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Abstract
In this paper we present a hybrid approach to reconstruct hair dynamics from multi-view video sequences, captured
under uncontrolled lighting conditions. The key of this method is a refinement approach that combines image-based
reconstruction techniques with physically based hair simulation. Given an initially reconstructed sequence of hair
fiber models, we develop a hair dynamics refinement system using particle-based simulation and incompressible
fluid simulation. The system allows us to improve reconstructed hair fiber motions and complete missing fibers
caused by occlusion or tracking failure. The refined space-time hair dynamics are consistent with video inputs
and can be also used to generate novel hair animations of different hair styles. We validate this method through
various real hair examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

With fast advances in digital imaging sensors and computer
vision algorithms, more objects and natural phenomena, in-
cluding buildings, plants, human bodies and even liquid, can
now be captured and reconstructed fully in 3D. The resulting
3D models can be rendered from new viewpoints, in differ-
ent lighting conditions, or with other graphics models in var-
ious graphics and visualization applications. The ability to
create 3D models with little or no user interaction alleviates
one of the central problems in computer graphics: modeling.

Recent image-based hair reconstruction approaches
[WOQyS05,PCK∗08] show that realistic static 3D hair mod-
els can be recovered from regular images. However, ex-
tending their success to dynamic cases is challenging, be-
cause the requirement for high-resolution images or multi-
ple frames under controlled lighting environment [PCK∗08]
is especially difficult to meet under fast hair motion. Even
if one could build expensive high-speed hardware to recon-
struct each frame individually, it is still difficult to maintain
temporal consistency over time.

Our solution to this hair dynamics modeling problem
is to use physically based simulation to improve the low-
fidelity dynamic models. Using a set of synchronized multi-
view video sequences as input, our dynamic hair modeling

system first reconstructs individual hair fibers at each time
instant. Because of the low-resolution images and uncon-
trolled lighting, the individual hair model may have mul-
tiple outliers and inconsistency errors over time. Therefore
we develop a simulation-based refinement method to gener-
ate temporally consistent space-time hair model.

While the idea of combining image-based reconstruction
with physically based simulation has been used to recon-
struct fluid animation from videos (e.g., [WLZ∗09]), the ob-
jective in hair modeling is different. In the case of fluid, the
underlying physics is well defined and the practical con-
cerns are about efficiency, stability, and resolution, which
are also research topics in simulation; in the case of hair,
the complicated interactions among hair fibers are not well
modeled or understood. Recent hair simulation methods are
mainly based on two kinds of models: the mass-spring sys-
tem [SLF08] and the super-helices model [BAC∗06].

Inspired by the hybrid hair simulation method proposed
by McAdams and his colleagues [MSW∗09], we present
our hybrid hair dynamics refinement algorithm using La-
grangian particle-based hair simulation and continuous Eu-
lerian fluid simulation. Differently from the pure physi-
cal simulation, our refinement algorithm is formulated as a
nonlinear optimization procedure. In particular, we use the
particle-based simulation to guide hair dynamics and opti-
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mize them to be consistent with the initially reconstructed
hair sequence as much as possible. The whole algorithm al-
lows us to incorporate fine motions at fiber level, and over-
come the problem of insufficient constraints for multiple oc-
cluded or un-trackable hair fibers.

Our approach is novel in the following ways: (a) since
we use real-world reconstructed data as constraints, we as-
sume fiber collisions have already been included so that we
do not need to explicitly model collisions in simulation; (b)
we find physical parameters of hair fibers automatically from
the data by treating them as variables in the optimization pro-
cess, making it more convenient to control the simulation
compared to adjusting all the parameters manually; (c) we
develop a simple method to generate novel hair animations
of different hair styles using the captured motion.

Our experiments show that the refinement approach can
smoothly recover hair dynamics from input videos, even the
initial image-based reconstruction is noise or detail-missing
in the temporal sequence. For complicated hair styles that
are difficult to reconstruct directly from videos, our method
provides an option for users to drive the static user-specific
hair geometry model using the the reconstructed dynamics
as shown in Figure 7. Since our system requires only reg-
ular multi-view video streams as input, we hope it can be
used in concert with image-based face modeling or perfor-
mance capture approaches. Eventually, the reconstructed hu-
man character model should be complemented with realistic
and dynamic hair, as we typically see in the real world.

