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Abstract

Sewing patterns, the essential blueprints for fabric cut-
ting and tailoring, act as a crucial bridge between de-
sign concepts and producible garments. However, exist-
ing uni-modal sewing pattern generation models struggle
to effectively encode complex design concepts with a multi-
modal nature and correlate them with vectorized sewing
patterns that possess precise geometric structures and in-
tricate sewing relations. In this work, we propose a novel
sewing pattern generation approach Design2GarmentCode
based on Large Multimodal Models (LMMs), to gener-
ate parametric pattern-making programs from multi-modal
design concepts. LMM offers an intuitive interface for
interpreting diverse design inputs, while pattern-making
programs could serve as well-structured and semantically
meaningful representations of sewing patterns, and act as a
robust bridge connecting the cross-domain pattern-making
knowledge embedded in LMMs with vectorized sewing pat-
terns. Experimental results demonstrate that our method
can flexibly handle various complex design expressions
such as images, textual descriptions, designer sketches,
or their combinations, and convert them into size-precise
sewing patterns with correct stitches. Compared to previous
methods, our approach significantly enhances training effi-
ciency, generation quality, and authoring flexibility. Project
page: https://style3d.github.io/design2garmentcode.

1. Introduction

While generative AI has significantly propelled creativity

in fashion design, turning those design ideas into wearable

realities remains a formidable challenge. Sewing patterns

are the key components to bridge the gap between abstract

design ideas and wearable realities. They are foundational

blueprints that dictate the precise shapes and dimensions of

fabric pieces, essential for assembling garments in both the

physical and virtual fashion realms.

*Works done during the internship at Style3D Research.
†Corresponding author.
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Figure 1. Traditional sewing pattern generation approaches (top)

use uni-modal models trained on synthetic datasets generated by

parametric pattern-making programs (red arrow) to convert text

or image prompts into vector-quantized patterns. These methods

are resource-intensive and often yield oversimplified patterns with

stitching errors. Our approach (bottom) utilizes large pre-trained

LMMs to directly translate design concepts into parametric pro-

grams and configuration files (blue arrow), enabling dedicated,

structurally correct pattern generation from multi-modal design in-

puts within a unified framework.

Traditionally, sewing patterns are drafted manually by

professional pattern-makers with years of practice, mak-

ing the process inefficient, error-prone, and unable to meet

the growing demands for refinement and personalization in

the fashion market. To this end, parametric pattern-making

researches [8, 29, 31] and industrial solutions [1–4] have

emerged. These methods formalize the pattern-making pro-

cess as geometric functions governed by parameters such

as body measurements and design features, thereby accel-

erating the process by enabling pattern makers to gener-

ate sewing patterns through parameter adjustments instead

of starting from scratch. However, creating these func-

tion templates is still complex, requiring not only advanced

pattern-making skills but also geometric intuition, mathe-

matical modeling knowledge, and coding abilities to trans-
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Figure 2. (a) Despite prompts specifying diverse neckline types,

DressCode [22] consistently produces only V-neck designs, indi-

cating limited generation diversity. (b) SewFormer [40] often gen-

erates sewing patterns with self-intersecting panels, compromis-

ing pattern validity. (c) Stitching errors are also prevalent in Sew-

former [40], as shown here where a pant side seam is mistakenly

stitched to a shirt shoulder seam, resulting in draping failure.

late pattern-making expertise into CAD programs. These

technical barriers significantly restrict the widespread adop-

tion of parametric pattern-making solutions.

Recently, several learning-based approaches for sewing

pattern generation have been introduced. For instance, Neu-

ralTailor [30] focuses on extracting sewing patterns from

unstructured point clouds, DressCode [22] targets text-to-

sewing pattern generation, and SewFormer [40] is designed

for image-based sewing pattern generation. However, they

are generally trained on paired design-sewing pattern data,

necessitating large datasets to effectively capture the multi-

modal nature of design concepts. Furthermore, sewing pat-

terns require centimeter-level precision to ensure proper

garment fit, which presents a significant challenge for neu-

ral networks that only provide statistical approximations of

the true function based on their training data [14, 23, 47].

As a result, these methods frequently generate oversimpli-

fied patterns with flawed geometry or stitches, potentially

leading to draping failures (Figure 2).

