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Fig. 1. By leveraging experimental wrinkle theories, our method computes nonuniform mesh resolutions tailored to fabric properties and ensures smooth

transitions across local resolutions introduced by garment-making techniques. Applied to complex garments like shirring dresses and down coats, our approach

delivers visually accurate results while significantly reducing computational costs.

In this paper, we tackle an important yet often overlooked question: What

is the optimal mesh resolution for cloth simulation, without relying on pre-

liminary simulations? The optimal resolution should be sufficient to capture

fine details of all potential wrinkles, while avoiding an unnecessarily high

resolution that wastes computational time and memory on excessive ver-

tices. This challenge stems from the complex nature of wrinkle distribution,

which varies spatially, temporally, and anisotropically across different orien-

tations. To address this, we propose a method to estimate the optimal cloth

mesh resolution, based on two key factors: material stiffness and boundary

conditions.

To determine the influence of material stiffness on wrinkle wavelength

and amplitude, we apply the experimental theory presented by Cerda and

Mahadevan [2003] to calculate the optimal mesh resolution for cloth fabrics.

Similarly, for boundary conditions influencing local wrinkle formation, we
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use the same scaling law to determine the source resolution for stationary

boundary conditions introduced by garment-making techniques such as

shirring, folding, stitching, and down-filling, as well as predicted areas ac-

counting for dynamic wrinkles introduced by collision compression caused

by human motions. To ensure a smooth transition between different source

resolutions, we apply another experimental theory from [Vandeparre et al.

2011] to compute the transition distance. A mesh sizing map is introduced

to facilitate smooth transitions, ensuring precision in critical areas while

maintaining efficiency in less important regions. Based on these sizing maps,

triangular meshes with optimal resolution distribution are generated using

Poisson sampling and Delaunay triangulation. The resulting method can not

only enhance the realism and precision of cloth simulations but also support

diverse application scenarios, making it a versatile solution for complex

garment design.

CCS Concepts: • Computing methodologies → Physical Simulation;

Modeling Methodologies.

Additional Key Words and Phrases: mesh resolution, wrinkle wavelength,

material stiffness
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1 Introduction

Recent advancements in physics-based cloth simulation [Wang 2021;

Wu et al. 2022] have significantly improved efficiency and quality,
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enabling higher resolutions and supporting more vertices. How-

ever, a crucial question remains underexplored: what is the optimal

resolution for simulating a cloth mesh?

Low-resolution meshes fail to capture fine wrinkle details, leading

to visual artifacts like locking, while excessive resolution results in

unnecessary computational overhead and memory usage. Ideally,

high-resolution meshes should be applied selectively in regions with

intricate wrinkle details. As demonstrated in [Wang 2021], simulat-

ing a shirred dress similar to the one in Fig. 1, requires a full resolu-

tion of less than 1 mm, which can take several seconds per frame to

compute, even with GPU acceleration. Since wrinkle characteristics

vary in size and orientation, the mesh resolution should adapt to

these variations, potentially in a non-uniform and anisotropic man-

ner, as shown in Fig. 6. A simple method for determining optimal

resolution involves running a full-resolution simulation followed by

mesh simplification. While this reduces memory usage, it does not

address computational inefficiency. A more practical approach is

to begin with a low-resolution simulation and adaptively refine or

coarsen the mesh [Narain et al. 2012] as wrinkles form. This reduces

computational costs while preserving detail but faces a critical lim-

itation: refinement criteria depend on wrinkles simulated at low

resolution, which may lack accuracy due to insufficient initial detail.

For example, Fig.20(c) illustrates excessive wrinkles persisting on

the lap, while the bottom of the dress remains too coarse to form

sufficient wrinkles for refinement. Furthermore, dynamic remeshing

involves localized, sequential mesh operations that are difficult to

parallelize, limiting performance on GPUs.

In this paper, we aim to address a key question: can we estimate

the optimal mesh resolution for a cloth simulation in the worst-case

scenario once and for all, without performing any preliminary sim-

ulations? Since the optimal resolution is directly tied to wrinkle

size, i.e., the wrinkle wavelength, this question can be reframed:

what is the smallest possible wrinkle wavelength that could emerge

on a cloth mesh during simulation? As established in [Cerda and

Mahadevan 2003; Vandeparre et al. 2011], wrinkle wavelength is

influenced by two primary factors: material stiffness and boundary

conditions. Material stiffness plays a clear role in determining wrin-

kle wavelength—lower bending stiffness results in finer, smaller

wrinkles. Boundary conditions, on the other hand, introduce ad-

ditional complexity to wrinkle formation. In real-world garments,

boundary conditions often arise from garment-making techniques

such as gathering, shirring, and creasing, which are intentionally

applied to create stationary wrinkles. The wavelengths of these

wrinkles can typically be estimated based on the nature of these

techniques. In addition, dynamic boundary conditions also play a

significant role in simulations, particularly those driven by human

motion. For instance, as an arm bends, fine wrinkles tend to form

in the inner elbow of a sleeve, as illustrated in Fig. 13.

To address challenges, we present a novel framework for esti-

mating the optimal cloth resolution before simulation, accounting

for factors such as material stiffness, stationary boundary condi-

tions from garment-making techniques, and dynamic collisions.

For each cloth piece in a garment, we compute the characteristic

wavelength [Cerda and Mahadevan 2003] based on its material

stiffness to estimate the corresponding optimal global resolution.

Our method also supports anisotropic materials by estimating the

optimal resolution for each anisotropic direction. For stationary

boundary conditions resulting from garment-making techniques,

such as shirring, folding, stitching and down-filling, we define spe-

cific rules for each technique to determine the local resolution along

the boundaries. Using wrinkle transition theories [Vandeparre et al.