2. Related Work

[WBK∗07] presented a survey on hair modeling approaches
during the past decade, including both styling and simula-
tion. A particular category of these approaches, image-based
hair modeling, can be used to automatically generate realis-
tic hairstyles. Recent methods include the multiple-view ap-
proach [WOQyS05] and the hair photobooth [PCK∗08]. Wei
et al. [WOQyS05] propose a multiple-view method to trian-
gulate multiple 2D orientation maps into 3D orientation vec-
tors for visible hair, and then synthesize hair strands via mea-
sured orientations from roots. This approach is automatic
with little user interaction except for hair masks. The prob-
lem is that it can only handle visible hair regions in the im-
age and the result looks like a thin shell. Extended from the
multi-view approach, the hair photobooth method [PCK∗08]
models the 3D orientation as a 3D vector field and then uti-
lizes structure tensors to complete a dense orientation field.
A dedicated acquisition setup is used to measure the orien-
tation on the hair surface. [LLW∗11, LLP∗12] utilize the lo-
cal orientation as a robust matching criterion to recover the
depthmap of hair surface among multiple views and grow
hair in the refined 3D orientation field in a similar way
of [PCK∗08] for each frame. [YWO09] uses Wei’s approach
and applies a temporal smoothing to generate a hair se-
quence. Since their smoothing operator over-constrains the

growth of hair fibers, they can only model a uniform motion
of straight hair on a stationary head.

Early physically based hair simulation approaches include
the original mass-spring system [RCT91] and the projec-
tive dyanmics method [iAUK92]. These approaches typi-
cally treat each individual hair strand as a string of particles
with sufficient degrees of freedom in translation and rotation
and they are not able to handle hair twist. Later, [HMT01] in-
troduces the rigid body chain and models hair contact using
viscosity. [CCK05] simulates rigid body links using guide
hairs with a statistical model. [Had06] uses the articulated
rigid body chain to model hair and foliage. Although rigid
body schemes can model the twist and enforce hair length
preservation, they are usually implicitly involved and diffi-
cult to constrain.

To represent the strand dynamics more accurately, me-
chanical models have been adopted into the graphics com-
munity. [Pai02] introduces the Cosserat model for flexible
rods by representing hair strands using the Kirchhoff model.
[ST07] discretizes the hair motion in the quaternion space
and simulated knots in real time. Bertails et al. [BAQ∗05]
present an energy minimization method to compute equilib-
rium strand positions under external forces. They later pro-
pose the super-helices model [BAC∗06] to handle strand dy-
namics. In this model, each strand is represented by a se-
quence of helices, where the torsion and curvature are used
as general coordinates to control the helix centerline. Fur-
thermore, [Ber09] provides a linear method that reduces the
computational cost of [BAQ∗05] by recursively computing
the inertia matrices from tip to root in an initial pass. Re-
cently, [DBDB11] uses the super-helix model to solve the
dry friction in hair dynamics.

Another trend is to improve the mass-spring system,
[MBTF03] introduces an altitude spring model that can pre-
vent volume collapse and make hair strands tend to recover
to original shapes. Combining the altitude spring with the
mass-spring system, [SLF08] and [SSIF07] demonstrate the
efficiency to generate physically plausible hair dynamics.
We prefer to the improved mass-spring method since it is
more convenient to integrate in our optimization procedure,
although the helices models can have more power in simu-
lating complex hair styles.

3. System Overview

The objective of our hair modeling system is to generate
photo-realistic hair sequence from multiple-view video se-
quences. Figure 2 shows the overall reconstruction pipeline.
We firstly use the existing image-based hair reconstruction
algorithm [WOQyS05] to recover the hair geometry for each
frame. The reconstructed hair is refined in the temporal re-
finement stage, where we use a particle-based simulator to
refine the velocity of each hair fiber and then build the ve-
locity field using the volumetric diffusion method. Eventu-
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Figure 1: The capture system setup consists of seven syn-
chronized and calibrated DragonFly Express cameras at
100 FPS.

ally, we can use the velocity field to polish hair geometry or
generate new hair animation.

