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Fig. 1. Our virtual try-on system takes the RGBD data in (a) as input and captures the pose and body shape of the user accurately as shown
in (b). It then realistically simulates virtual clothing on the user, so the user can examine the appearance of personalized virtual clothing, as
illustrated in (c) and (d). Our system robustly handles a wide range of human motions and shape variations.

Abstract—We present a system that allows the user to virtually try on new clothes. It uses a single commodity depth camera to capture the
user in 3D. Both the pose and the shape of the user are estimated with a novel real-time template-based approach that performs tracking
and shape adaptation jointly. The result is then used to drive realistic cloth simulation, in which the synthesized clothes are overlayed on the
input image. The main challenge is to handle missing data and pose ambiguities due to the monocular setup, which captures less than 50
percent of the full body. Our solution is to incorporate automatic shape adaptation and novel constraints in pose tracking. The effectiveness

of our system is demonstrated with a number of examples.

Index Terms—Human pose estimation, human shape modeling, virtual try-on, depth sensor

1 INTRODUCTION

Commodity depth cameras, such as the Microsoft Kinect, have gained
wide popularity in both academia and industry. With the capability to
capture dynamic scenes in 3D, numerous researchers and developers
are exploring new applications in many areas ranging from consumer
electronics, entertainment, health care, to robotics. In this paper, we
present how depth cameras can be used to improve the realism of vir-
tual try-on systems, in which users can dress themselves up in different
clothes in a virtual environment.

The concept of virtual try-on, due to its large commercial potential,
has been explored before. The general idea is to track the user’s mo-
tion, in either 2D or 3D [52, 43, 14], and synthesize clothes that can
be overlayed on the user’s image. Due to the complexity of human
motion and the computational cost of cloth simulation, different sys-
tems have different trade-offs. Some treated virtual clothing as textures
(e.g., [52]), over-simplifying the interactions between the user and the
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clothing; some required a pre-made avatar that is either quite crude or
difficult to adapt to the user motion and shape (e.g., [14]).

We believe that an ideal virtual try-on system should realistically and
efficiently simulate virtual clothing that reacts accurately to the user’s
body shape and motion. This aspect is especially crucial for users to
correctly evaluate the appearance of different clothing on them, thus
greatly improving their acceptance to such systems. Unfortunately,
none of the existing systems satisfy all these constraints as far as we
know. Using data acquired from commodity depth cameras in cloth
simulation seems to be a natural solution to this problem. In fact, us-
ing depth maps to handle cloth-body collision is a well-studied GPU-
based technique as shown in [23, 28, 20]. Unfortunately, the captured
depth maps are often noisy and incomplete, with the frame rate limited
by the hardware. One possible solution to this problem is to use mul-
tiple cameras, but camera synchronization is a challenging problem
in the real world as no commodity depth camera currently supports
inter-camera synchronization.

In this paper we present a virtual try-on system that requires only a sin-
gle RGB+Depth stream for a realistic virtual try-on experience. The
key to our system is a novel real-time tracking algorithm that jointly
estimates a full-body shape and motion using a linear formulation.
Requiring only a generic human body template, our formulation is
able to handle significant occlusion in a single depth map (> 50% of
missing data) as well as maintain temporal consistency from the noisy
depth input generated by commodity depth cameras. The output of our
tracking algorithm is a body mesh that accurately adapts to the user’s
motion and body shape. The mesh is complete and maintains the same
topology over time, which makes it ideal for use in physically-based
cloth simulation. As a result, our system is able to provide a more
realistic virtual try-on experiences as the example in Fig. 1 shows.

The rest of this paper is organized as follows. In Sec. 2, we review



some of the state-of-the-art approaches that are related to our work.
Sec. 3 describes the details of our methods for pose tracking and shape
adaptation. The approaches used for our cloth simulation and final
image composition are discussed in Sec. 4 and Sec. 5, respectively.
Experiments are shown in Sec. 6, while conclusion and a discussion
of future work are presented in Sec. 7.

2 Previous WoRrk

Our virtual try-on system consists of two major components: pose
tracking with shape adaptation and cloth simulation. In this section,
we briefly review methods on both topics and recent research on virtual
try-on applications.

2.1 Pose Estimation and Shape Adaptation

The problem of human pose estimation has been studied for
decades [30, 34]. Most traditional approaches relied on multi-view
setup, e.g. [3, 17]. More recently, there have been several studies using
a single depth sensor to tackle this task [18, 36, 50, 2, 19, 48, 24]. The
representative discriminative approach by Shotton et al. [36] trained a
random forest classifier with a large collection of data and then used a
clustering technique to estimate the joint positions. Despite of the fast
running speed of this approach, the accuracy needs to be improved.
More importantly, similar to many other discriminative approaches,
it provided neither temporal coherence nor the subjects’ body shape,
which are important for cloth simulation in virtual try-on applications.

Generative approaches that inherently provide temporal correspon-
dences are more suitable for our task. Ganapathi et al. [18] used Dy-
namic a Bayesian Network (DBN) to model the dynamics of motion
states. However, their template size is fixed and cannot accommo-
date body size variations. Their more recent work [19] partially ad-
dressed this issue by allowing joint length to change within a small
range. Furthermore, they utilized free space constraints to guide the
tracker. Nonetheless, in order to achieve real-time performance, they
used an over-simplified cylindrical mesh model which cannot realis-
tically capture the observed surface geometry and could cause large
visible artifacts for cloth simulation.

