777

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

1:2 • Guowei Yan, Zhili Chen, Jimei Yang, and Huamin Wang

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

expensive and not ready for interactive design. What makes the
problem even more challenging is: how to achieve splash shapes with
specific effects, such as those in Fig. 1 and 13. Due to the complexity
of fluid dynamics, setting up the initial simulation condition by hand
for specific effects is tedious and time consuming, as it can take a lot
of trials and errors. In the past, researchers tried to tackle this prob-
lem by solving space-time optimization [Pan and Manocha 2017;
Thürey et al. 2009; Treuille et al. 2003], under the assumption that
sufficient target shape or flow information has been given. Their
solutions are more suitable for directable fluid animation than liquid
shape modeling. After all, if our goal is to model static liquid shapes
only, why cannot we just do it right away and what is the point of
running simulation from scratch?
In this paper, we focus our research on the development of a

novel system that allows users, including both amateurs and pro-
fessionals, to conveniently and interactively create their 3D liq-
uid splash models from simple sketches, without addressing every
single shape detail. We are specifically interested in using depth-
augmented devices, e.g., VR handheld controllers, to capture user
strokes. Compared with other ways of acquiring strokes, depth-
augmented devices have a unique advantage in obtaining the 3D
trajectory and the 3D velocity at the same time, the latter of which
is important to liquid shape control as shown later in Subsection 4.3.
As those devices become more accurate and accessible in the future,
we believe that our system can be ready for its potential applications.
To efficiently synthesize splash shape models from user input, we
employ conditional generative adversarial networks (cGANs) [Mirza
and Osindero 2014], which have demonstrated their powers in syn-
thesizing images [Isola et al. 2017], terrains [Guérin et al. 2017],
super-resolution fluid flows [Xie et al. 2018] and many more. In our
system, the input to the generator network, i.e., the condition, is
a set of user strokes, and the output is a volumetric liquid splash
shape model coupled with its underlying flow. Toward the develop-
ment of this system, we solve a series of technical problems and we
summarize our contributions as follows.

• Data representation and preparation. Different from previ-
ous sketch-based modeling techniques [Delanoy et al. 2018;
Li et al. 2017, 2018] that define sketches as silhouettes and
curvature lines on surfaces, our system defines sketches as
underlying streamlines, i.e., the paths traced out by immersed
particles moving within the flow. Based on this representa-
tion, we present our data preparation process that extracts
streamlines as user strokes from simulated volumetric fluid
data suitable for training.

• The data set and the synthesizer. Using physics-based fluid
simulation, we build a large data set that contains more than
10,000 liquid splash models with extracted streamlines. We
use this data set to train our cGAN-based synthesizer and
we demonstrate its effectiveness in inferring a wide range of
liquid splash shapes.

• Physics-inspired model refinement. One challenge in this
research is how to generate rich details comparable to those
in real-world splashes. To address this challenge, we intro-
duce a physics-inspired model refinement component into the
system. It consists of a particle-based process that enriches

models with additional liquid droplets and a mesh-based pro-
cess that refines models for small-scale capillary waves.

We implement our interactive system and evaluate its usability in
an immersive virtual reality environment, using an Oculus Rift S
VR gaming headset for display and motion input. Our experiment
demonstrates the capability and the efficiency of this system in
generating a variety of liquid splash models, including those with
desired specific effects as shown in Fig. 1 and 13. Since our splash
model contains a velocity field representing the underlying flow,
we can use the model immediately for further refinement and ani-
mation production without resorting to additional tools for velocity
initialization, as shown in Fig. 16 and 17. This feature is of particu-
lar importance to future liquid splash applications, which demand
finished high-quality results.

2 RELATED WORK
2.0.1 Sketch-based 3D modeling. The idea of using 2D or 3D

sketches to facilitate 3D modeling has a long history in computer
graphics research. The early work by Cohen et al. [1999] used the
sketched 2D projection and shadow of a curve to determine its
shape in 3D. Igarashi et al. [1999] studied the construction of 3D
polygonal surfaces from 2D silhouette drawings. Nealen et al. [2007;
2005] proposed to draw sketches on mesh surfaces as control han-
dlers for meshing editing. Schmidt and Singh [2008] adopted a tree
data structure for non-destructive surface editing by sketches. Lee
and Funkhouser [2008] used sketches to search and composite 3D
models. Gingold et al. [2009] combined 2D sketches with additional
annotations for resolving ambiguities in 2D-to-3D mapping. Rivers
et al. [2010] used multi-view silhouettes to create CSG models.

In recent years, researchers have been actively exploring the use
of machine learning techniques in sketch-based modeling. Xu et
al. [2013] treated sketches as a tool for retrieving and modeling
common indoor objects in 3D. Huang et al. [2016] applied neural
networks to build a mapping from sketches to the space of param-
eterized 3D models. De Paoli and Singh [2015] proposed to build
layered 3D models by 2D sketches. Guérin et al. [2017] studied
the use of conditional generative adversarial networks (cGANs) in
sketch-based terrain modeling. Delanoy et al. [2018] used convolu-
tional neural networks (CNNs) to predict the occupancy of a voxel
grid from sketches. Li et al. [2018] suggested the use of an interme-
diate CNN layer and additional add-on sketches for effective shape
modeling.

2.0.2 Directable fluid simulation. How to control physics-
based fluid simulation for achieving desired effects is an interesting
yet challenging problem. Foster and Metaxas [1996] applied varying
pressure controllers to control fluid animation. Shi and Yu [2005],
Nielsen and Bridson [2011], and Raveendran et al. [2012] investi-
gated how to guide fluid simulation by pre-defined target shapes.
Rasmussen et al. [2004] and Thürey et al. [2009] proposed to modify
fluid velocities by control particles. In general, fluid control by key
frames can be formulated and solved as a space-time optimization
problem [McNamara et al. 2004; Pan and Manocha 2017; Treuille
et al. 2003], which requires considerable computational costs. Huang
et al. [2011] and Nielsen and Bridson [2011] pushed the problem

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

Interactive Liquid Splash Modeling by User Sketches • 1:3

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Sketch Input
with Velocity

Velocity
Field

Particle-Based
Refinement

Mesh-Based
Refinement

Display

Further
Simulation

Scalar
Field

Surface Mesh
cGAN-based
Synthesizer

User

VR System

Fig. 2. The system workflow. Our system takes user sketches as input and runs a model synthesis component (in orange) and a model refinement component
(in green) to generate 3D liquid splash models.

further, aiming at matching high-resolution simulation with low-
resolution preview simulation. In the past, researchers have also
investigated fluid simulation control by post-editing [Manteaux
et al. 2016; Pan et al. 2013], or the composition of simulated se-
quences [Raveendran et al. 2014]. Recently, Zhu et al. [2011] and
Hu et al. [2019] studied 2D fluid animation by sketches.