In this paper, we present Design2GarmentCode, an in-

novative approach that leverages the generalization capa-

bilities of vision-language foundation models to achieve

multi-modal sewing pattern generation with minimal com-
putational and data requirements. Unlike previous meth-

ods that directly synthesize vector-quantized patterns, De-

sign2GarmentCode employs LMMs to learn the syntax

of parametric pattern-making programs, translating design

concepts into parameters and programs that can be exe-

cuted to produce precise and structurally accurate sewing

patterns. Design2GarmentCode combines a pre-trained

Large Multimodal Model (LMM) as a design interpreter

with a finetuned Large Language Model (LLM) as a pro-

gram synthesizer. Specifically, the LLM is finetuned on

code snippets from GarmentCode [31], a domain-specific

language for constructing parametric sewing patterns. At

runtime, the design interpreter extracts both topological and

geometrical information from the design input by respond-

ing to a series of questions from the program synthesizer,

which then generates garment programs and design config-

urations following GarmentCode syntax. Our method offers

the following major contributions:

• We introduce a novel modality-agnostic framework with

an intuitive, intelligent interface capable of processing

user design intentions across multiple modalities simul-

taneously by integrating pre-trained LMMs.

• We present the first sewing pattern generation approach

grounded in program synthesis, delivering fully inter-
pretable, geometrically precise, and structurally accurate
patterns through a more compact, semantically clear, and

LLM-friendly representation.

• Our framework benefits real-world production by en-

abling flexible pattern authoring through natural language

or physical feedback, allowing precise customization and

efficient creation of novel garment components, repre-

sented as parametric pattern-making programs.

• Our approach requires only minimal fine-tuning of a

pre-trained LLM and the training of a lightweight, text-

conditioned transformer decoder, making it more effi-
cient than existing vector-quantized sewing pattern gen-

eration models trained from scratch while offering supe-
rior generation quality and authoring flexibility.

2. Related Work
2.1. Garment Modeling with Sewing Patterns

Garment modeling and generation can be broadly classified

into two categories: direct 3D garment generation (meshes)

and sewing pattern generation, which are later draped onto

human bodies via cloth simulation [39, 53, 56] or learning-

based techniques [35, 37]. Direct 3D garment generation

often relies on differentiable garment representations like

unsigned distance fields [65, 67], shells [42], or Gaussian

splatting [48]. However, it presents challenges in terms of

both geometric accuracy and editability. On one hand, cap-

turing fine garment details like folds and wrinkles neces-

sitates extremely high-resolution 3D representations. On

the other hand, editing these generated garments requires a

well-defined UV space, and flattening the 3D mesh into de-

velopable meshes demands careful consideration from both

geometric and statistical perspectives [7, 46].

Sewing pattern generation, by contrast, has been ap-

proached through both learning-based and procedural

modeling methods. Learning approaches utilize vector-

quantized representations of sewing patterns, mapping from

unstructured 3D point clouds [7, 30], images [12, 26, 40,

64], or textual descriptions [22] to structured patterns. How-

ever, they are highly dependent on the quality and diversity

of the training data and often struggle to generalize designs

beyond the training domain. Furthermore, generating high-

quality 3D garment data requires substantial domain knowl-

edge and the involvement of skilled professionals.

Procedural modeling is an alternative that relies on pre-



defined rules and parameters to generate garment patterns.

For instance, GarmentCode [31], a DSL for parametric pat-

tern making, enables precise control over garment design

and customization. The GarmentCodeData [32], built on

GarmentCode, further illustrates the potential of procedu-

ral methods to generate a diverse range of made-to-measure

garments, with adaptability to different body shapes. While

procedural modeling provides greater control and precision,

it typically requires specialized expertise and is less flexible

when dealing with novel or unconventional designs.

2.2. LLMs for Program Synthesis

Recent advancements in program synthesis and code gen-

eration using large language models (LLMs) have laid es-

sential groundwork for systems like Design2GarmentCode,

which generate structured garment code from multi-modal

design inputs. Earlier researches like Codex [11] and Al-

phaCode [36] demonstrated the effectiveness of LLMs in

generating complex, task-specific code with high syntax

accuracy, showcasing potential in scenarios requiring pre-

cise parametric coding. These models [43, 59] highlight

how LLMs, when sufficiently trained, can transform natural

language inputs into executable code, a capability directly

relevant to generating garment codes that follow complex

pattern-making syntax. [9, 19, 20, 55, 63] explore multi-

modal models that integrate visual aids, such as flowcharts

and UML diagrams, into LLM training to enhance mod-

els’ comprehension of complex structures and flow. These

models particularly emphasize the need for semantic under-

standing and adaptability, which are critical in working with

domain-specific languages (DSLs) like GarmentCode.