Our acquisition system consists of seven synchronized
high-speed Dragonfly Express cameras of a 640× 480 res-
olution at the 100 fps. They are placed approximately over
a semi-circle and pre-calibrated as illustrated in Figure 1. In
the data capture step, we place small markers on the top of
head to help track the global head pose.
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Figure 2: The system pipeline of modeling hair dynamics.

4. Initial Reconstruction

With a clean background, we firstly build the visual hull
for each input frame and define a volume in 3D contain-
ing the whole visual hull sequence. In our experiment, we
use a regular volumetric grid of 2mm voxel edge length. The
hair volume for each frame is further defined as the 3D re-
gion between two shells: the hair outer surface (Shair), which

is a part of the visual hull, and the scalp surface (Sscalp),
which contains the head scalp and hair roots like definitions
in [WOQyS05].

Since Sscalp is not directly observable, we simply assume
that Sscalp is a shrunk version of Shair. In order to get a
better estimate of Sscalp, we let the subject move slowly at
the beginning of the acquisition and define the reference co-
ordinate system using the initial head pose, which can be
tracked from markers. The idea of using more images is to
obtain a tighter visual hull estimate of Shair (and Sscalp).
Once we find Sscalp, the shape is fixed in the entire sequence
and only transformed according to the global head pose, al-
though Shair can change over time.

To track the head pose, we stick markers on the top of
the head and manually label them at the first frame of the
video sequence, and then we track markers using optic flow
algorithms [BA93] in each view. The marker’s 3D position
is them triangulated from multiple images. Let mt

i be marker
i’s position at frame t, we estimate the head motion Ct from
the initial pose to the frame t as follows:

Ct = argmin ∑
mt

i∈Mt

∥∥∥mt
i−Ctm0

i

∥∥∥2
, (1)

in which Mt is the set of successfully tracked markers in
all views at frame t. In our experiment, the set Mt con-
tains at least five successfully tracked markers during the
entire sequence, and the average projection error of markers
in each camera view is less than 5 pixels. For each frame,
we transform the initial scalp Sscalp with Ct to get the scalp
St = CtSscalp.

Hair Fiber Synthesis We uniformly sample hair roots over
the scalp Sscalp, which is tracked according to the head
pose, and then we have temporal correspondences for all hair
roots. But we do not impose temporal constraints during the
hair growing process like the way in [YWO09] by the con-
sideration that temporal correspondences among fibers are
not reliable when the hair motion is large. Instead, we con-
struct the initial hair fibers frame by frame using the basic
strategy in [WOQyS05] and apply further temporal refine-
ment in the next stage.

In the hair fiber synthesis, 2D orientations are firstly ob-
tained using the gradient filter [WOQyS05], and then an
undirected 3D line at a given 3D position can be triangu-
lated from the 2D orientation of the projected location in
multiple views. In our setup, a valid 3D line is reconstructed
when at least three views are available and then assigned to
a voxel. Typically, about 10 percent of the voxels in the hair
volume can be faithfully assigned with a 3D orientation. To
make the field dense, we use the hole filling process intro-
duced by [PCK∗08] to diffuse the volume. The idea is to use
a 3× 3 symmetric tensor matrix to encode each undirected
3D line, which allows tensor linear interpolations, and then
blank voxels can be influenced by their neighbors after suf-
ficient number of iterations.
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With a complete 3D orientation field, we grow each hair
fiber from its root and terminate when a predefined maxi-
mum length is reached, or when the fiber reaches the outer
boundary of hair volume. Since the 3D orientation is undi-
rected, the real direction is picked to be the one having a
smaller angle to the previous direction. More implementa-
tion details can be found in [PCK∗08].

After the fiber synthesis, we suppress outliers in two
ways: the first is to project the reconstructed hair fiber back
to images and then validate it according to 2D orientations;
the second is to define a vector field and use an iteratively
weight-changing scheme in [WYZG09], which enforces the
direction towards the most common one in each voxel and
improves the consistency among adjacent fibers.