2.0.3 Data-driven fluid simulation. Our research is also re-
lated to data-driven fluid simulation techniques, especially those
based on machine learning. Ladickỳ et al. [2015] proposed to use
regression forests to predict particle movements within a large time
step, for fast particle-based fluid simulation. Chu and Thürey [2017]
trained a CNN for local flow feature descriptors and used it for syn-
thesizing details in smoke simulation, by matching and transferring
pre-computed space-time regions. Tompson et al. [2017] also trained
a CNN, but treated it as a faster linear solver for pressure projection
in Eulerian fluid simulation. Kim et al. [2019] trained a CNN as
a generative model for interpolation and time integration of fluid
simulation in the latent space, after parameterizing the velocity field.
Umentani and Bickel [2018] took a data-driven approach to estimate
fluid flows around obstacles for interactive aerodynamic design.
Wiewel et al. [2019] trained LSTM networks to predict pressure field
changes over time.
Our research is particularly related to the recent work by Xie,

Um, Thürey and their collaborators. They used cGANs to enrich
a single frame of coarse smoke simulation [Xie et al. 2018], and
more recently, learned a neural network model for adding splash
droplets into existing liquid simulation [Um et al. 2018]. Our work
also uses cGANs and synthesizes splash details, but without coarse
simulation.

3 OVERVIEW
Fig. 2 illustrates the workflow of our interactive liquid splash model-
ing system. The system consists of two major components: a model
synthesis component by neural networks and a model refinement
component for detail enrichment. Before we discuss them in Sec-
tion 4 and 5, we will briefly examine the system in this section.
To begin with, the system asks a user to draw through a depth-

augmented input device, such as hand tracking glove or VR con-
troller. The device tracks every user stroke and stores it as a polyline.
The system then voxelizes all of the input strokes onto a uniform
grid, covering the sketch domain around the user. Given the vox-
elized sketch data as input, our trained cGAN-based synthesizer

produces two fields as output: a scalar field representing the proba-
bilistic occupancy of liquid volume, and a velocity field representing
the underlying liquid flow. The system can then apply the marching
cube method to reconstruct a surface mesh from the scalar field,
or treat the two fields as the initial condition for further editing
and simulation. Thanks to the efficiency of our model synthesis
component, the user can edit the sketches and check the result
interactively, until he/she becomes satisfied.
One issue associated with the synthesis component is that it

can miss fine details, as shown in Fig. 10a and 12a. We cannot
address this issue by simply using higher grid resolution, since
that would significantly increase memory and computational costs.
Insteadwe strengthen our system by amodel refinement component,
which includes a particle-based process for adding extra droplets
(in Section 5.1) and a mesh-based process for producing capillary
surface waves (in Section 5.2). Fig. 10 to 13 demonstrate the effect
of this model refinement component.

4 SPLASH MODEL SYNTHESIS
In this section, we would like to discuss the sketch-based liquid
splash model synthesis component based on deep neural networks.
We first present the streamline representation of a liquid splash
model that simulates user sketches in Subsection 4.1. In Subsec-
tion 4.2, we discuss the process of data generation and preparation
for training our neural networks. Finally, in Subsection 4.3, we de-
scribe the cGAN-based synthesizer that takes voxelized sketch input
to generate volumetric occupancy and velocity output.

4.1 Streamline Representation
The first and foremost question we have to answer is: what do
sketches mean with respect to liquid splash models? Existing sketch-
based shape modeling approaches [Delanoy et al. 2018; Li et al. 2017,
2018] typically define sketches as feature and contour curves on
surfaces. While this representation is suitable for modeling solids,
we found it to be problematic for modeling liquid splashes. The key
reason is because liquid splashes are often in complex shapes and it
would be impractical and non-intuitive for the user to outline surface
shapes as sketches. To solve this problem, we propose not to consider
liquid splashes merely as shapes, but as the outcomes of fluid flows.
Specifically, we treat user sketches as representative streamlines,
which are widely used as descriptors in flow visualization [Lim
and Smits 2000]. As the user sketches, the device tracks his/her

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

1:4 • Guowei Yan, Zhili Chen, Jimei Yang, and Huamin Wang

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

movement and records every stroke as a polyline, defined by a
number of connected sample points. At every sample point, we store
both its position and its velocity, the latter of which is controlled
by the user’s movement speed. In this way, the user sketches the
streamlines of an underlying fluid flow, while the system finishes a
liquid splash model as discussed next.
To represent different liquid splashes, we need different num-

bers of polylines, made of different numbers of sample points. This
causes inconsistency within the polyline-based streamline repre-
sentation for training and synthesis. To solve this issue, we convert
the polyline-based representation into the volumetric representa-
tion. Given a uniform 3D grid covering the sketch domain around
the user, we voxelize every sketched polyline onto the grid. The
voxelized result contains two fields: a scalar field representing the
binary occupancy of the polylines within each grid cell; and a ve-
locity field representing the streamline velocities. We treat such
voxelized sketch data as input to our synthesizer for both training
and synthesis next, as shown in Fig. 6.

4.1.1 The mapping from strokes to splashes. We would like to
emphasize that there can be many liquid splash shapes under the
same liquid flow. The streamline representation is also not unique,
nor sufficient to determine the liquid flow uniquely. Therefore, the
mapping from user strokes to liquid splashes is not one-to-one,
but many-to-many. This is why we choose to use a conditional
generative model as discussed in Subsection 4.3, which treats user
strokes, not as a unique descriptor, but as conditional guidance
during the model synthesis process.

4.2 Data Acquisition by Physics-Based Simulation
Tomake our synthesizer capable of generating a wide range of liquid
splashes from various input sketches, we need a large training data
set with quality and diversity. In this subsection, we will first present
the generation of fluid data using physics-based simulation. Then
we will describe our data preparation process that converts raw
fluid data into a training data set.

4.2.1 Data generation. Since it is impractical to obtain such
a large data set from hand-drawn sketches and shapes, we resort
to physics-based fluid simulation. Our simulator adopts the Fluid-
Implicit-Particle (FLIP) method [Brackbill et al. 1988; Zhu and Brid-
son 2005], which is a hybrid method that uses both Lagrangian
particles and Eulerian grids in simulation. In general, any volumet-
ric fluid simulator should be capable of serving the data generation
purpose here.
In every simulation scene, we eject a short liquid streamlet to-

ward a solid obstacle and we store the simulated frames 0.05 to
0.5 seconds after the impact, during which most of the interesting
splashes appear as our experiment shows. To improve the diversity
of our data set, we allow a large number of initial conditions to
be random variables, including the length (from 0.05m to 0.25m),
the radius (from 0.005m to 0.050m) and the initial velocity (from
0.5m/s to 5.0m/s) of the streamlet, the shape and the size of the solid
(selected from sphere, cube, cylinder and cone), and the impact loca-
tion parameterized by the displacement between the streamlet and
the solid. We choose not to include randomized liquid-liquid impact

Fig. 3. A subset of liquid splash shapes in our data set. Our system uses
physics-based fluid simulation to generate those shapes, by ejecting short
liquid streamlets toward solid obstacles in different shapes. The simulation
runs on an Eulerian grid with 256 × 256 × 256 cells.

events1 into our scenes, because most of their splashes are short-
lived, dispersed, and can be represented by those in the existing
scenes already.