2.3. Neurosymbolic Models

Procedural/symbolic models and learned/neural models

have complementary strengths and weaknesses. Neurosym-

bolic models [47] tend to combine the strengths of both

paradigms and propose to generate visual data using sym-

bolic programs augmented with AI/ML techniques. The

neurosymbolic pipeline typically includes task specifica-

tion, program synthesis using a DSL, program execu-

tion, and optional neural post-processing for refining re-

sults. It has been successfully applied across several ar-

eas of computer graphics. In 2D shape modeling, they

are used in layout generation [45, 54], engineering sketch

creation [16, 44, 49], and vector graphics synthesis by

constructing programs that represent geometric shapes and

their spatial relations [10, 17]. In 3D shape modeling, they

facilitate inferring shape programs from existing 3D mod-

els [27, 28, 33, 51] or generating entirely new 3D shapes by

training generative models on shape programs [57, 60, 61]

or generate generate node graphs that define complex tex-

tures and materials [21, 25, 50] following the procedural

modeling paradigm. Additionally, neuro-symbolic methods

have been employed in human motion prediction [18, 38],

reasoning [34, 58, 66] and generation [13, 41, 62], which

leveraging visual-language foundation models to extract

symbolic representations from visual data, facilitating com-

plex activity reasoning by combining visual cues with sym-

bolic logic [58]. Our method leverages a neurosymbolic

approach by instruction-tuning LLMs to generate Garment-

Code design configurations and component programs from

diverse design concepts, ensuring geometric and structural

accuracy.

3. Method
Our goal is to develop a generative model that transforms

multi-modal design concepts into precise sewing patterns.

This requires understanding diverse inputs and producing

patterns with high geometric precision and intricate struc-

tures. These requirements present a challenge for con-

ventional models, which require extensive training data

and struggle with output precision due to their probabilis-

tic nature. We propose Design2GarmentCode, a sys-

tem leveraging LMMs to generate parametric pattern-
making programs, or specifically GarmentCode [31]. De-

sign2GarmentCode reduces the need for large datasets

utilizing the pre-embedded pattern-making knowledge in

LMMs while ensuring output precision with parametric

program synthesis. In the following, we first provide an

overview of parametric pattern-making programs and Gar-

mentCode syntax, and then describe the detailed design of

Design2GarmentCode.

3.1. Parametric Sewing Patterns

Parametric sewing patterns are formally represented as

symbolic programs that generate sewing patterns (i.e., 2D

CAD sketches) based on body measurements and design

configurations. These symbolic programs enhance the ef-

ficiency of the pattern-making process by allowing users

to draft or modify sewing patterns through semantically

meaningful parameters. Mathematically, we can represent

a sewing pattern S as:

S = 〈F ,D, B〉 = ∪fi∈F,di∈Dfi(di, B), (1)

where F is the set of symbolic programs, D represents de-

sign configurations, and B represents body measurements.

Each symbolic function fi ∈ F is essentially a series of

rule-based 2D draw-calls controlled by its unique set of de-

sign configurations di ∈ D and the body measurements B.

GarmentCode is a domain-specific language (DSL) de-

signed to generate parametric sewing patterns by en-

capsulating those symbolic programs in a hierarchical,

component-oriented manner. In GarmentCode, each sym-

bolic program fi uses parametric curves to define a gar-

ment component, such as sleeves, bodices, or collars. The



Figure 3. Overview of Dress2GarmentCode. (1) Program Learning: we finetune the DSL Generation Agent (DSL-GA) using Garment-

Code example programs, teaching it the GarmentCode grammar and the semantics of each design parameter. (2) Prompt Synthesis: the

DSL-GA generates prompts for the Multi-Modal Understanding Agent (MMUA) to interpret and extract relevant design features from the

input (3). (4) Program Synthesis: based on the MMUA’s responses, the DSL-GA synthesizes GarmentCode-compliant design configura-

tions and garment programs, which are then executed by the GarmentCode engine to produce sewing patterns and simulated garments (5).