Spatial Smoothing Before we use the synthesized hair fiber
as input to our temporal refinement stage, we perform a spa-
tial smoothing to all the fibers, because the physically based
simulation can easily fail due to the data noise accumula-
tion and the synthesized fiber does not guarantee enough
smoothness even though we grow each fiber segment at the
smoother direction. Given the synthesized hair fiber x̃t at
time t, we uniformly sample the fiber by a certain edge
length (5mm in our experiment) and denotes the nt particles
{x̃t

i}, i = 1, . . . ,nt as anchor points. The smoothing process
on each fiber is to minimize the following energy functional:

min
xt

(1−ws)
nt

∑
i=1

∥∥xt
i− x̃t

i
∥∥2

+ws

nt

∑
i=2

∥∥(xt
i−xt

i−1
)
−
(
x̃t

i− x̃t
i−1
)∥∥2

,

(2)
in which ws is a smoothing weight balancing the data term
and smoothness term and we choose ws = 0.5 in our ex-
periment. The least square minimization is equivalent to a
linear equation and hence we can solve new positions {xt

i}
of all points. The total effect is to bend the fiber smoothly
from root to tip while maintaining the original shape. After
smoothing all the fibers, we trim a fiber in the sequence (i.e.,
{xt}, t = 1, . . . ,nt ) to a fixed number of points and take the
result fiber sequence as the input to our temporal optimiza-
tion algorithm in the following section.

5. Hair Dynamics Refinement

In this section, we introduce the hair dynamic refinement
scheme using hair simulation, which deals with the evolu-
tion of states: positions x, velocities v and accelerations a
from time t to t +1. The implicit time integration [BW98] is
preferred to handle highly stiff spring systems. In our tem-
poral refinement scheme, we firstly use a mass-spring sys-
tem [SLF08] to individually match the fiber motion observed
from the input data and then generate the velocity field in the
whole volume using a fluid-dynamics method. We note that
the mass-spring simulation only deals with the behavior of
individual fiber for efficiency and the fluid simulator mim-
ics effects such as air friction and hair collisions. After the
refinement, we will get a continuous velocity field in tempo-

(a) A mass-spring configura-
tion

(b) Altitude springs

Figure 3: The tetrahedron in (a) has edges, bending and tor-
sion springs. Point-face and edge-edge altitude springs are
placed in (b). In total, there are 4 pairs of point-face and 3
pairs of edge-edge springs.

ral sequence, which allows one to combine with other hair
styles to synthesize new animation.

5.1. Mass Spring Model

We develop our simulation based on the mass-spring model
for two considerations: (a) mass-spring systems formulate
the relationship of each state both explicitly and linearly,
thus easily to combine with various external constraints; (b)
complicated physical models such as elastic rods are not
necessary since we have already obtained guide informa-
tion from videos and do not need to generate a pure physi-
cally based simulation. For the purpose of completeness, we
briefly describe the kinematics of a mass-spring system and
how to solve its dynamics. The reader can refer to [SLF08]
for a detailed configuration.

We formulate each hair fiber as n mass points, where each
particle is driven by the gravity and internal forces generated
by four kinds of damped springs. An edge spring is placed
at every edge to preserve the edge length. A bending spring
connects between every other particles to present the bend-
ing ability. A torsion spring that connects each particle to a
particle three particles away from it models the twist effect
(see Figure 3a). To prevent volume collapse, seven altitude
springs are place in every tetrahedron of four consecutive
particles as shown in Figure 3b. The force of each altitude
spring contributes to each vertex of the tetrahedron via the
barycentric coordinates of the endpoint.