We simulate 1,021 randomized scenes and we set the simulation
grid resolution to 256 × 256 × 256, which provides an acceptable
balance between the simulation accuracy and the simulation time.
In total, it takes 204 hours for our simulator to finish all of the scenes
on a single workstation, or 12 minutes per scene. After that, we
manually select 8 to 16 frames in every scene as the representative
ones for our data set. To facilitate this manual process, we develop a
tool that automatically filters out similar frames after every selection.
Compared with the raw data set that includes every frame and the
sampled data set that includes one frame within a certain time
interval, our data set is much more compact yet representative as
we found in our experiment. In total, the data set contains 11,843
simulated frames, each of which is a snapshot of the simulation
status stored in a uniform grid. Fig. 3 shows a subset of simulated
liquid shapes in our data set.

4.2.2 Data preparation. Given the volumetric fluid data gen-
erated by our simulator, we must extract their streamlines next as
stroke input to our networks for training purposes. By definition, a
streamline is the path traced out by a massless particle as it moves
within the flow. Let u(p) be the flow velocity at a 3D location p. The
streamline starting from a seed point p0 is an integral curve:

p(t) = p0 +
∫ t

0
u(p(s))ds . (1)

Our streamline extraction algorithm uses a uniform seeding strat-
egy [Liu et al. 2006b] to determine the placement of each seed point,
1Another reason is because we focus our research on low-viscosity liquids, especially
water. Liquid-liquid impact events can be useful in exhibiting the viscous behaviors of
high-viscosity liquids, but they are beyond the scope of this work.

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

Interactive Liquid Splash Modeling by User Sketches • 1:5

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

(a) Before clustering (b) After clustering

Fig. 4. Streamlines extracted from a simulated splash shape. After we gen-
erate densely sampled streamlines as shown in (a), we apply hierarchical
clustering to find those representatives ones, as shown in (b). We consider
them to be the strokes the user is likely to draw.

and then traces the point forward with a small step size to calculate
discrete streamline sample locations, until the streamline reaches
a given length, leaves the specified domain, or forms a loop. The
result is a set of densely sampled streamlines as shown in Fig. 4a.

However, we cannot treat every calculated streamline as a stroke,
because there are too many for the user to draw in reality. To solve
this problem, we assume that the user draws those representa-
tive ones as shown in Fig. 4b and we apply hierarchical cluster-
ing [Rokach and Maimon 2005] to discover them from bottom to
up: we assign every streamline with its own cluster initially and
we merge two similar clusters into one repetitively, until the re-
maining number of clusters drops below a certain threshold. We
use the Hausdorff distance as the similarity measure between two
clusters. Since the number of strokes the user can draw depends on
his/her willingness, we treat the threshold on the cluster number as
a random variable from 5 to 20, and we generate multiple streamline
data from the same simulated volumetric shape. This is a cheap way
for us to augment our data without running more simulations.

4.2.3 Data alignment. Free-falling splash models are intrin-
sically invariant to rigid transformation2 and there is no need for
the synthesizer to learn such transformation. Even if it can learn,
it would require extensive data augmentation. Because of that, we
propose to eliminate rigid transformation in our data through a rigid
alignment process. To do so, we first apply principal component
analysis on the set of streamlines to calculate its local coordinate
system. Using this local coordinate system, we then transform the
whole model, including both its streamlines and its volumetric data,
from the world space to the local space as shown in Fig. 5. Trans-
forming the volumetric data requires us to resample the grid at the
same resolution. Thanks to data alignment, our training process
now works in a space invariant to rigid transformation, which is
much smaller than before. We note that since our synthesizer is
trained for aligned models, we must transform input strokes to the

2Splash models are variant to non-rigid transformation, especially scaling. This is
mostly due to surface tension affected by the scale.

(a) The model in the world space (b) The model in the local space

Fig. 5. A splash model in the world space and the local space. We perform
data alignment to convert every splash model from the world space to the
local space, so that the aligned model spans a smaller space for training our
deep neural networks.

G D

x G(x)

y

x
D

fake

real

(a) The generator, whose result should be classified by the discriminator as “fake”

G D

x G(x)

y

x
D

fake

real

(b) The discriminator

Fig. 6. A cGAN network. In the training process of a cGAN network, the
discriminator D is trained to classify synthesized results from simulated
examples, while the generator G is trained to fool the discriminator. The
discriminator and the generator are trained jointly.

local space and transform the synthesized output back, before and
after online modeling synthesis.

4.3 A cGAN-based Synthesizer
Our synthesizer is based on conditional generative adversarial net-
works (cGANs) [Isola et al. 2017; Xie et al. 2018]. A cGAN is a
conditional generative model that learns a mapping from input x
and random noise vector z to output y: {x, z} → y . Like regular
generative adversarial networks (GANs), a cGAN consists of two
network components: a generator G and a discriminator D. Let
LcGAN (G,D) be the objective function of a cGAN:

LcGAN (G,D) = Ex,y[logD(x, y)]+Ex,z[log(1−D(x,G(x, z)))], (2)

and LL1(G) = λL1Ex,y,z[∥y −G(x, z)∥1] be an additional L1 loss
term [Isola et al. 2017] for keeping the generator output close to the
ground truth. The goal of a cGAN is to find the generatorG∗ that

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

1:6 • Guowei Yan, Zhili Chen, Jimei Yang, and Huamin Wang

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

(a) Low stroke velocity (b) High stroke velocity

Fig. 7. Synthesized results with different stroke velocities. This figure shows
that the stroke velocity is important to splash modeling by our synthesizer.
In general, the shape is more ruptured under low stroke velocity as shown
in (a), and it remains more like a thin sheet under high stroke velocity as
shown in (b). These results are expected, since liquid thin features do not
last long in the real world and they are more likely to form at high speed.

solves the following optimization problem:

G∗ = argmin
G

max
D

{
LcGAN (G,D) + LL1(G)

}
. (3)

Intuitively, G and D play a two-player minmax game, during which
G tries to minimize the overall objective whileD tries to maximize it.
This game betweenG andD continues, till they reach an equilibrium
state eventually.

Similar to [Isola et al. 2017], we choose U-Net [Ronneberger et al.
2015] but with 3D convolution as the architecture of our generator,
as shown in Fig. 6. This generator is an encoder-decoder network.
In the encoding stage, a stack of fully convolutional layers progres-
sively reduce spatial resolution and increase feature dimensionality.
After that, the generator reverses the process in the decoding stage
to recover spatial resolution. The network uses additional skip-
connections to link the decoder layer and the encoder layer with
the same resolution. Skip-connections help pass low-level input
features to output by circumventing the bottleneck of information
flow. In our system, we set the filter size as 4× 4× 4 and the number
of feature channels in the successive layers as 64, 128, 256, 512, 512,
512, and 512. To form the network of our discriminator, we use
four convolutional layers with leaky ReLU activation and a fully
connected layer for final output.