To enhance robustness, we incorporate two validation loops: during program synthesis, we employ rule-based validations (7) to ensure the

MMUA’s outputs are sufficient for generating complete and valid garment programs and design parameters; after the initial generation, the

MMUA compares the generated design with the input and suggests modifications to minimize discrepancies.

smallest component is a single panel, and multiple compo-

nents can be combined through interface functions to create

a larger component. In GarmentCode, a complete sewing

pattern is specified by topological parameters DT (which

define the presence and quantity of garment components)

and geometrical parameters DG, which determine the di-

mensions of each component when combined with body

measurements B. As this work primarily focuses on de-

sign variations, we use a standard body model throughout

all experiments to ensure consistency.

3.2. The Design2GarmentCode System

As illustrated in Figure 3, Design2GarmentCode has three

components: DSL Generation Agent (DSL-GA), a fine-

tuned LLM responsible for (1) program learning, (2)

prompt synthesis, and (4) program synthesis; Multi-modal
Understanding Agent (MMUA), a pre-trained LLM that

manages design understanding (3) and design comparison

(6); and (5) GarmentCode, which executes the synthesized

programs to generate sewing patterns and 3D garments.

The system workflow begins with Program Learning
(Sec. 3.2.1), where DSL-GA is finetuned to understand the

syntax and semantic meanings of GarmentCode parame-

ters. In Prompt Synthesis, DSL-GA creates prompts for

MMUA to identify essential design features. These fea-

tures are then provided to DSL-GA for Program Synthesis,

where garment programs and design configurations are gen-

erated through rule-based parameter validation (Figure 3

(7)) and a learned projector (Sec. 3.2.2). The Garment-

Code Execution Engine then produces sewing patterns and

draped garment models. Finally, a Validation stage com-

pares the generated garment with the original design, al-

lowing MMUA to provide specific correction instructions to

DSL-GA for iterative refinement, such as “make the sleeve
longer”.

3.2.1 Program Learning

During experiments, we found that pre-trained LLMs have

some foundational knowledge of pattern drafting. For ex-

ample, when prompted with “How to draft a basic up-

per body bodice?”, LLMs can produce drafting instruc-

tions that align with conventional practices. We use a pre-

trained LLM to initialize DSL-GA, however, due to Gar-

mentCode’s customized object notations and function logis-

tics, directly prompting DSL-GA to generate GarmentCode

programs poses significant challenges [9].

To address these challenges, we propose to align DSL-

GA’s embedded pattern-making knowledge with the spe-

cific syntax and semantics of GarmentCode via LoRA [24]

based on fine-tuning. We start by providing the DSL-GA

(denoted as Γ) with existing GarmentCode programs F ,

and instructing it to comment on the functions with detailed

pattern-drafting instructions. After manually validating the

comments, we get a dataset D paring natural language in-

structions with GarmentCode implementations:

D =

{(
Γcmt(fi), fi

)
| fi ∈ F

}
, (2)

where Γcmt is the instructed DSL-GA for code comment-

ing, fi is . Similar to [9], we finetune DSL-GA (Γ) on the



dataset D with LoRA [24], aiming for Γft(Γcmt(fi)) → fi,
where Γft is the finetuned DSL-GA.

After fine-tuning, the fine-tuned DSL-GA Γft gains an

understanding of the code structure and parameter seman-

tics in GarmentCode (Figure 9). Therefore, we provide

the design configuration D to Γft, prompting it to ana-

lyze the semantic meaning of each parameter and gener-

ate structured queries. These queries are designed to guide

the MMUA in extracting relevant design features from the

multi-modal input, enabling Γft to generate a comprehen-

sive set of design parameters. The generated prompt P typi-

cally starts with analysis instructions, followed by multiple-

choice or numerical estimation questions regarding each de-

sign parameter di. Formally, we have

P = Γft(D) = ∪di∈DΓft(di) = ∪qi, (3)

where qi = Γft(di) represents the generated question re-

garding the i-th design parameter di.