Some authors combined the complementary characteristics of discrim-
inative and generative approaches. Ye et al. [S0] and Baak et al. [2]
both used a hybrid approach, yet they required a database at run time.
Helten et al. [24] extended [2] with personalized shape estimation
based on the SCAPE model [1]. Wei et al. [48] combined the DBN
model in [18] and body detection in [36] for higher accuracy and ro-
bustness. While our tracking formulation is most similar to [24], we
have enhanced the tracker with novel constraints that are capable of
effectively and more accurately guiding the tracke. Consequently we
do not require any discriminative detector compared to [24] and [48].
Besides, the discriminative detector in [36, 50, 2, 48, 24] tends to have
trouble accommodating partial observation as part of the body moves
out of view. By contrast, our tracker can effectively handle such situa-
tions with the the proposed constraints.

While discriminative approaches usually handle body size variation
naturally, generative approaches generally need to explicitly consider
the body size difference between the template model and the subject.
Some methods assumed a good template that had a similar body size to
the subject [18] or was scanned from the subject directly [17, 44, 11];
while some others performed fitting using parametric models [24].
The hybrid approaches usually relied on the discriminative component
to address this issue [50, 48], which is not applicable as we do not use
any detector. In our application, it is unnatural to assume prior knowl-
edge of subject’s body size. To this end, we propose a novel body
size adaptation method based on the differential bone coordinates in-
troduced by Straka et al. [38].

Besides the body size variations, the surface geometry of the template
usually does not exactly match the subject’s body shape. Therefore,
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Fig. 2. The diagram of our virtual try-on system. During initialization, our
system takes in one single frame of depth map and adjusts the limb lengths
of the template. For each frame of the live data, we perform pose and shape
adaptation to adjust the template that is then used by our cloth simulator to
drive the virtual apparel. Finally a composite image of the virtual apparel
and the input are delivered to the user to provide virtual try-on experience.

surface estimation usually couples with or follows the pose estimation,
in order to capture the surface geometry of the subject. One option
is to perform a static scan of the subject’s body shape with one [49]
or multiple depth sensors [42]. For geometry estimation of dynamic
scenes, silhouette has been widely used in both multi-view setups [17,
11, 44, 37, 38] and single-view setups [49]. Similar to [49, 16], we
combine both depth and edge information to dynamically estimate the
surface geometry. However, our method follows the linear formulation
in [17] with novel constraints to deal with monocular data.

2.2 Cloth Simulation

Recent research in physically based cloth simulation has resulted in a
number of simulation approaches [4, 9, 6, 26] to improve the realism
and efficiency of cloth animation. Survey articles [25, 8, 33] have
summarized current state-of-the-arts. Among these methods, our work
is particularly related to two types of novel simulation techniques.

Data-Driven Cloth. The first type contains data-driven techniques
that combine synthetic or captured data with physically based simu-
lation. Wang and his collaborators [46] developed a clothing wrinkle
database and used human poses to guide fine wrinkle synthesis for
clothing animation. De Aguiar and his colleagues [10] ignored phys-
ical models and proposed a purely data-driven model to efficiently
generate wrinkle details instead. Feng and colleagues [13], as well
as Kavan and collaborators [27], proposed data-driven models that can
enrich coarse cloth simulation with fine details from data. While our
data represents a human body rather than cloth, we think those tech-
niques can further extend our work in the future, by combining data
with synthetic or captured cloth data.

Cloth-Body Collision. The second type handles cloth-body colli-
sion by using synthetic depth maps. Due to their compatibility with
the standard graphics pipeline, these techniques [23, 28, 20] can be
accelerated by graphics hardware and are often used in GPU-based
cloth simulation systems. For more accurate collision detection, 3D
distance fields can also be efficiently constructed by GPU acceleration
as Sud et al. [40] and Morvan et al. [31] demonstrated. Since these
techniques considered depth maps (or distance fields) as intermediate
representations from known body shapes, they could easily construct
multiple depth maps from the input mesh model, and thus provide sur-
face normal information to improve collision accuracy.

2.3 Virtual Try-On

Compared with the previous two problems, virtual try-on and person-
alized 3D garment design is a much less studied problem. Most ex-
isting systems treat virtual clothing as static texture patches and use
image-based rendering techniques to virtually drive the cloth [21].
Many methods rely on a pre-captured database with subjects in a
large variety of poses to find a best match and perform local refine-
ment [12, 41, 52, 22]. While these methods, to a large extend, ignore
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Fig. 3. Our skeletal template and its joint twists. The vector w is the orien-
tation of the rotation axis corresponding to &;.

the interaction between users and the clothes, some pioneered this area
by combining real-world data with physically based cloth simulation.
There are two main strategies to animate virtual clothing in a virtual
try-on system. A straightforward and robust way is to create an avatar
that has the same body shape as the user, and then simulate virtual
clothing on it. The body size can either be specified by the user in-
put [32, 15, 43], or using depth sensors [39]. While these techniques
can accurately model virtual clothing on a static body shape, they can-
not easily handle body motions. The triMirror system [43] simulated
virtual clothing on a moving avatar, whose motion was controlled by
the user’s skeleton pose. However, as its result showed, their system
seemed to use a pre-defined avatar which did not exactly match the
user’s body shape. Alternatively, it is preferable to obtain body shape
from depth data. One such example is the Fitnect [14] system. While
it successfully animated part of the clothing by body motion, the rest
still needed to be static. In addition, it only treated clothes as a piece
of cloth in front of the user, and it had difficulty in forcing the clothes
to follow body motion exactly. Compared to the existing methods,
our system can effectively capture the pose and shape of the user, and
provide realistic cloth simulation.