To implement the synthesizer for generating liquid splash models,
we treat the voxelized sketch data in Subsection 4.1 as input x and
the volumetric splash model as output y. Similar to [Isola et al. 2017],
we provide the random noise in the form of dropout in training and
synthesis processes. In our system, x and y are in the same 128 ×
128 × 128 grid resolution, both of which contain two fields: a scalar
field representing the occupancy and a velocity field representing
the underlying flow. Due to the memory limit, this resolution is
lower than the resolution of the original simulation data in our data
set as discussed in Subsection 4.2.1, which needs down-sampling
before use. In total, the dimensionality of x and y is 128×128×128×4.
We note that both the stroke trajectory and the stroke velocity are
important to liquid splash modeling and they provide the user more
controllability. Because of that, we should generate the shape and
the flow jointly using a single synthesizer, rather than two separate

(a) Ground truth (b) Our result

(c) Ground truth (d) Our result

Fig. 8. Our synthesized results in comparison with the ground truths gen-
erated by simulation. This figure shows that our synthesizer has sufficient
accuracy in predicting the liquid splash shapes from the strokes.

Table 1. Quantitative evaluation of our system by four accuracy metrics.
This table also evaluates our systemwith different λL1 values, in comparison
with a baseline U-Net model.

Model IoU TPR FPR Hausdorff

Ours (λL1 = 10) 0.628 0.721 0.0031 21.5mm
Ours (λL1 = 100) 0.735 0.816 0.0013 9.5mm
Ours (λL1 = 1000) 0.713 0.791 0.0017 10.5mm

U-Net 0.685 0.768 0.0026 16.0mm

Ours (after refinement) 0.733 0.817 0.0015 9.6mm

ones. Fig. 7 compares our splash results when the synthesizer takes
the same user stokes but with different velocities as inputs.

4.3.1 Training networks. To train the networks, we use the
TensorFlow framework and the Adam optimizer [Kingma and Ba
2015] with a learning rate of 10−4. We set the batch size to two,
which is the highest we can get within the memory limit. Our
training process uses batch normalization [Ioffe and Szegedy 2015]
and dropout [Srivastava et al. 2014] for regularization. In total, it
takes 235 hours to finish 120 epochs on a single workstation.

4.3.2 Accuracy analysis. Our test data set includes 3,261 frames
selected from 307 newly simulated scenes. We use our synthesizer to
model liquid splash shapes from extracted strokes and compare them
with simulation results as ground truths. In general, our synthesizer
can predict the overall liquid shapes reasonably well, although it
tends to lose some fine details as shown in Fig. 8. Table 1 provides

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

Interactive Liquid Splash Modeling by User Sketches • 1:7

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

(a) The original result (b) New result A

(c) New result B (d) new result C

Fig. 9. Our new results synthesized after adding new strokes (in yellow), in
comparison with the original result of using existing strokes (in red). This
figure indicates that our results are coherent through the sketching process.

quantitative evaluation of our system by four accuracy metrics: the
intersection over union (IoU) on the occupancy grid, and the true
positive rate (TPR) and the false positive rate (FPR) of each voxel,
and the Hausdorff distance between our result and the ground truth.
In addition, Table 1 evaluates our system with different λL1 values,
in comparison with a baseline U-Net model. It indicates that a suit-
able L1 loss term is important to the accuracy of our system, while
our system outperforms the base line model most of the time.

4.3.3 Sensitivity analysis. To evaluate the sensitivity of our
synthesizer with respect to stroke input, we design another ex-
periment that compares our synthesized results before and after
adding new strokes (in yellow), as shown in Fig. 9. Since our synthe-
sizer takes all of the strokes together as input, adding a new stroke
causes the whole liquid splash shape to change as expected. Fortu-
nately, our results still exhibit sufficient overall coherence through
the sketching process, which is important for the user to perform
sketch-based design in a controllable way. If the user really wants
to keep a new stroke from affecting other splash parts, a natural
solution is to design the model in pieces. For example, each butterfly
wing in Fig. 1 is created as a single liquid splash.

5 SPLASH MODEL REFINEMENT
Real-world liquid surfaces often exhibit complex small-scale details.
Unfortunately, our synthesizer alone has difficulty in producing
rich small-scale details for two reasons. First, the training of our
synthesizer uses physics-based simulation data, which do not con-
tain as many details as real-world splashes do due to their intrinsic
limitations [Gao et al. 2018; Um et al. 2018; Wojtan et al. 2010].
Second, the synthesizer can cause further detail losses as shown
in Subsection 4.3.2, due to coarse grid resolution and imperfect
neural networks. Motivated by recent research on enriching liquid
animation with particles [Ihmsen et al. 2012; Roy et al. 2020] and

(a) Before refinement (b) After refinement

Fig. 10. The surface mesh results before and after running the particle-based
refinement process. This process uses liquid and air particles to improve
surface details near splash fronts, as shown in (b).

waves [Canabal et al. 2016; Jeschke and Wojtan 2017; Kim et al.
2013; Mercier et al. 2015], we would like to enrich synthesized liquid
splashes with small-scale details as well. A unique challenge we
face here is a lack of dynamic information, since we are dealing
with static shapes, not animation sequences. Therefore we propose
to formulate our model refinement processes in a physics-inspired
fashion.

5.1 Particle-Based Refinement
The key idea behind our particle-based refinement process is to use
particle-based fluid simulation to enrich or trim the synthesized
liquid splash model. Let ϕ(q) be the scalar field and u(q) be the
velocity field produced by our synthesizer in Section 4. We first
apply stratified random sampling to select a set of sample points
{qi }, such that every point qi satisfies:

ϕair ≤ ϕ(qi) < ϕair+ϕband,

∇2u(qi)

α ·

∇ ·

(
∇ϕ(qi)
∥∇ϕ(qi)∥

)

β ≥ γ ,

(4)
where ϕair is the scalar threshold specifying the air-liquid interface,
ϕband is the interface sampling bandwidth, α and β are the exponen-
tial variables, and γ is the sample selection threshold. Essentially,
the second part of Eq. 4 provides the metric for choosing sample
points in turbulent and curved regions, where surface ruptures are
likely to occur and liquid droplets are likely to appear. We use fi-
nite differencing [Osher and Fedkiw 2003] to evaluate Eq. 4. We
then generate 100 to 400 blue noise particles around every sample
point by the dart throwing algorithm [Cook 1986], obtain initial
particle velocities from the velocity field, and run position-based
fluid simulation [Macklin and Müller 2013] to simulate those par-
ticles slightly forward in time. We treat those simulated particles
as missing droplets caused by early ruptures at splash fronts and
we voxelize them to the two fields, so that they can naturally merge
with the bulky volume. Fig. 10 compares reconstructed surface mesh
results before and after this particle-based refinement process, and
Fig. 11 demonstrates how this process improves the visual quality
of a milk skirt example. We note that the use of particle-based sim-
ulation is to keep those particles together under surface tension as
a single droplet. Without it, advected particles disperse after they
leave the bulky volume.