2011], we calculate the associated propagation distance to ensure

accurate simulation. Different resolutions on a cloth piece transi-

tion smoothly, resulting in a continuous sizing map that encodes

both global and local resolution information. Using this sizing map,

we generate a triangular cloth mesh through a two-step process:

Poisson sampling and Delaunay triangulation. As shown in Fig. 1,

the resulting nonuniform resolution cloth meshes effectively handle

complex garments, capturing intricate wrinkle patterns produced by

various garment-making techniques. We demonstrate the effective-

ness of our method by comparing it to high-resolution simulations

and dynamic remeshing techniques.

2 Related Work

Efficient and high-quality cloth simulation has been a longstanding

focus. Achieving high-quality simulations requires two key factors:

sufficient mesh resolution and accurate numerical solutions. Con-

versely, achieving efficiency depends onminimizingmesh resolution

and employing fast numerical methods. To address the trade-off

between simulation performance and realism, various approaches

have been developed, including advanced linear and nonlinear nu-

merical algorithms, fine wrinkle enhancements for coarse simula-

tions, sophisticated finite element methods, and dynamic remeshing

techniques.

Many methods has been proposed to improve the efficiency of

physics-based cloth simulation, from early works on implicit inte-

gration for linearized simulations [Baraff and Witkin 1998; Choi

and Ko 2002] to modern approaches [Bouaziz et al. 2014; Macklin

et al. 2016] and descent methods for nonlinear simulations [Lan et al.

2023; Wang and Yang 2016]. Multilevel and multigrid solvers [Chen

et al. 2021b; Tamstorf et al. 2015; Wang et al. 2018; Wu et al. 2022]

have also been specially designed for improving accuracy of high-

resolution simulations. Various methods have also been developed

to enhance coarse simulations with fine-grained wrinkles. Post-

processing methods estimate realistic wrinkles using various addi-

tional inputs, such as triangle stretch tensors [Rohmer et al. 2010],

user-defined wrinkle patterns [Hadap et al. 1999], wrinkle path

tracking [Bergou et al. 2007; Rémillard and Kry 2013], and amplitude-

phase fields [Chen et al. 2021a, 2023]. Some methods [Müller and

Chentanez 2010; Wang 2021; Zhang et al. 2022] simulate quasistatic

fine wrinkles on high-resolution patches constrained to coarse simu-

lations, while others [Gillette et al. 2015] compute temporally adap-

tive reference shapes to generate dynamic wrinkles. Data-driven

methods [Popa et al. 2009; Wang et al. 2010; Zurdo et al. 2013]

and learning-based models [Lahner et al. 2018; Oh et al. 2018] pre-

dict high-frequency details like fine folds and wrinkles from the

space-time deformation of coarse garments but often lack direct

physical fidelity. Recently, graph neural networks (GNNs) have

emerged as scalable solutions for adaptive mesh discretization in

dynamic simulations [Pfaff et al. 2020] and addressing physical dis-

crepancies between simulations of different resolutions [Yu and
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Wang 2024]. Dynamic remeshing is a common approach for adap-

tive refinement during simulations [Narain et al. 2013, 2012; Pfaff

et al. 2014; Wicke et al. 2010], efficiently allocating computational

resources. Sizing fields, represented as metric tensor fields, guide

adaptive mesh resolution to meet finite element accuracy require-

ments [Labelle and Shewchuk 2003; Shewchuk 2002b; Wicke et al.

2010]. Recent advancements in finite element methods [Le et al.

2023] have improved cloth simulation accuracy and efficiency with-

out frequent remeshing. Additional innovations include surface

simplification with intrinsic error metrics[Liu et al. 2023], triangle

mesh developability [Stein et al. 2018], and intrinsic triangulation

navigation [Sharp et al. 2019].

The physics of wrinkling in thin shells has been extensively stud-

ied. Cerda and Mahadevan [Cerda and Mahadevan 2003] introduced

a scaling law relating wrinkle wavelength to material properties,

forming the basis for subsequent studies [Healey et al. 2013; Li and

Healey 2016; Wang et al. 2019] and extensions to complex geome-

tries like rotationally symmetric 3D shapes [Aharoni et al. 2017;

Paulsen et al. 2016]. However, these models assume constant wrin-

kle direction and wavelength, limiting their applicability to complex

fabrics like draped garments. Zuenko and Harders [2019] extended

these methods to materials with soft substrates, predicting wrinkle

frequency using film-to-substrate shear modulus ratios[Vandeparre

et al. 2011], but these approaches struggle with scenarios lacking a

substrate or involving complex contact-driven wrinkles. Studies on

buckling phenomena in thin-sheet mechanics [Choi and Ko 2002;

Vetter et al. 2014] provide insights into fabric deformation under

compressive strain and fine wrinkle generation. By integrating ex-

perimental theories of wrinkle wavelength and transition distances,

our method optimizes cloth mesh resolution while maintaining

computational efficiency.

3 Experimental Wrinkle Theories

Experimental physics offers practical theories on wrinkle formation,

but physics-based simulations primarily focus on optimizing high-

resolution simulations or enhancing coarse ones with added details.

Few studies address optimal resolution setting. This section outlines

the experimental wrinkle theories underpinning our method.

3.1 Characteristic Wrinkle Wavelength

Cerda and Mahadevan [2003] revealed that the characteristic wave-

length 𝜆 and amplitude 𝐴 of wrinkles in a deformed thin sheet is

determined by the balance between the bending stiffness 𝐵, the
elastic stiffness𝐾 of the supporting elastic substrate and an imposed

transversal compressive strain 𝛿 = Δ/𝑊 ,

𝜆 ∼ (𝐵/𝐾)1/4 , 𝐴 ∼ 𝜆
√
𝛿. (1)

Bending penalizes short wavelengths, while the substrate suppresses

long ones, resulting in intermediate wrinkle scales. The scaling

law derivation are actually based on sheet experiments without

a substrate. As shown in Fig. 2 (a), a slender elastic sheet, such

as a polyethylene strip, with thickness 𝑡 , width 𝑊 , and length

𝐿 (𝑡 � 𝑊 � 𝐿), remains flat under longitudinal strain 𝛾 < 𝛾𝑐 ,

the critical strain. Beyond this point (𝛾 > 𝛾𝑐 ), wrinkles form due to

strain incompatibility from the Poisson effect. Assuming that the out-

of-plane displacement of the initially flat sheet of is 𝜁 (𝑥,𝑦), where

(a) Stretching Experiment (b) Wrinklone Experiment

Fig. 2. Experiments. (a) A thin sheet with length 𝐿 and width𝑊 is stretched,

resulting in a displacement Δ in the width direction. (b) A thin sheet forms

wrinkles with a wavelength of 𝜆 on the left and 2𝜆 on the right, with a

transition distance of 𝐿𝑤 between them.