The total internal force on each particle is the sum of
elastic forces from these four categories of damped springs.
Since we have already known the head motion during the
data capture, we simply ignore the external force on fiber
roots and transform the fiber root using the head motion.
During our simulation, the gravity is always constant to-
wards a pre-calibrated direction. In addition, a viscous drag
force, which is opposite and proportional to the velocity, is
added to each particle to approximate the air friction.
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5.2. Local Particle-based Optimization

The purpose of the local optimization is to move forward a
certain fiber in a local temporal window as similar as the re-
constructed data. The goal is two-fold: (a) to find the proper
parameters that drive the correct motion, and (b) to refine
the simulate geometry according to the reconstructed fibers.
We use the stacked column vectors to represent positions
and velocities of n particles in a fiber: x = [x1,x2, . . . ,xn]

T ,
v = [v1,v2, . . . ,vn]

T . Suppose we choose a temporal win-
dow of size s and have s+ 1 reconstructed fiber positions:
x̃0, x̃1, . . . , x̃s. Picking an initial fiber x0 = x̃0, v0 = x̃1− x̃0

and choosing an initial guess of stiffness parameters, we can
perform the particle simulation in a Back-Euler scheme with
a fully implicit integrator to get s+ 1 simulated fiber posi-
tions x0,x1, . . . ,xs:

(
I− ∆t

m
∂f
∂v

∣∣∣
t
− ∆t2

m
∂f
∂x

∣∣∣
t

)
∆v = ∆t

m

(
ft +∆t ∂f

∂x

∣∣∣
t
vt
)
,

vt+1 = vt +∆v,
xt+1 = xt +∆tvt+1,

(3)
where the m is the particle mass, which we set to a unit and
∆t is the simulation time step, which is 0.002 second in our
experiment. Since all the forces can be expressed by fiber
state and the parameters of springs, our goal is to find these
parameters by minimizing the difference between the recon-
structed and simulated fibers:

p = argmin

{
φ :=

s

∑
i=1

wi

∥∥∥xi− x̃i
∥∥∥2
}
, (4)

where wi is a Gaussian aging factor and the fiber differ-
ence is computed between the stacked column vectors. The
nonlinear optimization provides refined parameters and a se-
quence of simulated fibers, matching the reconstructed data.
In the idea case, given the initial state and proper parameters,
we shall be able to simulate the whole sequence of dynam-
ics. But in real world the dynamics of hair is complex, not
only affected by intrinsic forces but also from some exter-
nal forces like wind, hair friction and collisions. The sim-
plification of intrinsic parameters and external interaction
would make the simulation inaccurate. For instance, colli-
sions may act as the main force on a fiber and disobey our
simulation 3. Furthermore, due to the error accumulation, it
becomes harder to control the exact motion in a longer pe-
riod. To make the optimization 4 converge, we choose a local
temporal window of a small size 5 and spread the local opti-
mizations among the whole sequence by moving the tempo-
ral window forward. Once completing the optimization for
the whole sequence, we update each fiber position x̃t to the
average position of corresponding simulated fibers that are
generated in all possible windows. Taking the updated posi-
tions as reconstructed positions, we repeat the process until
satisfied results show up. The whole optimization pipeline is
shown in Figure 4.

One should note that each local optimization is still a

Figure 4: The pipeline of our local optimization stage. Each local
window contains a nonlinear optimization. Positions are updated as
the average of fibers in all local windows. And then result positions
act as the initial positions for the next iteration.

nonlinear minimization problem with respect to spring pa-
rameters. Given the initial guess of user-specific parameters
p0, we use the limited memory quasi-Newton optimization
method (LBFGS) [ZBLN94] to solve this problem. The in-
volvement of simulated frames and implicit method make it
hard to compute the gradient ∂φ/∂p directly by finite differ-
encing. We choose the adjoint method for gradient compu-
tation, which is widely used in simulating fluid [MTPS04]
and cloth [WMT06] and turned out to be efficient to com-
pute gradient implicitly. When the nonlinear optimization
stops at a local minima, we does not guarantee to obtain a
result matching exactly with the reconstructed data but the
fiber motion is smooth in temporal as we show in the result
section.