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

1:8 • Guowei Yan, Zhili Chen, Jimei Yang, and Huamin Wang

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

(a) Before refinement (b) After refinement

(c) Before refinement (d) After refinement

Fig. 11. A milk skirt example. In this example, the user draws strokes to
create two milk skirts in different configurations dressing the same dancing
sculpture model. We apply particle-based refinement only in this example.

The described process so far is for adding extra droplets to the syn-
thesized model. To make the splash front more rupture-like, we also
provide an inverse process for removing front regions. Basically, we
pick random sample points in air: ϕair − ϕband ≤ ϕ(qi) < ϕair, gen-
erate air particles around them, and then simulate them backward
with interpolated velocities from the field. After that, we voxelize
those particles and carve the scalar field ϕ accordingly.

5.2 Mesh-Based Refinement
Our system offers an optional refinement process, after the liquid
mesh gets reconstructed from volumetric output. The purpose of
this process is to generate capillary waves, which are triggered at
splash fronts and propagated by surface tension as shown in Fig. 12d.
The reason we perform this refinement on meshes, rather than on
particles [Yang et al. 2016], is because wave seeding and propagation
is more straightforward to implement on meshes.

(a) Before refinement (b) After refinement

(c) A closeup view (d) A photograph

Fig. 12. The surface mesh results before and after refinement. The mesh-
based refinement process generates capillary wave effects near splash fronts,
as shown in (b) and (c). The system allows the user to control these waves by
various simulation variables. The inset image in (a) shows the user strokes.

5.2.1 Wave seeding. Our first question is: where do capil-
lary waves start? When enriching a simulation sequence, Yang
et al. [2016] initialized capillary waves as surface tension energy
changes. Unfortunately, we cannot do the same thing here, since
we are dealing with a static surface mesh. Instead we generate cap-
illary waves near high curvature regions, and similar to [Liu et al.
2006a], we assume that they are sinusoidal. Let ρti be the wave in-
tensity of vertex i at a pseudo time instant t . We calculate ρ̂t+∆ti ,
the initialization of ρt+∆ti at time t + ∆t by:

ρ̂t+∆ti = ρti + κi (sin(ωt + ω∆t) − sin(ωt)) , (5)

in which ∆t is the pseudo time step, ω is the wave frequency con-
stant, κi is the mean curvature and ρ̂0i = 0. We note that κi can be
negative at vertex i near concave fronts.

5.2.2 Wave propagation. Similar to [Yang et al. 2016], we
model capillary wave propagation by the acoustic wave equation:

d2ρ

dt2
= c2wave∇

2ρi , (6)

in which cwave is the wave speed. To solve this equation, we intro-
duce another variable Ûρi representing the wave intensity changing
rate at vertex i . We then use Leapfrog integration to update ρi and
Ûρi : {

ρt+∆ti = ρ̂t+∆ti + ∆t Ûρti ,

Ûρt+∆ti = ζ Ûρti + ∆tc
2
wave∇

2ρt+∆ti ,
(7)

where ζ is the damping coefficient. We use the discrete Laplacian
operator to discretize and solve Eq. 7. To ensure numerical stability,
we need a sufficiently small pseudo time step ∆t that satisfies the

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

Interactive Liquid Splash Modeling by User Sketches • 1:9

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

(a) Before refinement (b) After particle refinement (c) After refinement

(d) Before refinement (e) After refinement

Fig. 13. A wine heart example. In this example, the user creates a heart-
shaped liquid splash as if it was wine pouring out of a bottle. This model
is made of two splashes: the streamlet and the heart. Particle-based and
mesh-based refinement processes improve the visual quality of this example.

underlying CFL condition. In our experiment, we simply reduce ∆t
until the simulation becomes stable.

5.2.3 Wave simulation and mesh update. Given the presented
wave seeding and propagation methods, we run wave simulation
over the reconstructed mesh for a short period of time and use the
wave intensity to adjust the position of every vertex in its normal
direction. In practice, we often have to subdivide the reconstructed
mesh ahead of time, so that the resolution can be high enough for
modeling discretized waves. The pseudo simulation time controls
how far capillary waves travel: the longer the simulation is, the
farther the waves reach. Fig. 12 and 13 compare the mesh results of
two examples before and after mesh-based refinement.

We note that capillary waves are not so noticeable at a large scale.
Even at a small scale, the number, the magnitude and the frequency
of capillary waves vary dramatically from liquid to liquid, according
to liquid physical properties. Our system asks the user to decide the
use of the mesh-based refinement process as part of model design
choices, through the adjustment of wave simulation variables.

5.3 Quantitative Analysis
Table 1 also quantitatively evaluates our refinement result in com-
parison with the ground truth by the four metrics, using the same

Table 2. The parameters and their values used by model refinement.

Label Meaning Value

ϕair Air-liquid interface threshold 0.5
ϕband Air-liquid interface bandwith 0.4

α The first exponential variable 2 to 8
β The second exponential variable 2 to 8
γ Sample selection threshold By user

ω Capillary wave frequency 1 to 10Hz
cwave Capillary wave speed 0.1 to 1.0m/s
ζ Capillary wave damping coefficient 0.9

refinement parameter values in Fig. 13. It shows that the use of our
refinement processes increases both TPR and FPR, while decreases
IoU. This outcome is expected, because our refinement processes
tend to add volume to synthesized splash shapes. But overall, the
influence of refinement processes on the result by these metrics is
small, thanks to those small-scale shape changes only.

6 RESULTS
We implement our interactive system and test it on an Intel Core
i7-5930K 3.5GHz CPU and an NVIDIA GeForce GTX TITAN X GPU.
Our system uses an Oculus Rift S VR gaming headset for displaying
the virtual reality environment and its handheld motion controller
for sketch input. The total computational time of the splash model
synthesis component, including both the network inference time and
the mesh reconstruction time, is under 0.2s. Therefore, the user can
examine the result and edit his/her strokes interactively on the fly,
until he/she is satisfied with the result. After that, the user can apply
the offline splash model refinement component provided by our
system to improve splash shape details. The total computational time
of the refinement component is between 0.2s and 0.4s, depending on
the particle number and the mesh resolution. Table 1 summarizes
the parameters and their values used by model refinement.

6.1 Special Effects
The user can also apply our system to create desired special splash
effects. Fig. 1 shows two liquid butterflies composed of multiple
liquid splashes, and Fig. 13 shows a heart-shaped splash as if it
was formed by pouring wine. In the past, a photographer needs to
composite multiple photographs to create image results with similar
special effects. In our system, the user can interactively draw many
sets of strokes for multiple splashes and check the overall model
result on the fly. Fig. 11 demonstrates a milk skirt example, which
provides two milk skirts dressing a dancing human sculpture. The
user draws different strokes to control skirt shapes. Finally, Fig. 14
and 17 show liquid splashes in alphabetic shapes, intentionally
designed by our user.