3 TempLATE-BASED Pose TRACKING AND SuRFACE FITTING

For the virtual try-on application, it is important to accurately capture
both the pose and the shape of the subject in order to realistically simu-
late the clothing. Our tracking method is most similar to [16] and [24],
using a twist-based pose representation. However, we propose a set of
constraints that are experimentally found to be effective for handling
monocular data and therefore improve the robustness of the tracker.
Moreover, our linearization of the exponential map better satisfies the
small quantity requirement for first-order approximation compared to
[16] and leads to linear optimization compared to the nonlinear one
in [24]. There are three components in our tracking system: twist-
based pose estimation, surface adaptation and body size estimation
during initialization. In the following sections, we first describe our
template and the twist-based deformation model, then our pose esti-
mation method, and finally the shape and body size adaptation.

3.1 Twist-based Deformation Model

Our template model consists of four elements: surface vertices V =
{v?li =1,---,m}, surface connectivity ¥, skinning weights A and an
underlying skeleton 7 with 19 joints. The surface mesh and skeleton
are shown in Fig. 3. The joints of the skeleton form a tree structure,
which is called the kinematic tree. In general, a pose is defined as the
3D transformations of the joints. Similar to [5, 17], we represent a 3D
transformation 7' via an exponential map:
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Here & is the 4 x 4 matrix form of the twist £ (a six dimensional vector
representing the location and orientation of the rotation axis), while 6
is the angle of rotation around £. The advantage of this representation
is its simplicity in linearizing the transformation with respect to the
rotation angle 6§, which leads to linear optimization for pose tracking.

Given the template model in a reference pose, the set of rotation axes
are pre-defined, represented as the set of twists =& = {&lk=1,---,n}.
Therefore, a pose (®) of the model is defined by the set of joint angles
{Olk = 1,--- ,n} corresponding to each of the twists, as well as the
global transformation £,. In practice, one joint might have more than
one degree of freedoms, therefore is related to more than one joint
twists and angles. For simplicity, we can treat each < &;,6; > as a joint.
Without lost of generality, we assume the indexes of parent nodes in
the kinematic tree are smaller than those of their children.

With an articulated motion model, the position of a vertex under pose
O is obtained through the product of the exponential maps:

n
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where b(i) denotes the index of the bone in the kinematic tree that
vertex i belongs to. The indicator function 6,4 equals to 1 if joint p
is the same as ¢ or is one of the ancestors of joint ¢ in the kinematic
tree. (Note that in this paper, for notation simplicity, the vector v could
represent a homogeneous or an inhomogeneous coordinate, whichever
is appropriate depending on the context.) For sequential motions, if the
change in pose is relatively small, we can approximate the movement
of a vertex with first order linearization as follows (see Appendix A):

n
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The definition of /{ can be found in Eq. 33. The vector A&, and the
quantities {AGf } are the changes of global transformation and local ro-

tation angles, as defined in Eq. 25. The matrix & 2 is the coordinate
transformed twist (in matrix form) as defined in Eq. 31. Notice that
this derivation is different from [16], as they directly linearize each
exponential map around the rotation angle €', which is not necessary
small. However, Eq. 3 can be considered as the formulation in [5]
extended to 3D.

As the deformation of human body is better modeled by Linear Blend-
ing Skinning (LBS) than articulated deformation, we further extend
this formulation to skinning meshes. With LBS, the deformation of a
vertex is represented as a linear combination of transformations from
several controlling joints:

vi(©) = iai,j(e"fg ﬁetgkvb(i)gkgk)v? @)
Jj=1
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where {«; ;} are the skinning weights in A which is one of the four
elements of our template model. Eq. 3 can then be extended to this
linear skinning model (see Appendix B):

n
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k=1
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Here the weight g; x € [0, 1] reflects the influence of the joint k on the
vertex i, by accumulating skinning weights from all the children of
joint k in the kinematic tree.

3.2 Pose Tracking via Closest Points

The goal of pose tracking is to estimate the change in pose given the
current configuration ®' and an observation of the surface vertices in



a new configuration ®*!. Therefore, if the surface point correspon-
dences between these two poses are given, we can use Eq. 5 and esti-
mate the change of pose by minimizing the following energy function
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where target surface point v;(©*!) and its correspondence ¢/*!

weighted by u);”. Since v;(®') is known, the change of pose

(A€ ,AH;(} can be obtained by solving this linear equation.

are

In reality, the true correspondences are not known a priori and there-
fore should be estimated. Similar to [16] and [24], we adopt the sim-
ple yet popular Iterative Closest Point (ICP) strategy. Consequently,
Eq. 8 is solved iteratively with the point correspondences updated at
each iteration. The strategies used to find correspondence are very
important to the performance of the tracker. Rusinkiewicz et al. [35]
conducted comparative studies of several alternatives for each com-
ponent in the ICP framework for single rigid object registration. We
also investigated these options and found that the following strategies
worked well in our case:

1. 3D closest point for correspondence finding;
2. Distance and normal thresholding for correspondence pruning;
3. Rejection of correspondences containing edge points.

The projection based scheme used in [16] is found to be more sensitive
to occlusions and therefore discarded. KD-tree is used for speeding up
the closest point search.