3.2.2 Program Synthesis

Initial results showed that MMUA performed significantly

better on multiple-choice questions compared to numerical

estimation questions. To improve accuracy, we replaced all

numerical estimation questions in the initial prompt P with

equivalent multiple-choice questions with descriptive op-

tions such as “full length”, “half length”, or “three-quarter
length”. We append a lightweight projector Ψ after the

finetuned DSL-GA Γft to transform these descriptive an-

swers τi regarding the design input x into precise geometri-

cal parameters di ∈ D adhering to GarmentCode [31]:

Ψ : Γft(∪τi) → D, where τi = MMUA(qi, x). (4)

Inspired by DressCode [22], we implement the projector

Ψ as text-conditioned decoder-only transformer, where we

design a type-based quantization function Q to convert

the parameter list D into a token sequence T = {t1, ..., tN},

where N = |D| denote the total number of design parame-

ters. The quantization function Q operates as follows:

ti = Q(di) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0/1, if di is a boolean variable,

di, if di is an integer,

λ · Norm(di), if di is a floating number,

Index(di, L), if di is a selective variable.
(5)

where λ is a scaling factor indicating numerical precision.

We use λ = 100 to maintain centimeter-level precision.

As in Eq. 4, we use the finetuned DSL-GA Γft to en-

code the answers τi from MMUA and construct the con-

dition input for Ψ (we use an MLP to match the embed-

ding dimension between 3, 072 in Γft and 128 in Ψ). No-

tably, our token sequence length is fixed to the number of

Method Text Guided Generation Image Guided Generation
DressCode [22] Ours Sewformer [40] Ours

Quality

SSR 84% 100% 65.33% 94%

Agreement 7.17% 79.83% 3.33% 88.67%

Aesthetic 9.50% 68.17% 5.33% 77%

CLIPScore 0.2386 0.2438 / /

F-Score 0.616 / 0.708 0.829

CD 15.77 / 9.7 2.091

Diversity
# Panels 5.11±1.66 6.92±3.10 10.11±4.42 11.02±4.18

# Edges 5.48±1.60 6.84±3.38 5.79±1.71 6.24±2.90

# Stitches 10.06±3.24 18.66±8.64 15.81±5.91 27.9±9.83

Table 1. Quantitative comparison of our method against state-of-

the-art (SOTA) sewing pattern generation techniques in terms of

quality and diversity. SSR (Simulation Success Rate) indicates

the feasibility of simulated garment assembly, while Agreement
measures alignment with design prompts, and Aesthetic evaluates

the visual preference of the generated patterns. CLIPScore as-

sesses text-image consistency, whereas Chamfer Distance (CD)
and F-Score quantify geometric accuracy. #Panels, #Stitches, and

#Edges denote the mean and standard deviation (subscript) of the

number of panels, stitches per pattern, and edges per panel.

design parameters |D| = 122, regardless of the complexity

of the pattern. This fixed-length representation is at least

10× compact than DressCode [22], whose sequence length

is 1, 500 and scales with pattern complexity (see Sec. 8 for

implementation details).

4. Experiments

4.1. Quantitative Evaluation

We evaluate our proposed method against state-of-the-art

sewing pattern generation approaches (DressCode [22] for

text-guided and Sewformer [40] for image-guided genera-

tion) on Generation Quality and Generation Diversity.

Generation Quality is evaluated through three metrics:

Simulation Success Rate (SSR), Agreement Score, and Aes-
thetic Score. The Simulation Success Rate (SSR) is calcu-

lated as the ratio of successfully simulated garments to the

total number of generated sewing patterns, measuring the

structural feasibility of the patterns. We prepared a dataset

comprising 150 text prompts and 150 test images, cover-

ing a wide variety including tops (78), pants (76), skirts
(38), dresses (80), and suits (28). For each sample, we

generated sewing patterns using both our method and base-

line methods, and simulated the patterns using Garment-

Code’s simulation engine [31, 32] to compute the success

rate. The Agreement and Aesthetic Scores were derived

from a user study involving 30 professional pattern-makers.

Each participant is asked to review 50 text and 50 image

samples generated by our and the baseline models, and as-

sess their preference based on sewing patterns and simu-

lated garments according to:

• Agreement: the degree to which the generated pattern

matched the design prompt.

• Aesthetic Quality: the visual appeal and structural coher-



Figure 4. Quality Comparison on Text-Guided Sewing Pattern Generation. For each design, we present the generated pattern using our

method (left) alongside DressCode [22] (right), including front and back renderings of the draped garment. We highlight design elements

accurately captured by our method but missed by DressCode [22] use red color in the input prompt.

ence of the generated pattern.