6.2 Comparison with Photographs
To test the capability of our system in generating specific liquid
splash shapes, we ask the user to draw strokes that match with the
shapes in photographs from Fig. 15d to 15f and we run our system

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1:10 • Guowei Yan, Zhili Chen, Jimei Yang, and Huamin Wang

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

(a) Splash "A" (b) Splash "B" (c) Splash "C"

Fig. 14. Wine splashes in alphabetic shapes. The user creates those quality
shapes by drawing only two to five strokes.

(a) Our result (b) Our result (c) Our result

(d) Photograph (e) Photograph (f) Photograph

Fig. 15. Our results in comparison with photographs. Our system allows
the user to create liquid splashs in different shapes, as shown from (a) to (c).
The user controls splash shapes by stroke trajectories and stroke velocities.

to obtain the results shown from Fig. 15a to 15c. As discussed in
Section 5, it is difficult for our system to provide as many rich
details as in photographs. But in general, our results are consistent
with user expectations and they can serve as pre-visualization for
additional editing and refinement. We note that setting up the initial
environment by hand for specific shapes is difficult in both the real
world and the virtual world.

6.3 Physics-Based Fluid Animation
Compared with splash photographs in 2D and manually modeled
shapes in 3D, our splash model has a unique advantage: it contains
both the shape and the velocity. Therefore we can treat the model as
the initial condition and run physics-based simulation immediately,
without resorting to additional tools for injecting the initial velocity.
In Fig. 16, we show the animation result of a milk crown after
a streamlet hits a bulky liquid volume, by treating our model in

(a) Frame 1, without the initial velocity (b) Frame 1, with the initial velocity

(c) Frame 10, without the initial velocity (d) Frame 10, with the initial velocity

(e) Frame 20, without the initial velocity (f) Frame 20, with the initial velocity

Fig. 16. An animated milk crown example without and with the initial
velocity. Without the initial velocity, the milk crown quickly collapses under
gravity as shown in (a), (c) and (e). With the initial velocity, the splash moves
forward in the splash front direction as shown in (b), (d) and (f).

Fig. 16b as the initial frame. In Fig. 17, we show the animation result
of a specifically designed liquid splash in the “S” shape, by treating
our model in Fig. 17b as the initial frame. Without the synthesized
velocity field, the results would be inconsistent with the expected
splash events, as shown in Fig. 16 and 17.

We note that the synthesized velocity field may not be divergence-
free and it may not preserve the liquid volume. Fortunately, this is
not a practical issue in animation production, since the divergence
of the velocity field is quickly eliminated by pressure projection in
the next time step. For applications that do require divergence-free
velocity field inputs, we can post-process the synthesized velocity
field by pressure projection as well.

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

Interactive Liquid Splash Modeling by User Sketches • 1:11

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

(a) Frame 1, without the initial velocity (b) Frame 1, with the initial velocity

(c) Frame 20, without the initial velocity (d) Frame 20, with the initial velocity

(e) Frame 40, without the initial velocity (f) Frame 40, with the initial velocity

Fig. 17. An animated “S” example without and with the initial velocity.
Without the initial velocity, the liquid splash in the “S” shape falls straight
into the surface as shown in (a), (c) and (e). With the initial velocity, the “S”
splash expands as shown in (b), (d) and (f).

6.4 User Studies
We conduct two user studies to evaluate the visual quality and the
usability of our system.

6.4.1 Visual quality evaluation. To evaluate the visual result
quality of our system, we use Google Forms to recruit seven male
and seven female users, whose ages range from 21 to 63 and whose
education levels are from high school diploma to Doctoral degree. In
this study, we present two splash images to each user every time, one
generated by physics-based simulation and one generated by our
system, and ask each user to decide which one looks more visually
plausible. In total, we give each user 16 image pairs to choose from.
The study shows that the simulation result is chosen over our result
55.8 percent of the time, while our result is chosen 44.2 percent of
the time. This experiment shows that although our result is different

from the simulation result, mostly due to fewer small-scale details,
we can still consider it to be visually plausible overall.

6.4.2 Usability evaluation. Next we evaluate the usability of
our system in an immersive virtual reality environment and we
compare it with other modeling tools, i.e., the X-Particles system by
Cinema 4D and the mesh sculpting system by Maya and ZBrush. We
recruit eight users, who have five-year 3D modeling experience on
average. In this study, we ask the users to design a liquid splash in the
“S” shape. Using our system, they can interactively and conveniently
model their splashes within one minute, as shown in Fig. 18a. The
simulation-based particle system is also easy to use, but due to a lack
of intuitive connection between initial conditions and simulation
outcomes, it is difficult to obtain satisfactory results as shown in
Fig. 18b. On average, the users spend 20 minutes with this tool.
Finally, the mesh sculpting system is a powerful tool with which
the users can create any shape they want, given sufficient time.
Unfortunately, the modeling process by this tool is tedious, as the
users have to address every surface detail by hand for realistic mesh
results. We ask the users to spend at least one hour with this tool
and the results are just comparable to those made by our system, as
shown in Fig. 18c.

6.5 Limitations

Fig. 19. A failure case. In this exam-
ple, our synthesizer fails to produce
a plausible splash results due to self-
intersecting strokes.

Perhaps the greatest limita-
tion of our system is the
difficulty of generating rich
details comparable to those
in real-world splashes. The
model refinement processes
help lessen this issue, but
they do not solve it. While
our system enables the user
to design splash models by
simple strokes, it does not
offer any additional control
other than post-processing.
This issue can be problematic, given the fact that cGANs, unlike
GANs, are in short of stochasticity [Isola et al. 2017] and the user
cannot expect largely different model results to choose from. If
the results are not aesthetically appealing or consistent with their
design goals, the user has to treat the system as a black box and
modify the strokes through trials and errors. Currently, our system
is more suitable for designing freeform splash models. When there
are constraints or obstacles in the environment, such as the dancing
human sculpture in Fig. 11, the system relies on the user to adjust
the strokes accordingly and it cannot enforce constraints in an auto-
matic way. Our current system is also unsuitable for designing liquid
models other than splashes and the result can be unpredictable if
the strokes are not streamline-like, such as those self-intersecting
ones in Fig. 19. Finally, our system takes 3D user strokes acquired
by depth-augmented devices only. It is unclear how the system re-
sponds when it takes other strokes as input, but we can always run
a pre-processing step to convert other strokes into 3D ones, as a
quick way of generalization.

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1:12 • Guowei Yan, Zhili Chen, Jimei Yang, and Huamin Wang

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

(a) Our system in a virtual reality environment (b) The X-Particles system by Cinema 4D (c) The mesh sculpting systems by Maya and ZBrush

Fig. 18. The interfaces of three modeling systems. Our system allows users to interactively and conveniently create quality liquid shape models in a very short
time. In comparison, other modeling systems require users to spend a sufficient amount of time before obtaining acceptable splash results.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we demonstrate the effective use of a conditional
generative adversarial network (cGAN) in synthesizing complex
liquid splash models from user strokes. To overcome the missing
detail issue in comparison with real-world splashes, we develop a
physics-inspired splash model refinement component for the user
to enrich synthesized results. Thanks to the efficiency of our system,
the user can now interactively edit and examine his/her results, in
the course of designing special splash effects.