In order to make our system more robust in accommodating monocular
data, we additionally propose the following strategies:

1. Visibility constraint;
2. Relaxed bijective consistency constraint;
3. Edge-to-edge correspondences.

Notice that we first reject correspondences containing edge points fol-
lowing the suggestions in [35], and then explicitly construct edge-to-
edge point correspondences. Such choices are designed to avoid cor-
respondences between inner points and edge points that sometimes are
problematic. A typical situation is when part of the body moves out of
the view and false edges are created at the boundary. This constraint
can avoid the matching of these points and thus help the tracker bet-
ter deal with such partial observation. In the following, we will first
discuss the first two constraints for pruning correspondences and then
demonstrate how we use the edge-to-edge correspondences to better
guide the tracker.

The visibility constraint means only visible points are used to construct
point correspondences. On one hand, this strategy is important for
dealing with monocular data by avoiding plenty of unnecessary com-
putation and erroneous correspondences containing invisible points.
Similar to the rejection of inner-to-edge correspondences mentioned
above, the visibility constraint prevents the part of body that is out of
camera view from causing errors. On the other hand, this constraint
might reduce the power to handle large rotations, in which case the
invisible points close to the visibility boundary are important for driv-
ing the surface towards its correct orientation. Therefore, we relax the
constraint by including points close to the visibility boundary. More
specifically, we render a depth map for the surface mesh and reject
points whose projected depths are larger then the corresponding ren-
dered depths by a certain threshold.

The relaxed bijective consistency constraint is designed to prevent the
local closest point search from driving a surface vertex towards an
observed point that is from another segment. Originally, the bijec-
tive consistency constraint requires a pair of points to be closest to

Template Observation Observation

Template

(a) Visibility Constraint (b) Relaxed Bijective Consistency Constraint

Fig. 4. 2D examples illustrating the effectiveness of two of our constraints.
The arrows connect a point to its closest point on the other surface. In
(a), the dash lines representing occluded regions. The visible points (black
circles) attempt to move to the right as desired; while the invisible points (the
gray circles) tend to move the surface upward and could lead to incorrect
local optima if not excluded. In (b), since p; and p, belong to two different
segments, our relaxed bijective consistency constraint will reject < py,v; >,
so will the original version. However, the pair < p3,v, > will also be rejected
by the original version. By contrast, our relaxed version will accept it, and
therefore, could guide the tracker more effectively.

(b) Advantage of our two stage
edge correspondence search

(a) True (green) and false
(red) edge points

Fig. 5. Edge point correspondences. (a) The false edge points due to self-
occlusion are not used as they do not correspond to true shape boundary.
(b) The dash lines represents projection, and the red dash circle indicates
the range of candidate points to match v based on 2D measurement. With
closest point in 3D, v is matched to a noise p;. With closest point in 2D, it
is matched to p,. With our two stage approach, it can be mapped to the
point p3 on the correct target. However, it cannot handle the situation that
projection of p; or p; lies in the red circle. In most cases, it is better than
direct 3D or 2D closest point strategy.

each other among their own point sets to be considered as a corre-
spondence [51]. However, this strictly bijective consistency constraint
could be sensitive to noises and generally requires a relatively large
number of iterations to converge. To overcome this limitation, we pro-
pose a relaxed bijective consistency that considers the consistency of
joint belonging. Such constraint between a pair of points < v;,¢; > can
be expressed as

b(i) = b(f(c;)) (C)]

where b(i) denotes the index of the joint that vertex i belongs to, and
f(c;) represents the index of the closest point of ¢; on the surface mesh.
This constraints requires that the closest point of the observation ¢; on
the surface mesh and the given surface vertex v; belong to the same
body segment. One could further set distance or normal thresholds
between these two points; although we do not find this critical as evi-
denced by experimental observations. For our skinning mesh, we de-
fine b(7) as the joint with maximum skinning weight for vertex i. Fig. 4
illustrates how the proposed constraint can prevent incorrect match-
ing situations while still preserving effectiveness in identifying correct
ones.

Besides the correspondences between surface points, we further en-
force edge constraints to guide the tracker, similar to [17, 16]. First of



all, edge points are extracted from the depth maps of the observed sur-
face as well as our surface mesh. Edges that are not on the silhouette
boundary are mainly due to self-occlusion. For these edge points, we
only keep those points from the closer part, and ignore the occluded
part as they do not correspond to real surface boundary, as shown in
Fig. 5(a). For each of the template edge points, we find ks nearest
points in the 2D image plane, and keep the one closest in 3D space for
reasons illustrated in Fig. 5(b). The distance and normal thresholding
are again applied. However, in this case, the normals are 2D normals
computed from the edge contour, instead of 3D vertex normals that are
generally inaccurate for edge points of the observed surface.

With a set of edge point correspondences {< Vi(G)t),C?'l >lie &)
extracted, the edge constraint requires the projections of the surface
points to lie on the projections of their correspondences, denoted as
(< u(cﬁ”),v(cl’f'l) > |i € &'}. Given the projection matrix P, the edge
constraint can be formulated as [17]

1 1y 03 41y, p3 _ o1
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where pl. is the i row of the first 3 x 3 sub-matrix of P, and p! is the

i element of the fourth column of P. For simplicity, we denote the
2 %3 matrix on the left-hand side as Hl?” and the 2D vector on the

right-hand side as h;”. Since we want the vertex positions under a

new pose @1 to satisfy this constraint, we can combine Eq. 5 and
Eq. 10 to form the edge energy function:
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Our final tracking energy function consists of a weighted combination
of Eq. 8 and Eq. 11, as well as a regularization term that penalizes large
pose change which is required according to the first order linearization:

n
E = Eg+ A Ee+ (AP + > IAG1P) (12)

k=1

The relative weight A, is set to 1, and A, is set as the inverse of the max-
imum of input depth map size in our experiments to avoid dependency
on image size. For each new frame, this energy is iteratively optimized
until the maximum movement of visible surface points is smaller than
a given threshold, which is empirically set to 3mm in our experiments.
Table. 1 summarizes the set of constraints and the parameters used for
point matching in our tracker. The per-vertex weights {w;} and {7;} are
currently set to 1 for points that satisfy these constraints and O other-
wise.

