Volumetric Homogenization for Knitwear Simulation

Abstract

This paper presents volumetric homogenization, a spatially varying homogenization scheme for knitwear simulation. We are motivated by the observation that macro-scale fabric dynamics is strongly correlated with its underlying knitting patterns. Therefore, homogenization towards a single material is less effective when the knitting is complex and non-repetitive. Our method tackles this challenge by homogenizing the yarn-level material locally at volumetric elements. Assigning a virtual volume of a knitting structure enables us to model bending and twisting effects via a simple volume-preserving penalty and thus effectively alleviates the material nonlinearity. We employ an adjoint Gauss-Newton formulation [Zehnder et al. 2021] to battle the dimensionality challenge of such per-element material optimization. This intuitive material model makes the forward simulation GPU-friendly. To this end, our pipeline also equips a novel domain-decomposed subspace solver crafted for GPU projective dynamics, which makes our simulator hundreds of times faster than the yarn-level simulator. Experiments validate the capability and effectiveness of volumetric homogenization. Our method produces realistic animations of knitwear matching the quality of full-scale yarn-level simulations. It is also orders of magnitude faster than existing homogenization techniques in both the training and simulation stages.

Publication
ACM Trans. Graph. (SIGGRAPH Asia)

Huamin Wang
Huamin Wang
Chief Scientist

My research interests include physics-based simulation and modeling, generative AI, numerical analysis and nonlinear optimization.