Looking in the future, we set our priority as further detail refine-
ment. This includes collecting more diversified and detailed data,
improving neural network structures, and better model refinement
processes. We then would like to improve the runtime performance
of our system, especially by its GPU implementation, to eventually
achieve real-time model design and synthesis. How to optimize
user experience and achieve precise shape design in a virtual envi-
ronment is another important problem we will study. Finally, we
will explore the extension of our system for modeling other liquid
phenomena, some of which are also compatible with the streamline
representation and can be synthesized in a similar fashion.

ACKNOWLEDGMENTS
The authors would like to thank Nvidia and Adobe for their funding
and equipment support.

REFERENCES
Jeremiah Uhler Brackbill, Douglas B. Kothe, and Hans Max Ruppel. 1988. Flip: A

Low-Dissipation, Particle-in-Cell Method for Fluid Flow. In the Workshop on Particle
Methods in Fluid Dynamics and Plasma Physics.

José A. Canabal, David Miraut, Nils Thuerey, Theodore Kim, Javier Portilla, and
Miguel A. Otaduy. 2016. Dispersion Kernels for Water Wave Simulation. ACM Trans.
Graph. 35, 6, Article 202 (Nov. 2016), 10 pages.

Mengyu Chu and Nils Thürey. 2017. Data-Driven Synthesis of Smoke Flows with
CNN-Based Feature Descriptors. ACM Trans. Graph. (SIGGRAPH) 36, 4 (2017), 1–14.

Jonathan M Cohen, Lee Markosian, Robert C Zeleznik, John F Hughes, and Ronen
Barzel. 1999. An Interface for Sketching 3D Curves. In Proceedings of I3D. 17–21.

Robert L. Cook. 1986. Stochastic Sampling in Computer Graphics. ACM Trans. Graph.
5, 1 (Jan. 1986), 51–72.

Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016.
Surface-Only Liquids. ACM Trans. Graph. (SIGGRAPH) 35, 4, Article 78 (July 2016),
12 pages.

Chris De Paoli and Karan Singh. 2015. SecondSkin: Sketch-Based Construction of
Layered 3D Models. ACM Trans. Graph. (SIGGRAPH) 34, 4 (2015), 1–10.

Johanna Delanoy, Mathieu Aubry, Phillip Isola, Alexei A. Efros, and Adrien Bousseau.
2018. 3D Sketching Using Multi-View Deep Volumetric Prediction. Proc. ACM
Comput. Graph. Interact. Tech. 1, 1, Article 21 (July 2018), 22 pages.

Nick Foster and Dimitri Metaxas. 1996. Realistic Animation of Liquids. Graphical
models and image processing 58, 5 (1996), 471–483.

Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and
Chenfanfu Jiang. 2018. GPU Optimization of Material Point Methods. ACM Trans.
Graph. (SIGGRAPH) 37, 6, Article 254 (Dec. 2018), 12 pages.

Tony Generico. 2017. Splash: High-Speed Photography With Liquids. CreateSpace
Independent Publishing.

Yotam Gingold, Takeo Igarashi, and Denis Zorin. 2009. Structured Annotations for
2D-to-3D Modeling. In ACM SIGGRAPH Asia 2009 Papers. Article 148, 9 pages.

Éric Guérin, Julie Digne, Éric Galin, Adrien Peytavie, Christian Wolf, Bedrich Benes,
and Benoît Martinez. 2017. Interactive Example-Based Terrain Authoring with
Conditional Generative Adversarial Networks. ACM Trans. Graph. 36, 6, Article 228
(Nov. 2017), 13 pages.

Zhongyuan Hu, Haoran Xie, Tsukasa Fukusato, Takahiro Sato, and Takeo Igarashi. 2019.
Sketch2VF: Sketch-Based Flow Design with Conditional Generative Adversarial
Network. Computer Animation and Virtual Worlds 30, 3-4 (2019), 1889.

Haibin Huang, Evangelos Kalogerakis, Ersin Yumer, and Radomir Mech. 2016. Shape
Synthesis from Sketches via Procedural Models and Convolutional Networks. IEEE
transactions on visualization and computer graphics 23, 8 (2016), 2003–2013.

Ruoguan Huang, Zeki Melek, and John Keyser. 2011. Preview-Based Sampling for
Controlling Gaseous Simulations. In Proceedings of SCA. 177–186.

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 1999. Teddy: A Sketching
Interface for 3D Freeform Design. In Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques. 409–416.

Markus Ihmsen, Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2012. Unified
Spray, Foam and Air Bubbles for Particle-Based Fluids. The Visual Computer 28
(2012), 669–677.

Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. CoRR (2015). arXiv:1502.03167

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-Image
Translation with Conditional Adversarial Networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1125–1134.

Stefan Jeschke and Chris Wojtan. 2017. Water Wave Packets. ACM Trans. Graph.
(SIGGRAPH) 36, 4, Article 103 (July 2017), 12 pages.

Byungsoo Kim, Vinicius C Azevedo, Nils Thürey, Theodore Kim, Markus Gross, and
Barbara Solenthaler. 2019. Deep Fluids: A Generative Network for Parameterized
Fluid Simulations. Computer Graphics Forum (Eurographics) 38, 2 (2019), 59–70.

Theodore Kim, Jerry Tessendorf, and Nils Thürey. 2013. Closest Point Turbulence for
Liquid Surfaces. ACM Trans. Graph. 32, 2, Article 15 (April 2013), 13 pages.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In Proceedings of ICLR.

LâĂŹubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus
Gross. 2015. Data-Driven Fluid Simulations Using Regression Forests. ACM Trans.
Graph. 34, 6, Article 199 (Oct. 2015), 9 pages.

Jeehyung Lee and Thomas A Funkhouser. 2008. Sketch-Based Search and Composition
of 3D models. In Proceedings of SBM. 97–104.

Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and Wenping Wang. 2017.
BendSketch: Modeling Freeform Surfaces through 2D Sketching. ACM Trans. Graph.
(SIGGRAPH) 36, 4, Article 125 (July 2017), 14 pages.

Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and Wenping Wang. 2018.
Robust Flow-Guided Neural Prediction for Sketch-Based Freeform Surface Modeling.
ACM Trans. Graph. 37, 6, Article 238 (Dec. 2018), 12 pages.

Tee Tai Lim and Alexander J. Smits. 2000. Flow Visualization: Techniques and examples.
Imperial College Press.

Shengjun Liu, Xiaogang Jin, Charlie CL Wang, and Jim X Chen. 2006a. Water-Wave
Animation on Mesh Surfaces. Computing in Science & Engineering 8, 5 (2006), 81–87.

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

http://arxiv.org/abs/1502.03167

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

Interactive Liquid Splash Modeling by User Sketches • 1:13

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

Zhanping Liu, Robert Moorhead, and Joe Groner. 2006b. An Advanced Evenly-Spaced
Streamline Placement Algorithm. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (2006), 965–972.