Distance | Normal | Ignore Visibility | Relaxed

boundary bijective
Surface | 200mm | 60° Yes Yes Yes
Edge 200mm | 90° No N/A Yes

Table 1. The constraints and parameters used for point correspondence
construction.

3.3 Surface Geometry Adaptation

After the pose has been estimated, the surface model should be fitted
to the shape of the observation to ensure consistency between the final
simulated clothes and the shape of the subject. We utilize both the cap-
tured surface geometry and edge information for this task. Note that
the edge information from depth data is richer than silhouettes from
color images. We rely on the same energy functions as in our pose
tracker, namely Eq. 8 and Eq. 11. In general, the surface vertices are
allowed to move in any direction. However, we constraint the move-
ment of a vertex to be along its normal direction to partially overcome

the ambiguities in monocular data. In fact, this constraint can partially
prevent over-fitting the template to deformations of clothes. Therefore
we only need to estimate the magnitudes of the movement, i.e. the
displacements {d;}. The energy function due to point correspondences,
with the updated pose, then becomes

m
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with Hf” and h;” defined in Eq. 10. The values of the per-vertex
weights {wf”} and {T?l} are the same as in the pose tracker. Notice

the vertex normals {nﬁ“} are always calculated from the original sur-
face mesh without displacement and then rotated based on the current
pose. This strategy is designed to prevent surface distortion due to
accumulated drifting in a long sequence of motions. Since before the
fitting stage, the template mesh has been aligned to the observation
with the estimated pose, we use a smaller distance threshold (50mm)
for all correspondences, as well as a smaller angular threshold (60°)
for edge correspondences. Similarly the global weight /lg“ is set to 2
to favor the edge correspondences.

Since this fitting process is performed for each frame independently,
the fitted surface mesh might suffer from temporal jittering. This will
eventually produce visual artifacts in cloth simulation. Therefore,
we add another three energy functions to enforce temporal and spa-
tial smoothness. The first term penalizes the distortion of the surface
geometry via vertex Laplacian coordinates [17]; while the other two
terms directly minimize large displacement changes temporally and
spatially, respectively. The energy functions are defined as:

m
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Notice the first term is equivalent to minimizing the discrepancy of the
Laplacian coordinates of the surface vertex with and without consid-

ering the displacement. ,uf and a'izt are the mean and variance of the
estimated displacements for vertex i up to frame 7. One could alter-
natively measure the difference of displacement magnitude between
consecutive frames. However, it does not prevent the surface from be-
ing overfitted in the presence of severe occlusions. Instead, our energy
function forces the displacements to stabilize after sufficient observa-
tions are made, while still allowing flexibility for regions that are not
rigid via the variance-based weighting. Both the means and variances
are updated in an online fashion.

Our final fitting energy is then the weighted combination of all the
terms defined above:

fit _ pfit | ofitpfit | ofitzfit | ofit oAt
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with empirical settings of /l?‘ =4, = 6 and A = 2. The term E,

is set to take effect only after a certain number of frames (20 in our

experiments) so that the means and variances are better estimated. For

each frame, after the displacements are estimated, they are incorpo-

rated in the skinning model for pose estimation for the next frame. As

the shape consistency increases via this fitting process, the accuracy of

the pose estimation is also improved. Fig. 6 shows two examples of
adapting the shape of our template model to the observed meshes.
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Fig. 6. A male (left) and a female (right) example showing the surface es-
timation results. The first row shows the template without displacements
overlayed on the input, while the second row shows the one with displace-
ments. The highlighted regions demonstrate its effectiveness.

3.4 Body Size Adaptation

Generative approaches generally need to address the issue of body
sizes variations between the template and the subject. The effec-
tiveness of a pose tracker usually relies heavily on such consistency.
Our method iterates between updating the pose and adjusting the limb
lengths, similar to [19]. We utilize the differential bone coordinates
introduced by Straka et al. [38]. While their method results in non-
linear optimization when incorporating constraints for limb lengths
(e.g body symmetry or fixed lengths for some limbs), our method is
always linear.

The differential body coordinates is defined by Straka et al. [38] in a
way similar to the Laplacian coordinates:

n
’]1 = Zai,k(vl -
k=1

where {«;} are the skinning weights, g; and d; are the position of
joint k and the vector from its parent joint to gy, respectively. The
coefficient y;y is chosen such that the line between v; and 5, is or-
thogonal to the bone vector d;. Each vector 5, ; encodes the relative
position of the vertex v; to bone k, while the differential bone coordi-
nate 77; accumulates over all the controlling bones of this vertex.