5.3. Volumetric Diffusion

The above simulation-based refinement scheme treats each
individual hair fiber independently. In order to generate a
continuous velocity field over space and time, which can be
used to refine the existing hair motion 5.4 and generate new
animation 5.5, we propose a diffusion step similar to the vis-
cosity convection in fluid simulation. Using the hair volume
grid defined in section 4, we set the initial value of each cell
to the average velocity of all fiber passing through and ze-
ros at elsewhere. Given a grid cell x and its velocity value
v, we update the velocity field on the hair volume grid as
following:

v(x) = (1−6s)v(x)+ ∑
y∈N(x)

sv(y), (5)

where s is a spatial smoothing kernel and specified according
to the expectation of the velocity spatial smoothness, and the
sum accounts for the grid cell’s six immediate neighbors.
5.4. Refining Hair Animation

From the above velocity field, we can improve the quality
of temporal coherence using interpolation. First, we define a
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Fiber Recon. Time Total Opt.
Hair Style Count /Frame Time
Straight 7421 16min 1hr
Long Straight 7403 20min 1hr
Curly 7992 22min 2hrs

Table 1: Performance of modeling various hair dynamics.

Hair Style Particle Count Avg m/frame total time
Textured Curly 240k 0.5min 1hr
Helix Curly 620k 1min 2hrs

Table 2: Performance of simulating new hair animation us-
ing the captured velocity field.

warped intermediate state _x = δ(x,v), and the warping func-
tion δ is to solve the following minimization:

n

∑
i=1

si

∥∥∥_xi− (xi +∆tvi)
∥∥∥2

+ sl

n−1

∑
i=1

(∥∥∥_xi+1−
_xi

∥∥∥− r
)2

, (6)

where r is the rest length constant (5mm in our case) and sl
is a common weight for each segment to preserve the length,
si is set to the same for all vertices except for a large value s1
to fix the root. We choose sl ,si = 0.5 in our experiment and
set s1 = 100 at the fiber root. The velocity vi is the accessed
at location of xi in the velocity field.

Considering each fiber between two temporal neighbors,
we then define two predicted intermediate positions x− =
δ(xt−1,vt−1) and x+ = δ(xt+1,−vt+1), the optimized x is
linearly interpolated using a relaxation coefficient γ(≈ 0.25):

x = (1−2γ)x+ γ(x++x−). (7)

5.5. Generating New Animation

The velocity field sequence also allows us to generate new
hair animations efficiently via hair simulation. Given a new
hair style, we evolve the hair state according the captured
velocity field, which may also be treated as temporal ex-
trapolation of positions and velocities. First, we align hair
roots to our captured scalp by the iterative closest point (ICP)
method and project them onto the scalp. Starting from time t,
we find velocities of all particles in the hair using the veloc-
ity field of time t, and then simulate the fiber motion by us-
ing the Back-Euler formula 3 or choosing a semi-Lagrangian
scheme [SLF08] due to its efficiency and fast convergence.
Once obtaining positions at t +1, we can access the accord-
ing velocities in the velocity field of time t + 1 to update or
interpolate velocities in next step simulation. We show the
capability of simulating complex hair styles using our re-
constructed velocity field in the result section.

6. Results

In this section, we present the results of reconstructed hair
dynamics from videos and the new hair animation driven by

Figure 6: The quantitative evaluation using manually labeled sk-
tetches (top-left). The projections of the groundtruth, reconstructed
and optimized fibers onto the image view are plotted in Red,
Blue and Green respectively in the top-middle. The rendered 3D
strands are shown in the top-right. The length change of the longest
fiber is shown in the bottom before ([132.8,522.1]mm) and after
([345.3,368.3]mm) the optimization.

the captured velocity field. The whole sequence videos are
contained in the supplemental material. All the system per-
formance (in Table 1 2) are evaluated on a single quad-core
PC of 3.20GHz CPU and 16GB memory.

Quantitative Evaluation We validate our local optimiza-
tion algorithm using a small set of strands as shown in
Figure 6. We manually sketch 11 strands of a 230-frame
video sequence in three calibrated views and triangulate 3D
fibers as the groundtruth fibers. In each view, 2D orientations
are estimated near every sketch strand (less than 4 pixels)
and the reconstructed 3D fibers grow from each sketch root
point and terminate when 2D orientations are unavailable.
We take reconstructed 3D fibers as inputs and compare the
temporal optimized fibers with the groundtruth. The aver-
age distances of the reconstructed and optimized fibers to the
groundtruth are 2.1021mm and 5.1722mm respectively. The
length change of the longest fiber in the sequence is plotted
in the bottom. Our optimization stabilizes the length oscil-
lation of the image reconstructed fibers and also maintains
close to the original shape. We randomly add offsets (less
than 5mm) and render the 3D fibers in the right of Figure 6.