𝑥 ∈ (0, 𝐿) is the coordinate along the sheet measured from one end

and 𝑦 ∈ (0,𝑊 ) is the coordinate perpendicular to it measured from

its central axis, the functional to be extremized isU = 𝑈𝐵 +𝑈𝑆 −L,

where 𝑈𝐵 = 1
2

∫
𝐴 𝐵(𝜕2𝑦𝜁 )2d𝐴 and 𝑈𝑆 = 1

2

∫
𝐴𝑇 (𝑥) (𝜕𝑥𝜁 )2d𝐴 are re-

spectively the bending energy and the stretching energy under

tension 𝑇 (𝑥). Wrinkling in the 𝑦-direction satisfies the inextensibil-

ity condition which is incorporated via the Lagrangian L. Based on

the observation that wrinkling pattern 𝜁 is periodic away from the

free edges, the solutions by minimizing U are 𝜆 = 2
√
𝜋
(

𝐵
𝑇 /𝐿2

)1/4
and 𝐴 =

√
2

𝜋 𝜆
√
𝛿 . Please refer to [Cerda and Mahadevan 2003] for

detailed derivations. The expression for the stretching energy of a

thin sheet is analogous to the form of the energy in an elastic foun-

dation supporting a thin sheet, 𝑈𝐹 ∼ 1
2

∫
𝐴 𝐾𝜁 2d𝐴. Comparing 𝑈𝑆

and 𝑈𝐹 , 𝐾 ∼ 𝑇 /𝐿2 is the stiffness of the effective elastic foundation
for the stretched sheet. Cerda and Mahadevan [2003] introduced

a dimensionless function 𝑓 (𝜆/𝑙𝑝 ) with a penetration length 𝑙𝑝 to

characterize the system geometry of various substrates, leading to

𝐾 = 𝐸𝑠 𝑓 (𝜆/𝑙𝑝 )/𝑙𝑝 . (2)

For an incompressible substrate, 𝑓 (𝜆/𝑙𝑝 ) ∼ 𝜆2/𝑙2𝑝 .

3.2 Wavelength Propagation

Thin sheets under boundary confinement exhibit a universal, self-

similar hierarchy of wrinkles, governed by "wrinklons" [Vandeparre

et al. 2011], localized zones where two wrinkles merge into one with

a larger wavelength. Building on models of period-doubling transi-

tions, wrinklons can act as fundamental building blocks, with the

global wrinkling pattern emerging from their self-assembly. Each

wrinklon is characterized by a size 𝐿𝑤 , the distance over which the

wavelength increases from 𝜆 to 2𝜆, as shown in Fig. 2 (b). Exper-

iments with thin plastic sheets constrained by sinusoidal clamps,

imposing wavelengths 𝜆 (amplitude 𝐴) and 2𝜆 (amplitude 2𝐴, re-
spectively), reveal that the normalized wrinklon size 𝐿𝑤/𝜆 scales

as
√
𝐴/ℎ. Since 𝐴 ∼ 𝜆

√
𝛿 , this scaling implies 𝐿𝑤 ∝ 𝜆3/2. Actually,

the patterns with increasing wrinkle size with respect to distance

𝑥 follow a power law 𝜆 ∼ 𝑥𝑚 , which emerges from a balance be-

tween bending and stretching energies and connects the properties

of individual wrinklons to the global features of the wrinkling cas-

cade. In the experiment of a hanging curtain, the size of a single

wrinklon, with a characteristic area 𝐿𝑤𝜆, is derived by minimiz-

ing the total energy 𝑈𝑡𝑜𝑡 = (𝑢𝑠 + 𝑢𝑏 )𝐿𝑤𝜆 with respect to 𝐿𝑤 . The

computation of stretching energy varies between light and heavy
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curtains. For a light curtain, the relationship 𝜆(𝑥) ∼ 𝑥2/3 (ℎ2/𝛿)1/6
results in a power-law scaling 𝜆 ∝ 𝑥2/3. Conversely, for a heavy
curtain, 𝜆(𝑥) ∼ 𝑥1/2 (𝐵/𝑇 )1/4 yields the scaling 𝜆 ∝ 𝑥1/2. Detailed
derivations can be found in [Vandeparre et al. 2011].

4 Our Method

Fabrics with varying stiffness require different mesh resolutions:

stiff materials form coarse, large wrinkles, while soft ones produce

fine details. Uniform resolution is inefficient—either wasting compu-

tation or missing accuracy. Our method, grounded in experimental

wrinkle theories, adjusts mesh resolution based on material stiffness

and garment features like design details or high-collision zones (e.g.,

elbows), without the need for preliminary simulations or dynamic

remeshing.

4.1 Estimating Optimal Cloth Resolution

To accurately capture wrinkles, cloth mesh resolution must match

wrinkle wavelengths, with edge lengths smaller than or comparable

to the smallest wavelength. Although wrinkles form dynamically,

their characteristic wavelength can be predicted using the scaling

law in Eq. 1, guiding our method to estimate optimal cloth resolution.

4.1.1 Optimal Resolution. The optimal cloth resolution is defined

as the critical resolution where further increases yield minimal

accuracy gains. As shown in Fig. 18, coarse resolutions result in

noticeable inaccuracies, but as the resolution approaches the critical

level, the results closely align with the ground truth. Beyond this

point, additional refinement offers diminishing improvements.