(g~ (1-7ix)dy)) (18)

To adapt the limb lengths of our template model to the observation in
pose @', we estimate a scale for each limb so that the scaled surface
mesh best matches the observation. With the set of scales S = {s;}, the
bone vectors under the given pose then become {Skdi} and the joint
positions can be computed as

n
2:(0,,8) =g, (@) + Z o j,ijd§
j=1

19)

where g,(@") is the global position (position of the root) in pose @'.
According to Eq. 18, we can reconstruct the scaled vertex positions
{vi(®!,8)} as follows

Vi@, 8) =+ Y aix(g(®.8) - (1 -yi)sd,)  (20)

k=1

The consistency of the scaled surface mesh and the observation
is again measured via the distance between point correspondences.
Specifically, we use the strategies described in Sec. 3.3 to construct
point correspondences, and then minimize the energies in Eq. 8§ and
Eq. 11 parametrized on the scales:

ES= i e(vic,9)- <) ‘2 N CATCES -h§)”2 Q1)
i=1 €&

By substituting Eq. 20 into Eq. 21, we obtain the following energy
function (see Appendix C):

= i ”wi(zn:pi,kSkb;( +1;+g.(0") - Ci)“2
+ 45 Z'

23]

T H(Zp,kskbk+n,+gr<® ) @

where the weights {p; x} are defined in Eq. 36.

In addition, we add a regularization term that enforces scale consis-
tency between a set of pre-defined bone pairs 8 = {< jk >} . The
consistency enforces symmetry, e.g. left leg vs. right leg, as well
as connected bone consistency, e.g. left upper leg vs. left lower leg.
Therefore our final scale estimation energy function can be written as:

$ X K 2
ES=ES+ 08 Z vja(sj— i)
<jk>eB

(23)

In our experiments, we set the weights {v 4} to 1 for body symmetry
constraints and 0.5 for the connected bone consistency. To perform the
body size adaptation, our method iterates between the pose estimation
and the scales estimation. However, we require each step to converge
before switching to another one (see Algorithm 1). This procedure is
more stable and effective than switching at each iteration. The body
size fitting is performed only during initialization for each subject to
prevent over-fitting in the tracking procedure, for example due to par-
tial observation. Fig. 7 shows an example of the template scaled to
fit to the observation. The pose in this figure (the calibration pose) is
preferable for the scale estimation as it implicitly encodes the position
of the real joints and therefore helps to provide correct estimates of the
scales.

3.5 The Tracking Pipeline

For a new subject, our system starts with the body size adaptation and
then moves to the regular tracking-fitting procedure. In general, both
a global transformation and a rough initial pose should be given due
to the local nature of our method. The initial global transformation
can be estimated via principal axes if the entire body of the subject is
observable; via other discriminative approaches [50, 36]; or simply via
human interaction. We do not intend to address this general problem
but instead assume the rough initial alignment is given. As for the local
body pose, we assume the that subject starts with a T-pose. However,
as long as it is not dramatically different from the starting pose of
our template, our tracker is able to drive the template to the initial
subject pose. In practice, a frontal view pose is preferable due to its
relatively small ambiguities. The entire pipeline of our tracking system
is summarized in Algorithm 1.

4 Boboy-Guipep CLOTHING SIMULATION

After we capture the human motion from a sequence, we use them to
guide clothing animation in physically based cloth simulators. Since
physically based cloth simulation is known for its large computational
cost, we need to find a good balance between the simulation quality
and the computational cost. Our idea is to incorporate two simulators
into our system: a realtime cloth simulator for interactive preview pur-
poses and an offline cloth simulator to generate high-quality clothing
animation. At the beginning, the user chooses the realtime simulation
mode to quickly examine how clothing behaves when it is draped on
his/her body. After that, if the user would like to check more clothing
details, he/she can switch to the offline simulation mode, under which
the system generates either a high-quality clothing shape under a static
pose in a few seconds, or the whole high-quality clothing animation in
minutes or even hours.



Data: Captured surface sequence, template model, calibration
pose ®° and initial tracking pose @°.
Result: Scales S, body poses {®'} and displacements {dl? }.
begin Body size adaptation
Initialize the template with pose ®¢ and Scales S’ = {1}
while Scales S not converged do
Update template with scales S
while Pose not converged do
Construct correspondences
‘ Estimate pose via Eq. 12
end
while Scales S’ not converged do
Construct correspondences
‘ Estimate scales via Eq. 23
end
SetS=8

end

end

Initialize the template with pose @° and scales S
for Each frame t do
while Pose ® not converged do
Construct correspondences
Estimate pose via Eq. 12
end
Construct correspondences
Estimate displacements via Eq. 17
Update template with the displacement;

end

Algorithm 1: Our pose tracking pipeline.

Near Realtime simulation. Our system needs a fast cloth simu-
lator to simulate clothing motion and cloth-body interaction in near
real time and preferably in real time. A simple yet effective strategy
is to use a coarse mesh to represent each clothing piece. Such low-
resolution cloth simulation cannot generate high-quality details such
as wrinkles and folds, but its efficiency allows the user to quickly ex-
amine the clothing in different poses. In addition, we choose a simple
mass spring model to handle both in-plane and bending deformation
of cloth. We use Hooke’s law to model the spring stiffness and solve
the whole simulation using an implicit time integrator.

Compared with dynamic simulation, a more challenging problem is
how to handle collisions and friction in real time. To achieve that, we
create a set of virtual depth maps from virtual camera views around
the body, similar to the other realtime collision techniques proposed
in [23, 28, 20]. In particular, one of the virtual cameras should be
collocated with our actual camera, and its depth map needs to be in
high resolution to enable accurate cloth-body collisions in that view
for the user to observe later. We note that this depth map should also
be created virtually using the adapted template mesh, rather than using
the raw depth map input, which may contain noises and errors. Once
the algorithm detects a cloth vertex sufficiently close to the body, it
applies a position-based constraint to move it away from the body.
For simplicity, we ignore self intersections and consider cloth-body
collisions only. In practice, we found that self collisions are rare under
low-resolution in many simulation cases.