For each criterion, participants could express a preference

for either our method or the baseline or indicate that both

methods were “comparable”. We calculate the Agreement

and Aesthetic Scores as the percentage of times each option

was chosen over the total number of tested samples.

Table 1 presents the results, showing that our method sur-

passes existing approaches in both SSR and user-evaluated

Agreement and Aesthetic scores. For text-guided gener-

ation, our model achieves a perfect 100% SSR, notably

higher than DressCode’s 84%. Additionally, our Agree-

ment score of 79.83% and Aesthetic score of 68.17% far

exceed DressCode’s respective scores of 7.17% and 9.5%.

In image-guided generation, our method attains a 94% SSR,

with an Agreement score of 88.67% and an Aesthetic score

of 77%, significantly outperforming Sewformer. These

enhancements highlight our model’s ability to generate

sewing patterns that are both structurally precise and visu-

ally aligned with the design prompt.

Generation Diversity is evaluated by analyzing the av-

erage number of panels (# Panels), edges (# Edges), and

stitches (# Stitches) in the generated patterns. For text-

guided generation, our method yields more intricate de-

signs, with an average of 6.92 panels, 6.84 edges, and 18.66

stitches per pattern, compared to DressCode’s simpler out-

puts of 5.11 panels, 5.48 edges, and 10.06 stitches. In

image-guided generation, our approach also demonstrates

superior diversity, producing an average of 11.02 panels,

6.24 edges, and 27.9 stitches per pattern, compared to Sew-

former’s averages of 10.11 panels, 5.79 edges, and 15.81

stitches. These results emphasize our model’s ability to cap-

ture and replicate subtle design variations, highlighting its

robustness and adaptability across different design inputs.

4.2. Multi-modal Generation Results

Our proposed method demonstrates superior performance

across various sewing pattern generation tasks, including

text-guided, image-guided, and sketch-based generation.

In text-guided sewing pattern generation (Figure 4),

our method accurately captures design details specified in

prompts, such as neckline types (e.g., crew neck (a), boat

neck (b), turtleneck (c)) and complex structural features like

asymmetry (f) and layered skirts (d). In comparison, the

baseline model DressCode struggles with limited pattern di-

versity, often defaulting to simpler shapes like V-neck de-

signs. Additionally, for design descriptions out of its train-

ing domain, DressCode frequently generates patterns with

incorrect stitching, leading to poor draping results (Figure 4

(e)). Our method could provide structurally sound and vi-

sually accurate patterns under a large design variety, show-

casing its capability to handle diverse design requests with

high fidelity.

For image-guided sewing pattern generation (Figure 5),

our model effectively translates detailed visual cues from

input images into corresponding sewing patterns. Com-

pared with Sewformer, which often fails to model-specific

design elements like cuffs, hoods, and asymmetric features,

our approach accurately reproduces these details. Sew-

former’s results frequently exhibit structural flaws, such as

missing or misaligned pattern pieces and extraneous com-

ponents, resulting in unrealistic garment draping. In con-

trast, our method maintains structural integrity and captures

complex design features, producing patterns that closely

align with the source images.

In sketch-based sewing pattern generation (Figure 6), our

system seamlessly converts both technical sketches (left)



Figure 5. Quality Comparison on Image-Guided Sewing Pattern Generation. We compare our method with Sewformer [40] on Internet-

collected fashion photographs (left), and AI-generated design images without human models (right). The results indicate that our method

successfully captures design details from diverse styles, producing sewing patterns that accurately reflect neckline (a, d), cuffs (a, e, g), darts

(c, d), and asymmetry (f). In contrast, Sewformer’s results exhibit several issues, including incorrect necklines (a, d), missing components

(b, g), misplaced or imaginary stitches (d, e), and extraneous pattern pieces (h). Additionally, since Sewformer’s pattern generation does

not account for body shape, garments like skirts and pants frequently appear oversized around the waist, causing them to sag when draped.