Full Hair Style We present three types of hair styles: the
straight hair, the long straight hair with a wavy end, and
the curly hair as shown in Figure 5. Each example approx-
imately contains 7K to 8K hair fibers. The hair volume is
built in a 220× 190× 210 regular grid and each grid cell
is 2mm-by-2mm-by-2mm. The only user interaction is the
manual correction of hair image mask and head pose track-
ing in the reconstruction stage. Even though they can be au-
tomatic generated by optical flow after initialized in the first
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(a) Straight hair (b) Long hair (c) Curly hair

Figure 5: The full swinging motion of three kinds of hair.

frame, we still manually correct them every 30 frames to
prevent drift.

The performance of each style is shown in Table 1. The
initial image-based reconstruction step typically takes 15 to
25 minutes per frame. We take four processes in parallel
and the total computation time of an entire sequence costs
15− 16 hours. In a local optimization iteration, each fiber
takes an average of 6 seconds to optimize over a 200-frame
sequence. The optimization of independent fibers are per-
formed in parallel, we use 16 threads at a time and it takes
approximate 2 hours to complete 7K fibers. The velocity dif-
fusion step takes two minutes per frame on average for each
style. Since we impose the local optimization to each indi-
vidual fiber with limited storage, this step may be acceler-
ated using graphic hardware in future work. We don’t take
into account of the fiber-body and fiber-fiber collision. Ac-
cording to our experiment, the motion of a long hair near
the scalp surface follows the captured motion well and arti-
facts near hair tips are usually caused by the body collision
and the missing of the reconstruction data. As we point out
in our limitation, how to automatically balance appearance-
smoothing and detail-preserving is still challenging.

New Hair Style We show two types of new hair styles in
Figure 5. One is a "textured" curly hair style combined with
the velocity field of the curly hair; The other one is a "helix"
curly hair combined with the velocity of the long straight
hair style. The performance is shown in Table 2.

To enhance the stability of hair simulation, we up-sampled
the time step to 2×10−3s, that is five times higher than our
capture rate of velocity field. In the end, we only output in
every five frames. Simulation combined with captured ve-
locity field converges fast. Compared with the pure physics-
based simulation, our method avoids the tedious manual ad-
justment of parameters to achieve the similar motion. The

Figure 7: The result of generating new hair animation using dif-
ferent hair styles. The static artist-made models are shown in the left
column. The second row shows the reconstructed hair from videos.
The right column shows the result of combining the artist-made hair
with the hair velocity of the middle column.

same artifact comes from the fiber-body collision since we
don’t model the neck and shoulder part, which will be al-
lowed in our future performance capture work.

Limitation Image-based reconstruction of detailed hair
styles is still a challenging problem, and our system is lim-
ited to the fact that it only refines dynamics and does not
synthesize hair details. Ideally when sufficient hair details
are provided from initial reconstruction results, our refine-
ment algorithm is able to generate results with both details
and physics accuracy. In practice, however, the quality of
image-based static reconstruction of complicated hairstyles
has room to improve.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.
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7. Conclusion and Future Work

In this paper we present a hybrid framework to reconstruct
dynamic hair models from multi-view videos. Our main con-
tribution is a new refinement approach that combines physi-
cally based simulation with initially reconstructed hair mod-
els from images. Compared with pure physically based sim-
ulation approaches that usually require tedious and inherent
manual parameters tuning to achieve a desired motion, our
dynamic result can efficiently and naturally animate differ-
ent full hair styles with fine details.

Looking into the future, we are interested in improving
the refinement approach even further, so that it can handle
more complicated cases with different hair styles. The ini-
tial image-based reconstruction greatly affects our final re-
sult quality, the numerical evaluation of image-based hair
approach is still open and challenging, and we are looking
for better solutions to this as well. Recovering from realistic
rendered images of a synthetic data is also our future task to
evaluate the approach. How to reduce the computational cost
(by using graphics hardware for example) is another problem
we would like to implement next.
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