In the real world, the friction between the clothing and the human body
can be highly complex, especially when the body performs dramatic
motions, such as stretching or kicking. Our previous experience shows
that the use of Coulomb’s law and a small set of frictional parameters,
as in many other simulators, is often insufficient to produce the desired
clothing effects. Specifically, the clothing can either be too “rough”,
which suppresses its movement over the human body, or too “smooth”,
which causes dramatic clothing deformation. Our simple solution is
to introduce a number of anchor points where the clothing piece is
attached to the body. For shirts, the anchors are typically the shoulders;
for pants and skirts, the anchors are typically the waist. We implement

the anchoring points by setting them as position-based constraints on
the clothing, so that the clothing can follow the body properly when
the body moves over time.

Offline simulation.  To produce highly detailed clothing animation
in our offline simulation, we use the implicit Finite Element Method
(FEM) to simulate in-plane cloth dynamics and the hinge edge bend-
ing model proposed by Bridson and colleagues [7] to animate bending
deformation. Our implicit FEM solver is extended from the one de-
veloped by Volino and collaborators [45], which takes both nonlinear
tensile deformation and nonlinear shearing deformation into consider-
ation. As a result, we can incorporate the real-world material proper-
ties from the cloth elasticity database developed by Wang and collabo-
rators [47] into the simulation to produce physically accurate clothing
deformation behavior. Similar to the solver proposed by Volino and
collaborators [45], our solver is not fully linearized and it is not un-
conditionally stable. However, compared with explicit solvers (that
require the time steps to be approximately 10~%s), it can robustly use
orders-of-magnitude larger time steps even when handling highly stiff
woven fabrics, which are commonly used to make everyday clothing.

Given a sequence of topologically consistent meshes, the handling of
the interaction between the clothing and the human body is a rela-
tively well defined problem. Here we use Continuous Collision De-
tection (CCD) [6] to detect and remove both cloth-body collisions and
self collisions of cloth. We do not need to consider self collisions of
the body, which are not supposed to affect the clothing animation re-
sult anyway. To speed up collision handling, we implement collision
culling by using a regular grid data structure for spatial partitioning.
Since the time step used by our simulator is small already, there is
no need to use sub steps for collision handling. In practice, we run
collision handling every three or four time steps, which is approxi-
mately ﬁs. Similar to the realtime simulator, our offline simulator
uses Coulomb’s law to model cloth friction and sets a group of anchor
points to prevent clothing from sliding a large amount.

5 FinAL Imace ComposiTiON

The core of a virtual try-on system is the capability of providing vi-
sual feedbacks to the users. To achieve this, our system combines
simulated cloth with the captured image data, and then displays them
on a monitor. Correct visibility is the key to producing realistic try-on
results. We found that this process can be easily done by using a two-
pass rendering method under the basic OpenGL rendering pipeline. To
begin with, we set the OpenGL projection matrix to be the same as the
projection matrix of the depth sensor. During the first pass, we recover
3D locations of captured pixels according to their depth values, and we
draw them as a combination of the human body and the background,
using captured images as textures in OpenGL. In the second pass, we
simply draw the simulated cloth, and OpenGL takes care of the visi-
bility test using its depth buffer. This process is easy to implement and
runs in real time (>100Hz).

6 ResuLts aAnD Discussions

We tested our system on an Intel Core 15-2500K 3.3GHz CPU with an
NVIDIA Tesla C2075 GPGPU processor. Our input data are captured
using a single Kinect camera with a resolution of 640x480 and sam-
pling frequency of 30FPS . As our tracker does not require the entire
body to be observed, except for the body size adaptation step, there is
no specific restriction on the camera position and orientation. How-
ever, even though our tracking algorithm can deal with some noise, we
do assume the input data are segmented and only the part of the sur-
faces belonging to the subject is provided to our tracker. Assuming the
camera is fixed during data acquisition, we fit a plane to the ground and
remove points that are close to the plane by some threshold (20mm for
our test data). The background can be removed via depth thresholding
in simple scenario. In our setup, we put a curtain on the background
and also use plane fitting to remove the background points, yet with
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Fig. 7. An example showing results of our body size adaptation algorithm.
In the first row, the input mesh, template mesh and template skeletons are
shown together. (a) the initial step of the algorithm. (b) results with only
pose estimation. (c) the adapted results. Notice the improvement for the
joints indicated by the arrows. The second row compares our adapted
skeleton, with the skeleton estimated by Kinect SDK [29]. (d) our skele-
ton (green) and the Kinect skeleton side by side. (e) and (f) comparisons of
these two skeletons with close-up views for the legs and the feet, respec-
tively. Discussions are provided in Sec. 6.1.

a larger distance threshold (200mm). In the rest of this section, we
discuss the performance of both our pose tracker and cloth simulation
components, and then show some final composite results.

6.1 Pose Tracker Performance

The template mesh model we use contains 12894 vertices. The number
of vertices in the segmented input data is generally between 20K and
45K as the distance of the subject from the camera changes. Our track-
ing system is implemented on the GPU using CUDA and processes 40
to 60 frames per second, depending on the degree of change in pose,
i.e. speed of motion. The body size adaptation usually takes less than
100ms to converge and is only performed during initialization. The
overall tracking quality is shown in our supplemental video.

In Fig. 6, we show two representative examples of our surface adapta-
tion results. Notice that when the subject is far away from the camera,
and the captured geometry does not reflect the true body shape, our
method will only attempt to fit to the observation and cannot overcome
this limitation of the sensor. In our accompanied video, the consis-
tency of the adapted template and the captured surface can be visually
checked, which we believe is in general sufficient for our application.