Miles Macklin and Matthias Müller. 2013. Position Based Fluids. ACM Trans. Graph.
(SIGGRAPH) 32, 4, Article 104 (July 2013), 12 pages.

Pierre-Luc Manteaux, Ulysse Vimont, Chris Wojtan, Damien Rohmer, and Marie-Paule
Cani. 2016. Space-Time Sculpting of Liquid Animation. In Proceedings of the 9th
International Conference on Motion in Games. 61–71.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid Control
Using the Adjoint Method. In ACM SIGGRAPH 2004 Papers. 449–456.

Olivier Mercier, Cynthia Beauchemin, Nils Thuerey, Theodore Kim, and Derek
Nowrouzezahrai. 2015. Surface Turbulence for Particle-Based Liquid Simulations.
ACM Trans. Graph. 34, 6, Article 202 (Oct. 2015), 10 pages.

Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial Nets.
CoRR abs/1411.1784 (2014). arXiv:1411.1784

Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. 2007. FiberMesh:
Designing Freeform Surfaces with 3D Curves. In ACM SIGGRAPH 2007 papers.
41–50.

Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel Cohen-Or. 2005. A Sketch-
Based Interface for Detail-Preserving Mesh Editing. In ACM SIGGRAPH 2005 Papers.
1142–1147.

Michael B. Nielsen and Robert Bridson. 2011. Guide Shapes for High Resolution
Naturalistic Liquid Simulation. In ACM SIGGRAPH 2011 Papers. Article 83, 8 pages.

Stanley Osher and Ronald Fedkiw. 2003. Level Set Methods and Dynamic Implicit Surfaces.
Springer-Verlag.

Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hujun Bao. 2013. Interactive
Localized Liquid Motion Editing. ACM Trans. Graph. 32, 6, Article 184 (Nov. 2013),
10 pages.

Zherong Pan and Dinesh Manocha. 2017. Efficient Solver for Spacetime Control of
Smoke. ACM Trans. Graph. (SIGGRAPH) 36, 5, Article 162 (July 2017), 13 pages.

Nick Rasmussen, Douglas Enright, Duc Nguyen, Sebastian Marino, Nigel Sumner, Willi
Geiger, Samir Hoon, and Ronald Fedkiw. 2004. Directable Photorealistic Liquids. In
Proceedings of SCA. 193–202.

Karthik Raveendran, Nils Thürey, Chris Wojtan, and Greg Turk. 2012. Controlling
Liquids Using Meshes. In Proceedings of SCA. 255–264.

Karthik Raveendran, Chris Wojtan, Nils Thürey, and Greg Turk. 2014. Blending Liquids.
ACM Trans. Graph. (SIGGRAPH) 33, 4, Article 137 (July 2014), 10 pages.

Alec Rivers, Frédo Durand, and Takeo Igarashi. 2010. 3D Modeling with Silhouettes.
ACM Trans. Graph. (SIGGRAPH) 29, 4, Article 109 (July 2010), 8 pages.

Lior Rokach and Oded Maimon. 2005. Clustering Methods. In Data mining and
knowledge discovery handbook. Springer, 321–352.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention (MICCAI), Vol. 9351. 234–241.

Bruno Roy, Eric Paquette, and Pierre Poulin. 2020. Particle Upsampling as a Flexible
Post-Processing Approach to Increase Details in Animations of Splashing Liquids.
Computer & Graphics 88 (2020), 57–69.

Ryan Schmidt and Karan Singh. 2008. Sketch-Based Procedural Surface Modeling and
Compositing Using Surface Trees. In Computer Graphics Forum, Vol. 27. 321–330.

Lin Shi and Yizhou Yu. 2005. Controllable Smoke Animation with Guiding Objects.
ACM Trans. Graph. 24, 1 (Jan. 2005), 140–164.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15, 56 (2014), 1929–1958.

Nils Thürey, Richard Keiser, Mark Pauly, and Ulrich Rüde. 2009. Detail-Preserving Fluid
Control. Graphical Models 71, 6 (2009), 221–228.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2017.
Accelerating Eulerian Fluid Simulation with Convolutional Networks. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70. 3424–3433.

Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. 2003. Keyframe
Control of Smoke Simulations. ACM Trans. Graph. (SIGGRAPH) 22, 3 (July 2003),
716–723.

Kiwon Um, Xiangyu Hu, and Nils Thürey. 2018. Liquid Splash Modeling with Neural
Networks. Computer Graphics Forum 37, 8 (2018), 171–182.

Nobuyuki Umetani and Bernd Bickel. 2018. Learning Three-Dimensional Flow for
Interactive Aerodynamic Design. ACM Trans. Graph. (SIGGRAPH) 37, 4, Article 89
(July 2018), 10 pages.

Steffen Wiewel, Moritz Becher, and Nils Thürey. 2019. Latent Space Physics: Towards
Learning the Temporal Evolution of Fluid Flow. In Computer Graphics Forum, Vol. 38.
71–82.

Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2010. Physics-Inspired
Topology Changes for Thin Fluid Features. In ACM SIGGRAPH 2010 Papers. Article
50, 8 pages.

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. 2018. TempoGAN: A Temporally
Coherent, Volumetric GAN for Super-Resolution Fluid Flow. ACM Trans. Graph.
(SIGGRAPH) 37, 4, Article 95 (July 2018), 15 pages.

Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-Min Hu. 2013. Sketch2Scene:
Sketch-Based Co-Retrieval and Co-Placement of 3D Models. ACM Trans. Graph.
(SIGGRAPH) 32, 4, Article 123 (July 2013), 15 pages.

Sheng Yang, Xiaowei He, Huamin Wang, Sheng Li, Guoping Wang, Enhua Wu, and
Kun Zhou. 2016. Enriching SPH Simulation by Approximate Capillary Waves. In
Proceedings of SCA. 29–36.

Bo Zhu, Michiaki Iwata, Ryo Haraguchi, Takashi Ashihara, Nobuyuki Umetani, Takeo
Igarashi, and Kazuo Nakazawa. 2011. Sketch-Based Dynamic Illustration of Fluid
Systems. ACM Trans. Graph. (SIGGRAPH Asia) 30, 6 (Dec. 2011), 1âĂŞ8.

Yongning Zhu and Robert Bridson. 2005. Animating Sand as a Fluid. ACM Trans. Graph.
(SIGGRAPH) 24, 3 (July 2005), 965–972.

ACM Trans. Graph., Vol. 36, No. 4, Article 1. Publication date: July 2020.

http://arxiv.org/abs/1411.1784

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Splash model Synthesis
	4.1 Streamline Representation
	4.2 Data Acquisition by Physics-Based Simulation
	4.3 A cGAN-based Synthesizer

	5 Splash Model Refinement
	5.1 Particle-Based Refinement
	5.2 Mesh-Based Refinement
	5.3 Quantitative Analysis

	6 Results
	6.1 Special Effects
	6.2 Comparison with Photographs
	6.3 Physics-Based Fluid Animation
	6.4 User Studies
	6.5 Limitations

	7 Conclusions and Future Work
	References