Figure 6. Examples of sketch-based sewing pattern generation. Our method was able to generate high-quality sewing patterns from design

sketches under various styles and could integrate seamlessly with industrial fashion design software for (a) pattern editing, i.e. sleeve

panels in red boxes are merged from separate front/back sleeve panels; and (b) avatar posture and fabric material editing.

and artistic drawings1 (right) into high-quality sewing pat-

terns. We also demonstrated that the generated sewing pat-

terns could seamlessly integrate into industrial fashion de-

sign software2. For example, highlighted sleeve panels in

Figure 6 (a) are merged from separate front and back sleeve

pieces, while Figure 6 (b) demonstrates avatar posture and

1The drawing is borrowed from the artwork of TWELVEYIN.
2We use Style3D Studio [5] for pattern and appearance authoring.

fabric material editing.

5. Application
In this section, we explore practical applications enabled

by our system that extend beyond basic pattern generation,

providing designers with versatile tools for design refine-

ment, integration with physical simulation, and the creation

of new garment components.



Figure 7. Sewing Pattern Authoring with instructions. Starting from an original design, the system follows user instructions to adjust

specific pattern elements. In Edited Design 1, the pants are modified to a skirt based on the command “CHANGE THE PANT TO SKIRT”.

In Edited Design 2, the sleeves are shortened as requested. Finally, in Edited Design 3, the shirt is made sleeveless in response to the

instructions. Note that, each modification accurately applies only to the specified parts, leaving the rest of the design unchanged.

Figure 8. Sewing pattern adjustment based on body pressure mea-

surement. Red regions indicate areas of tight fabric with high body

pressure, while blue regions represent looser areas.

Figure 9. The code for a layered-skirt component generated by our

DSL-GA and 3D garment under various design parameters.

Instruction-Based Editing. Our system allows design-

ers to adjust generated sewing patterns through simple,

instruction-based edits, utilizing the same refinement pro-

cess as in our collaborative framework. As illustrated in

Figure 7, starting from an original design, the system re-

sponds to natural language commands from the user to ad-

just the sewing pattern. At each step, the modified areas are

highlighted in red boxes. From the figure, it is evident that

our system can accurately update only the specified parts of

the pattern according to the user’s instructions while leaving

all other parts of the design unchanged.

Physics-Based Editing. Our system’s generated sewing

patterns integrate seamlessly with professional cloth simu-

lation software, allowing adjustments based on fitness mea-

surements derived from physical simulations. In Figure 8,

we demonstrate sewing pattern editing guided by body pres-

sure analysis, including adjustments to the cuff (a), upper

bodice (b), lower bodice (c), and collar (d). As shown in the

examples, our system accurately identifies areas with exces-

sive tension and adjusts the corresponding sewing patterns

to enhance comfort while preserving the overall design.

Generating New Garment Programs. A major chal-

lenge in traditional parametric pattern-making is the need to

abstract symbolic programs for new sewing patterns, which

demands both advanced programming skills and pattern-

making expertise. Design2GarmentCode addresses this by

correlating GarmentCode grammar with LMMs’ embedded

pattern-making knowledge, enabling the automatic creation

of new garment components. Figure 9 shows a layered-skirt

component generated by our DSL-GA, along with 3D gar-

ment representations demonstrating different design param-

eters, such as skirt length (c), number of layers (d), and layer

differences such as length difference and ruffling factor (e).

The results demonstrate that our system consistently pro-

duces high-quality garment components that meet profes-

sional standards, while significantly reducing the time and

expertise required to create new sewing pattern programs.

6. Conclusion

Design2GarmentCode transforms multi-modal design con-

cepts into precise sewing patterns using LMMs to synthe-

size parametric programs. It addresses challenges related to

data requirements, computation, and the limited precision

of neural network-based methods. The experimental results

demonstrate the system’s ability to capture design details

while maintaining structural integrity and geometric preci-

sion in generated patterns. Despite these advantages, De-

sign2GarmentCode currently cannot substantially alter Gar-

mentCode’s underlying structure and logistics, which im-

pacts generation quality due to inherent limitations in Gar-

mentCode’s design and modeling capabilities (Supp. 10).
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Měch, Tamy Boubekeur, and Niloy J Mitra. Matformer: A

generative model for procedural materials. arXiv preprint
arXiv:2207.01044, 2022. 3

[22] Kai He, Kaixin Yao, Qixuan Zhang, Jingyi Yu, Lingjie Liu,

and Lan Xu. Dresscode: Autoregressively sewing and gen-

erating garments from text guidance. ACM Transactions on
Graphics (TOG), 43(4):1–13, 2024. 2, 5, 6