Fig. 4. Optimal resolution calcu-

lated using characteristic wrinkle

wavelength and amplitude based

on the Pythagorean theory.

Given the characteristic wrin-

kle wavelength 𝜆 and am-

plitude 𝐴, we calculate the

optimal mesh resolution as

𝑟𝑜𝑝𝑡 =
√
𝜆2/16 +𝐴2, derived

using the Pythagorean theo-

rem, as illustrated in Fig. 4.

Since 𝐴 is proportional to 𝜆,
which depends on the cloth

mesh’s shape, we approximate

𝑟𝑜𝑝𝑡 ∼ 𝑐𝜆, where 𝑐 incor-

porates the compression ratio

and mesh geometry. To esti-

mate the optimal cloth mesh resolution, we propose a forward

method based on fabric material stiffness using the scaling law

in Eq. 1. At first glance, applying the wrinkle wavelength scaling

law for thin sheets on elastic substrates to fabrics might seem ques-

tionable in principle, given that fabrics typically lack an explicit

substrate. The key distinction in thewrinkle scaling lawswith versus

without a substrate lies in the presence of a dimensionless geomet-

ric function 𝑓 (𝜆/𝑙𝑝 ), which is used to compute the elastic stiffness

𝐾 . However, due to the near-incompressibility of most fabrics, we

observe, consistent with the thin sheet stretching test in [Cerda and

Mahadevan 2003], that the compressive resistance in the direction

orthogonal to stretching acts analogously to a substrate. This resis-

tance penalizes long wavelengths, much like an elastic substrate in

the compressed skin model in [Cerda and Mahadevan 2003]. As a re-

sult, it can be modeled as an virtual elastic substrate with thickness

(a) Coarse (b) Ours (c) Fine

Fig. 3. Five fabrics with varying material stiffnesses are tested, ranging

from stiffest (top) to softest (bottom). The middle column shows simulation

results using resolutions calculated by our method, which closely match

the high-quality results in the right column, simulated with a minimal

resolution of 2.5mm. In contrast, the left column, using resolutions twice

as ours, exhibits low-quality wrinkles with noticeable locking artifacts.

ℎ𝑠 and Young’s modulus 𝐸𝑠 , inferred from the fabric’s Young’s mod-

ulus 𝐸. Consequently, in our method, we adopt the dimensionless

function 𝑓 (𝜆/𝑙𝑝 ) ∼ 𝜆2/𝑙2𝑝 typically used for incompressible material,

to characterize the geometry of fabrics. Based on this model, we

recommend using a minimummesh resolution of 2.5𝑚𝑚 in our cloth

simulation system. Furthermore, we generalize 𝑓 (𝜆/𝑙𝑝 ) as

𝑓 (𝜆/𝑙𝑝 ) = 𝑑1 (𝜆/𝑙𝑝 )2 + 𝑑2, (3)

where 𝑑1 and 𝑑2 are two dimensionless parameters. Substituting

Eq. 3 into Eq. 2 and incorporating the scaling law in Eq. 1, i.e. 𝜆 ∼
(𝐵/𝐾)1/4, we arrive at the expression (𝑑1𝑙−3𝑝 )𝜆6+ (𝑑2𝑙−1𝑝 )𝜆4 = 𝐵/𝐸𝑠 .

Recalling that the optimal resolution is proportional to the charac-

teristic wrinkle wavelength, i.e. 𝑟 = 𝑐𝜆, and assuming the substrate’s

Young’s modulus is proportional to the fabric’s Young’s modulus,

i.e. 𝐸𝑠 = 𝑔𝐸, the scaling factors 𝑐 and 𝑔, along with the substrate

penetration length 𝑙𝑝 and thickness ℎ𝑠 , can be absorbed into two

effective parameters 𝑐1 and 𝑐2. This leads to the simplified relation:

𝑐1𝑟
6 + 𝑐2𝑟

4 = 𝑦. (4)
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where 𝑦 = 𝐵/𝐸 represents the fabric’s bending-to-stretching stiff-

ness ratio. Thus, given a fabric with Young’s modulus 𝐸 and bending

stiffness 𝐵, the optimal resolution for cloth simulation is determined

by 𝑐1 and 𝑐2, which reflect the geometric properties of the system.

Fig. 5. Cloth resolution 𝑟 as a func-
tion of 𝐵 and 𝐸.

For fabrics following the

Kirchhoff-Love thin shell the-

ory, where 𝑦 = ℎ3

12(1−𝜈2 ) , and
assuming 𝑟 scales monoton-

ically with 𝑦, thicker, stiffer
fabrics require coarser resolu-

tions, while thinner, softer fab-

rics require finer resolutions.

This aligns with typical fabric

behavior in simulations. From

Eq. 4, fabrics with the highest

𝐵 and smallest 𝐸 require the

coarsest resolution, while those with the lowest 𝐵 and largest 𝐸
require the finest resolution. These extremes are defined by sys-

tem designers, and in our system they are: 𝐸 ∈ [2𝑒3, 2𝑒6] N/m2,

𝐵 ∈ [1𝑒−9, 1𝑒−3] N ·m, 𝑟 ∈ [2.5, 50]mm. Using these values, 𝑐1 and
𝑐2 can be determined by solving the following equation,

[
𝑐1
𝑐2

]
= 𝑑𝑒𝑡−1

[
𝑟4𝑚𝑖𝑛 −𝑟4𝑚𝑎𝑥
−𝑟6𝑚𝑖𝑛 𝑟6𝑚𝑎𝑥

] [
𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

]

where 𝑑𝑒𝑡 = 𝑟4𝑚𝑎𝑥𝑟
4
𝑚𝑖𝑛 (𝑟𝑚𝑎𝑥 +𝑟𝑚𝑖𝑛) (𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛). In our method,

their values are 𝑐1 = 32.08𝑚−3 and 𝑐2 = −1.876𝑒−4𝑚−1. The re-
lationship between the optimal resolution and material stiffness

is depicted in Fig. 5. For a fabric with known Young’s modulus 𝐸
and bending stiffness 𝐵, the optimal resolution can be computed as

𝑟𝑜𝑝𝑡 = 𝑟 (𝑦, 𝑐1, 𝑐2) using Eq. 4. Fig. 3 demonstrates that our method

effectively reproduces high-resolution results across fabrics with

varying material stiffnesses.