Similarly, our body size adaptation algorithm can effectively capture
the user’s body size as shown in Fig. 7. Our pose tracker can correctly
align the template and the observation in the calibration pose (from (a)
to (b)), despite of the actual pose difference. Secondly, as highlighted
with the arrows in Fig. 7(b) and (c), the refined arm joints are closer
to their true positions, meaning the arms are properly scaled to fit to
the user’s body size. The second row compares our results with the
skeletons estimated by the Kinect SDK [29]. As we can see from the
close-up views in (e) and (f), our estimated joints more properly reflect
the true joint locations, for example of the feet.

6.2 Cloth Simulation Performance

Offline Performance. The clothing meshes used in our offline
cloth simulator contain 20K to 50K vertices. The dynamic simula-
tion time step is typically 1/3600s and collisions are handled every five
time steps. For most examples, each frame takes approximately one
minute to simulate. We note that collision detection and handling is
typically the bottleneck in our simulator and it uses at least 70 percent
of the total computational cost.

Fig. 8. Sample final results on both male and female subjects.

Near Real-time Performance. Our simulator is also able to run at
an interactive rate of 8 to 12FPS, where the clothing meshes are down
sampled to 1K to 2K vertices. Since our data capture system still cap-
tures image data at 30FPS, this means the human body cannot move
arbitrarily fast. The computational cost of this simulator depends on
the resolution of the clothing meshes and the resolution of virtual depth
maps. We note that the result of the low-resolution simulation does not
contain high-quality details as in the high-resolution simulation, even
though it runs orders-of-magnitude faster.

6.3 Composite Results

Fig. 1 and Fig. 8 show some examples of our final results, that are pro-
vided to the user for a virtual try-on experience. As can be seen here,
our system can effectively deal with both male and female subjects,
partial and full body observations. Notice that we use the same tem-
plate model for both cases, and rely on our shape adaptation method
to captured the body shape of the user and eventually provide real-
istic results. The cloth simulation enables our system to deal with
various type of clothes, for example the long sleeve, short sleeve and
skirt (Fig. 8). Notice the realistic simulated wrinkles on the cloth. We
believe such effects can provide a superior virtual try-on experience
compared to many existing image-based methods. More results are
provided in our supplemental video.

6.4 Limitations

Due to the inherent ambiguity for pose tracking using monocular data,
as well as the local nature of our tracking method, our tracker could fail
in some situations. One such case we observed is torso rotation while
the body is only partially observed (Fig. 9). With such a severe occlu-
sion, the point matching is ambiguous because the torso (the majority
of the visible parts) is close to a cylindrical shape. To solve this issue,
one option is to predict the pose with some motion model as in [17].



Fig. 9. A failure case for our pose tracking. The torso of the template (right)
it not properly rotated to fit to the input surface (middle). In addition, the
right arm is problematic as well due to lack of constraint.

Another limitation is the lack of constraints for invisible parts, as also
can be seen from the right arm of the template in Fig. 9. Our visibility
constraint can deal with it in most cases, however a more sophisticated
approach might be to incorporate the free space constraint [19] into our
framework.

7 ConcrusioN AND Future WoRrk

In this paper, we demonstrate the effectiveness of combining a real-
time template-based joint pose and shape estimation, with physically-
based cloth simulation in a virtual try-on system. With our proposed
constraints for pose tracking as well as our novel method for shape
adaptation, our system can effectively capture the motion and shape of
the user, and then deliver realistic cloth simulation results to provide a
virtual try-on experience.

The next step is to speed up the cloth simulation component in our sys-
tem so that we can improve its performance and make it more practical
for live demonstrations. We plan to further investigate into the limita-
tions listed in Section 6.4, in order to better accommodate more chal-
lenging user poses and allow for a better user experience. Our long-
term goal is to build a virtual try-on system, which is more efficient,
accurate, robust, and convenient.

A  Twist+Basep ArticuLaTED DEForMATION MoDEL

From Eq. 2, we have
n

AP I (24)
k=1
Let’s denote the change in pose as:
A Z Mk gt — g Al (25)

With the assumption of small change of pose, we can use the following
first-order approximation to linearize the exponential map:

A x (14 AZ), M & Db (o NLED  (26)

where [ is the 4 X 4 identity matrix. Therefore, we can rewrite Eq.24

as: P . .
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Expand this product and ignore those with product of at least two terms
of changes in angle, i.e. AG;AQ}(, we then get
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With our assumption that the index of a parent joint is smaller than
those of its children, we can define two transformations Mg and T; as

n b .
My = [ [eih = [ [eih, 1) =efmy (29)
k=1 k=1

Therefore Eq. 28 becomes
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The last equality is due to the fact that v;(@") = Tl’)(i)v? and the follow-
ing definition of coordinate transformed twist:

£ = TE(Tp™ 3D
Further expand Eq. 30 and ignore the higher order terms, we get
n n
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k=1
n
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and the operator []x converts a vector to a skew-symmetric matrix.
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Substitute the result in Eq. 32 into Eq. 4, we get
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Plug in the definition of the weights {8; 4} in Eq. 6, we get Eq. 5.

C ScaLes OPTIMIZATION
Substitute Eq. 19 into Eq. 20, we have

n n
vi(@,8) =n;+ Z a’i,k(gr(@t) + Z 6j,k5jd; -(1- Vi,k)skd/t{)
k=1 =1

n n n
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n n
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Define Pi,k =ﬁi,k — a’i’k(l - yi,k) (36)

and plug it into Eq. 35 and then substitute the v;(®,S) in Eq. 21, we
get Eq. 22.
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