4.1.2 Anisotropy. For isotropic fabrics, the estimated optimal reso-

lution produces uniform triangular meshes. However, orthotropic

fabrics require distinct weft and warp resolutions. Applying the

smaller resolution uniformly results in overly dense meshes. Our

method addresses this by tailoring mesh resolutions to each direc-

tion’s anisotropic properties. As shown in Fig. 6, for anisotropic fab-

ric, tailoring fine weft and coarse warp resolutions achieves results

comparable to uniform fine resolution, significantly outperforming

uniform coarse resolution.

4.1.3 Locking Issue. In coarse fabric simulations, the locking issue

arises from strong in-plane compressive resistance, restricting bend-

ing and causing artifacts. Reducing compressive resistance within a

reasonable strain range alleviates this issue, as implemented in our

method. However, coarse simulations still fail to match the accu-

racy of fine simulations (Fig. 3(a)), and without adjustment, locking

worsens as illustrated in Fig. 7. While addressing locking is not the

primary focus, our approach inherently mitigates it by enabling

resolutions that balance performance and accuracy, demonstrating

its robustness.

(a) Uniform coarse (b) Ours (c) Uniform fine

Fig. 6. For an anisotropic fabric, we calculate a fine resolution for the weft

direction and a coarse resolution for the warp direction. This nonuniform

resolution achieves a result comparable to that of a uniform fine resolution

while significantly outperforming a uniform coarse resolution.

(a) 5.4 mm (b) 2.7 mm (c) 2.5 mm

Fig. 7. The fabric, identical to that in the fifth row in Fig. 3, has low bending

stiffness and high stretching stiffness. Despite exacerbated locking issue

due to the absence of locking adjustments, simulations with the optimal

resolution closely match those using the finest resolution.

4.2 Boundary Conditions

Garment-making techniques like shirring, folding, stitching, and

down-filling introduce localized stresses and constraints, altering

fabric deformation and creating distinct wrinkle patterns. These

effects extend beyond local areas, influencing overall fabric behav-

ior and appearance. Uniform mesh resolutions often lead to high

computational costs or insufficient detail. Adapting resolutions to

these features with smooth transitions achieves: enhanced precision,

capturing intricate wrinkles; improved realism, preserving visual

and physical authenticity of the fabric under varying stresses; and

greater efficiency, focusing higher resolution where needed while

reducing computational overhead without compromising accuracy.

4.2.1 Resolution Transition. The scaling law for wrinkle wave-

length transition distance 𝐿𝑤 from 𝜆 to 2𝜆 follows 𝐿𝑤 (𝜆) ∼ 𝜆2
√
𝑇 /𝐵

for a fabric under tension 𝑇 , and 𝐿𝑤 (𝜆) ∼ 𝜆
3
2
(
𝛿ℎ−2

) 1
4 for a fabric

with compressive ratio of 𝛿 . In [Vandeparre et al. 2011], a power law

𝜆 ∼ 𝑥𝑚 describes wrinkle wavelength 𝜆 as a function of distance 𝑥 .
Since mesh resolution is proportional to wrinkle wavelength, we

extend this relationship to mesh resolution changes from a source

resolution, i.e. Δ𝑟 = 𝑥𝑚 . By setting 𝑟 +𝐿𝑚
𝑤 = 2𝑟 , the transition power

𝑚 is derived as𝑚 = log 𝑟
log𝐿𝑤

, incorporating the scaling factor between

𝑟 and 𝜆 into𝑚. Essentially,𝑚 encapsulates the combined effects of

the source resolution and the fabric’s material stiffness.
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(a) 6.8 mm (b) Ours-I (c) Ours-II (d) 3.4 mm

Fig. 8. (a) Uniform resolution of 6.72mm. (b) Ours-I using our method to

compute the source resolution on shirring lines. (c) Ours-II incorporates

smooth transitions, resulting in seamless wrinkle patterns. (d) Uniform

resolution of 3.36mm. Our-II produces the smoothest shirring wrinkles

among these approaches.

For a vertex at distance 𝑥 from the source mesh resolution 𝑟 , its
resolution is computed as 𝑟 + 𝑥𝑚 . In general, given a fabric with

base resolution 𝑟 𝑓 , if multiple source resolutions [𝑟0, ..., 𝑟𝑛] originate
from boundary conditions form garment-making techniques, the

resolution at a vertex is calculated as 𝑟𝑣 = min(𝑟 𝑓 , 𝑟0 + 𝑥𝑚0

0 , ..., 𝑟𝑛 +
𝑥𝑚𝑛

𝑛 ), where 𝑥𝑛 is the distance from the vertex to the 𝑛th boundary

condition, and𝑚𝑛 is its resolution transition power.

4.2.2 Shirring. Shirring, commonly used in garments like waist-

bands and cuffs (8), generates localized tension and compression,

resulting in pronounced wrinkles and puckering. The wrinkle wave-

length and amplitude depend on the combined effects of shirring

stiffness and the base fabric stiffness, necessitating higher mesh

resolution in these areas. To compute the source wavelength, the

additional shirring stiffness 𝐸𝑠ℎ and shrinkage ratio 𝜌𝑠ℎ are incorpo-

rated. Using 𝑦𝑠ℎ = 𝐵
𝐸+𝐸𝑠ℎ

in Eq. 4, the source resolution is calculated

as 𝑟𝑠ℎ = 𝜌𝑛
𝑠ℎ
𝑟 (𝑦𝑠ℎ, 𝑐1, 𝑐2), where 𝑛 is a user-defined parameter, typi-

cally 𝑛 = 1 in our method.

4.2.3 Folding. Folding, often used for edge reinforcement in gar-

ment design, introduces sharp creases and layered structures (Fig. 9)

that significantly affect local deformation. Along folding edges,

where no compressive strain occurs, the resolution matches the

base fabric. However, compression perpendicular to the edges gen-

erates fine wrinkles. To account for these, two parallel lines are

added on either side of the folding edges, with minimal spacing (e.g.,

0.5mm), to capture the intricate folding details. At endpoints and

high-curvature regions of curved folding edges, significant com-

pression arises, producing distinct wrinkle patterns. To address this,

the compressive strain is evaluated as 𝜌 𝑓 𝑑 = Δ𝜃/360, where Δ𝜃 is

the folding angle relative to a flat rest state. The source resolution

is then calculated as 𝑟 𝑓 𝑑 = 𝜌 𝑓 𝑑𝑟𝑛𝑔 , where 𝑟𝑛𝑔 is the resolution of

the point’s neighborhood. Then, a directional transition is applied

for these folding points. At endpoints, the transition follows the

direction of the folding edge, while at high curvature points, it aligns

with the normal of folding edges at those points. Only vertices in

the forward direction are affected by the transition.This method

ensures a smooth progression from folding resolution to the fab-

ric’s resolution, providing accurate and seamless representation of

deformation.

(a) 9.2 mm (b) Ours-I (c) Ours-II (d) 4.6 mm

Fig. 9. (a) Uniform resolution of 9.2mm. (b) Ours-I applies resolution tran-

sition at endpoints. (c) Ours-II incorporates parallel lines alongside bending

edges. (d) Uniform resolution of 4.6mm. Ours-II produces the smoothest

folding wrinkles among these approaches.

4.2.4 Stitching. Stitching lines locally reinforce fabric but can also

induce wrinkles due to compressive forces along seams, necessi-

tating mesh refinement. The affected area extends a specific width

on both sides of the seam. Stitching lines with a compressive ratio

can be modeled as shirring edges. When a longer line is sewn to a

shorter one, the compressive strain 𝜌𝑠 = 𝑙𝑠/𝑙𝑙 (where 𝑙𝑠 and 𝑙𝑙 are
the length of the short and the long lines) determines the source

resolution of the longer line. Resolution propagation is applied ex-

clusively to the fabric side with the longer line, ensuring accurate

and efficient wrinkle representation.

(a) 5.4mm+17.7mm (b) 5.4mm+8.8mm (c) Ours (d) 2.7mm+4.4mm

Fig. 10. In this case, the long-short stitching introduces a compressive

ratio. (c) Our method applies resolution transition to (b), producing a result

comparable to the finest simulation (d) and outperforms both (a) and (b).

4.2.5 Down-filling. In a down coat, multiple stitched packs are filled

with down. Along the stitching lines, a compressive ratio is applied

to keep the packs tight. Our method for the shirring technique

is used to calculate the source resolution and transition distance

along these stitching lines. Additionally, the internal pressure from

down filling stretches the fabric, reducing wrinkle formation and

diminishing wrinkle transitions. To account for this, we incorporate

the down-filling pressure 𝑝 into the calculation of the transition

power𝑚′ = 2𝑝𝑚. In our method, increasing pressure is equivalent

to increasing the fabric’s thickness, which effectively raises the

bending stiffness. This reduces the transition distance 𝐿′𝑤 = (𝐿𝑤)2−𝑝 ,
thereby accelerating the resolution transition along the stitching

lines. As shown in Fig. 11, higher pressure causes wrinkles from the

stitching lines to dissipate more quickly.

4.2.6 High-collision Areas. The core of our method is to estimate

an optimal mesh resolution before running a simulation, which

inherently cannot account for wrinkles caused by dynamic contacts

or collisions that cannot be predicted beforehand. Even though, we
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(a) Only pressure (b) Only shrinkage (c) Pressure + shrinkage

Fig. 11. Incorporating pressure and small compressive ratios for down fab-

rics, our method improves resolution transitions for down-filled areas, en-

suring more accurate simulations.

observe that most collision-induced wrinkles, including those from

body-clothing contact and multilayer interactions, are well handled

by our approach. As demonstrated in Fig. 12, in the challenging sce-

nario where two layers of cloth are twisted by a rotating sphere and

form gathered wrinkles, our method remains beneficial. However,

for garments on human bodies, areas with extreme collisions, such

as the elbow region, can often be anticipated. As shown in Fig. 13,

we manually label an elbow area and use our method to assign a

specialized mesh resolution by estimating compression strain from

collisions. Currently, our method does not automatically identify

high-collision areas or their characteristic compression. This limi-

tation highlights an opportunity for future work: training a neural

network to automatically detect high-collision regions and their

associated compressive strains using human motions and pattern

libraries with semantic labels.

(a) Fine: 5.0 mm (b) Ours: 7.83 mm (c) Coarse: 15.6 mm

Fig. 12. Two cloth layers—orange (inner) and blue (outer)—are twisted by

a rotating sphere, forming gathered wrinkles. This challenging scenario

highlights the strength of our method. Compared to the fine-resolution sim-

ulation (a), our approach (b) effectively captures collision-induced wrinkles

from multilayer interactions, whereas the coarse simulation (c) results in

noticeable artifacts.

(a) (b) (c)

Fig. 13. We manually label the elbow area and apply our method to assign

a specialized mesh resolution based on predicted compression strain from

collisions. (b) Our results produce smooth wrinkles comparable to the uni-

form fine resolution simulation (c) and significantly outperform the uniform

coarse resolution simulation (a).

4.3 Sizing Maps

Given the fabric’s material stiffness and boundary conditions from

garment-making techniques, our method computes the fabric’s op-

timal resolution, boundary resolutions, and transition power pa-

rameters. This information is transformed into a sizing map using

the transition rule described in Section 4.2.1, as shown in Fig.14(b).

The sizing map provides a continuous representation of resolution

distribution across the cloth mesh. To generate the triangular mesh,

we first sample the sizing map using the fast Poisson disk sampling

algorithm[Bridson 2007], ensuring that the average vertex spac-

ing locally aligns with the sizing values. The resulting point cloud,

along with boundary constraints, is then input into triangulation

tools such as the Triangle library [Shewchuk 2002a] to produce a

triangular cloth mesh adhering to Delaunay triangulation rules.

(a) Boundary (b) Sizing map (c) Mesh

Fig. 14. (a) Given a fabric piece with square boundary and inner curved

shirring lines, we calculate the fabric resolution and shirring resolution,

ensuring a smooth transition between the two to generate a (b) sizing map.

Using this sizing map, we perform Poisson sampling to distribute vertices,

followed by Delaunay triangulation to create (c) the mesh. The resulting

mesh is then used for simulation, producing the result shown in Fig. 15 (c).
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Table 1. The statistics of our examples include five complex garments and five fabrics. Using 𝑐1 = 32.08𝑚−3 and 𝑐2 = −1.876𝑒−4𝑚−1, we calculate the optimal

resolution based on the fabric’s bending stiffness (𝐵 : 𝑁 ·𝑚) and Young’s modulus (𝐸 : 𝑁 /𝑚2). For garments, only the optimal resolution of the main fabric is

listed. The full simulations use a fine resolution of 2.5mm, except for the Wine Style dress example, which uses 5mm. NS and CH represent average numerical

solving (NS) and collision handling (CH) time per frame, respectively. Resolution unit: millimeter (mm). Time unit: millisecond (ms).

Garments B E
Ours Full Sim

Fabrics B E
Ours Full Sim

Res. # V NS CH # V NS CH Res. # V # V

Wine Style 2.0𝑒−6 3.0𝑒5 7.83 59K 3.8 0.8 135K 8.6 1.7 Dark Blue 1.6𝑒−4 1.3𝑒5 18.5 241

11.9K

Pinkish Puff 2.0𝑒−6 8.0𝑒5 6.69 322K 17.4 3.8 1.38M 97.5 12.9 Khaki 2.0𝑒−5 5.0𝑒5 10.5 708

Mint Melody 7.8𝑒−7 6.6𝑒4 8.58 60K 4.8 1.2 400K 26.9 4.2 Green 2.6𝑒−6 2.0𝑒6 6.00 2.1K

Golden Grace 2.0𝑒−6 1.1𝑒5 9.21 83K 5.1 1.3 586K 39.4 5.4 Light Blue 3.2𝑒−7 8.2𝑒6 3.61 5.8K

Blue Ballet 2.5𝑒−6 1.1𝑒5 9.55 82k 4.9 1.6 876K 60.8 7.4 Rose 4.0𝑒−8 1.6𝑒7 2.70 10K

(a) 9 mm (b) Ours-I (c) Ours-II (d) 4.5 mm

Fig. 15. We apply our method to compute the source resolution on shirring

lines (b) and incorporate smooth transitions (c), resulting in seamless wrinkle

patterns. This approach outperforms both the (a) uniform 9mm resolution

and the (d) uniform 4.5mm resolution.

5 Results

In our cloth simulation system, we use Newton’s method with a

1/30s time step for implicit integration. Linear systems are solved

using a preconditioned CG method with 3×3 block diagonal pre-

conditioning, terminating when the 𝐿2 residual norm falls below

1𝑒−5. For anisotropic stretching, we adopt Baraff-Witkin’s linear

elasticity model [Baraff and Witkin 1998], and for bending defor-

mations, we use stable discrete bending models [Wang et al. 2023].

Complex collisions, such as those in shirring dresses and down coats

in Fig. 1, are handled with an adaptive stepping strategy [Wu et al.

2020] for accuracy and efficiency. The system runs entirely on the

GPU, except for remeshing operations performed on the CPU for

comparison with dynamic remeshing methods. Experiments are

conducted on a PC with an Intel Core i9-12900K CPU, 64GB RAM,

and an NVIDIA GeForce GTX 3090 GPU.

5.1 Performance Evaluation

Our method generates garment meshes with adaptive optimal res-

olutions, balancing simulation realism and efficiency. Compared

to uniform fine-resolution simulations at 2.5mm, our approach

significantly reduces vertex counts while maintaining comparable

accuracy. Table 1 summarizes five garment and fabric examples,

detailing bending stiffness 𝐵, Young’s modulus 𝐸, optimal resolu-

tions, and vertex counts. We separate total computation time into

numerical solving and collision handling, demonstrating reduced

numerical complexity and improved collision detection without

compromising accuracy. Compared to uniform fine resolution, our

estimated optimal resolutions achieve a 2 − 10𝑥 speedup in numer-

ical solving and 2 − 4𝑥 in collision handling. Additionally, in the

Wine Style example, each remeshing process takes 1–2 seconds on

average, confirming that dynamic remeshing significantly slows

down the simulation.

5.2 Validation

We validate our method through key experiments, including the

stretching thin sheet [Cerda and Mahadevan 2003], the hanging

curtain [Vandeparre et al. 2011].

Stretching Test. We conduct a stretching test on a rectangular

cloth piece, stretched by 12.78% along its long edge, using the St.VK

hyperelastic model, as also employed in [Chen et al. 2021a]. Based

on the scaling law [Cerda and Mahadevan 2003], our calculated

mesh resolution of 3.8mm produces 6 wrinkles, closely matching

the 7 wrinkles from a finer 2.5mm mesh. In contrast, a coarser

5mm mesh generates only 4 wrinkles, lacking accuracy, as shown

in Fig. 16.

Hanging Curtain. In our method, each wrinkle wavelength cor-

responds to a specific mesh resolution, with smooth transitions

matching the wrinkle wavelength transition distance [Vandeparre

et al. 2011]. As shown in Fig. 17, a compressed hanging curtain

generates varying wrinkle wavelengths from top to bottom. Our

method smoothly transitions from the highest resolution at the

compressed top edge to coarser resolutions, enabling high-quality

wrinkle simulations. In contrast, uniform mesh resolution produces

lower-quality wrinkles. To further validate our method, we conduct

a quantitative experiment to assess the transition distance. As il-

lustrated in Fig. 18(d), our computed transition distances remain in

close agreement with the measured values across varying bending

stiffness.

5.3 Comparisons

To evaluate the effectiveness of our method, we compare our method

to direct high-resolution simulation and dynamic remeshing during

simulation runtime.
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(a) 5.0 mm (b) 3.8 mm (c) 2.5 mm

Fig. 16. A rectangular cloth piece is stretched by 12.78% along its long edge,

using the St.VK hyperelastic model, as employed in [Chen et al. 2021a]. Our

calculated mesh resolution of 3.8mm produces 6 wrinkles, closely matching

the 7 wrinkles from a finer 2.5mm mesh. In contrast, a coarser 5mm mesh

generates only 4 wrinkles, lacking accuracy.

(a) Uniform (b) Ours

Fig. 17. A compressed hanging curtain generates varying wrinkle wave-

lengths from top to bottom. Our method smoothly transitions from the

highest resolution at the compressed top edge to coarser resolutions, en-

abling high-quality wrinkle simulations. In contrast, uniform mesh resolu-

tion produces lower-quality wrinkles.

5.3.1 High-Resolution Simulation. As shown in Fig. 19, we apply

our method to simulate three intricate garments: a shirring dress

and a down coat. By using the estimated optimal nonuniform mesh

resolution, our method produces high-quality wrinkle effects. In

regions influenced by garment-making techniques, the mesh resolu-

tion is even higher than the minimal uniform resolution of 2.5mm.

In these areas, our method generates finer wrinkles than a uniform

high-resolution simulation. Despite this, the total vertex count in our

method is significantly lower, making it muchmore computationally

efficient.
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Fig. 18. (a) In a cantilever test, (b) mesh resolutions ranging from 20mm to

2.5mm are tested for a fabric with bending stiffness 𝐵 = 2𝑒−6 𝑁 · 𝑚 and

Young’s modulus 𝐸 = 1𝑒6 𝑁 /𝑚2. (c) The results stabilized around 6.5mm,

with minimal accuracy gains beyond this point. In this case, our method

estimated an optimal resolution of 6.45mm, achieving an effective balance

between accuracy and efficiency. (d) In the curtain test shown in Fig. 17,

our computed transition distance is 𝐿𝑜𝑢𝑟𝑠 = 26.7𝑚𝑚, closely matching

the measured value 𝐿𝑚𝑒𝑠 = 25𝑚𝑚. When varying the curtain’s bending

stiffness, the curve of our computed transition distance 𝐿 − 𝑜𝑢𝑟𝑠 remains

closely aligned with the measured values 𝐿 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 .

5.3.2 Adaptive Mesh Refinement. As shown in Fig. 20(c), dynamic

remeshing [Narain et al. 2012] adjusts mesh resolution during sim-

ulation by refining high-compression and high-curvature regions

while maintaining coarse resolution in flat areas. However, this

approach introduces discontinuities, leading to oscillations and in-

consistent cloth behavior. Coarse resolutions can make the cloth

overly stiff, while fine resolutions can make certain areas excessively

flexible, and frequent transitions between these states exacerbate

instability. Moreover, each remeshing operation requires reconfig-

uring the simulation, including data structure updates and memory

reallocation, resulting in significant computational overhead that of-

ten outweighs the benefits. Additionally, dynamic remeshing is not

GPU-friendly, further limiting its efficiency. In contrast, our method

delivers consistent, stable wrinkle effects without oscillations and

achieves greater computational efficiency. Nevertheless, our method

can provide initial meshes for dynamic remeshing techniques.

5.4 Conclusions

We present a physics-inspired method for optimal cloth mesh tri-

angulation, balancing accuracy and efficiency. By leveraging exper-

imental scaling laws, we compute nonuniform mesh resolutions

based on fabric properties, garment-making techniques, and dy-

namic scenarios, ensuring smooth transitions via a sizing map. Our

method reproduces realistic wrinkles while reducing computational

costs compared to uniform high-resolution and dynamic remesh-

ing approaches. Validations on complex garments, such as shirring

dresses and down coats, showcase its ability to deliver visually ac-

curate and efficient results without the discontinuities or overheads

of traditional adaptive methods, offering a robust solution for cloth

simulation in computer graphics and real-time applications. We

conclude that the optimal mesh resolution estimated by our method

effectively captures garment geometry. Our approach offers a novel
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(a) (b) (c) (d) (e)

Fig. 19. We compare our method to full simulations with a uniform 2.5mm

resolution on garments with shirring and down filling. Full simulations,

shown in (a) and zoomed-in (e), suffer from over-stretching due to conver-

gence issues with overly dense meshes. Our method, shown in (b) with

wireframe rendering and zoomed-in (d), achieves comparable results with

significantly higher efficiency.

possibility to bridge real-world physics with geometric discretiza-

tion in cloth simulation.

6 Limitations and Future Work

While our method offers an efficient and accurate solution for cloth

simulation, it has some limitations. The precomputed mesh resolu-

tions lack real-time adaptability to unexpected deformations, and

the static transition regions may not fully capture abrupt fabric

behavior changes. The method also struggles with dynamic environ-

ments involving unpredictable interactions, such as flowing fabrics,

and does not account for complex material properties like viscoelas-

ticity. Future work could focus on integrating dynamic adaptation,

leveraging machine learning to predict optimal resolutions, extend-

ing support for complex materials, and exploring hybrid methods

that combine precomputation with dynamic refinement. Testing the

framework in more diverse real-world scenarios, such as extreme

motions, could further enhance its versatility and robustness.

(a) Uniform 5 mm (b) Ours: 7.83 mm (c) Remeshing

Fig. 20. Wine Style Dress. Comparing our method to a full simulation with a

uniform fine resolution and dynamic remeshing [Narain et al. 2012] during

simulation runtime. Our method achieves results comparable to the full

simulation. In contrast, dynamic remeshing introduces noticeable artifacts.
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