[23] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen,

Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B

Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws

for autoregressive generative modeling. arXiv preprint
arXiv:2010.14701, 2020. 2

[24] Edward J. Hu, Yelong Shen, et al. Lora: Low-rank adaptation

of large language models. arXiv preprint arXiv:2106.09685,

2021. 4, 5

[25] Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey,

and Holly Rushmeier. An inverse procedural modeling

pipeline for svbrdf maps. ACM Transactions on Graphics
(TOG), 41(2):1–17, 2022. 3

[26] Moon-Hwan Jeong, Dong-Hoon Han, and Hyeong-Seok Ko.

Garment capture from a photograph. Computer Animation
and Virtual Worlds, 26(3-4):291–300, 2015. 2

[27] R Kenny Jones, Homer Walke, and Daniel Ritchie. Plad:

Learning to infer shape programs with pseudo-labels and ap-

proximate distributions. In Proceedings of the IEEE/CVF



Conference on Computer Vision and Pattern Recognition,

pages 9871–9880, 2022. 3

[28] R Kenny Jones, Paul Guerrero, Niloy J Mitra, and Daniel

Ritchie. Shapecoder: Discovering abstractions for visual

programs from unstructured primitives. ACM Transactions
on Graphics (TOG), 42(4):1–17, 2023. 3

[29] Yeonghoon Kang, Jihyun Oh, and Sungmin Kim. Develop-

ment of parametric garment pattern design system. Interna-
tional Journal of Clothing Science and Technology, 33(5):

724–739, 2021. 1

[30] Maria Korosteleva and Sung-Hee Lee. Neuraltailor: Recon-

structing sewing pattern structures from 3d point clouds of

garments. ACM Transactions on Graphics (TOG), 41(4):1–

16, 2022. 2

[31] Maria Korosteleva and Olga Sorkine-Hornung. Garment-

Code: Programming parametric sewing patterns. ACM
Transaction on Graphics, 42(6), 2023. 1, 2, 3, 5

[32] Maria Korosteleva, Timur Levent Kesdogan, Fabian Kem-

per, Stephan Wenninger, Jasmin Koller, Yuhan Zhang, Mario

Botsch, and Olga Sorkine-Hornung. GarmentCodeData: A

dataset of 3D made-to-measure garments with sewing pat-

terns. In Computer Vision – ECCV 2024, 2024. 3, 5, 1

[33] Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J Mi-

tra. Sketch2cad: Sequential cad modeling by sketching in

context. ACM Transactions on Graphics (TOG), 39(6):1–14,

2020. 3

[34] Hong Li, Nanxi Li, Yuanjie Chen, Jianbin Zhu, Qinlu Guo,

Cewu Lu, and Yong-Lu Li. The labyrinth of links: Navigat-

ing the associative maze of multi-modal llms. arXiv preprint
arXiv:2410.01417, 2024. 3

[35] Ren Li, Benoı̂t Guillard, and Pascal Fua. Isp: Multi-layered

garment draping with implicit sewing patterns. Advances in
Neural Information Processing Systems, 36, 2024. 2

[36] Yingjie Li, Arjun Sekhon, Brandon Labash, et al.

Competition-level code generation with alphacode. Science
Advances, 8(40):eabq4412, 2022. 3

[37] Yifei Li, Hsiao-yu Chen, Egor Larionov, Nikolaos Sarafi-

anos, Wojciech Matusik, and Tuur Stuyck. Diffavatar:

Simulation-ready garment optimization with differentiable

simulation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4368–

4378, 2024. 2

[38] Yong-Lu Li, Xiaoqian Wu, Xinpeng Liu, Zehao Wang, Yim-

ing Dou, Yikun Ji, Junyi Zhang, Yixing Li, Xudong Lu, Jin-

gru Tan, et al. From isolated islands to pangea: Unifying

semantic space for human action understanding. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16582–16592, 2024. 3

[39] Chen Liu, Weiwei Xu, Yin Yang, and Huamin Wang. Au-

tomatic digital garment initialization from sewing patterns.

ACM Transactions on Graphics (TOG), 43(4):1–12, 2024. 2

[40] Lijuan Liu, Xiangyu Xu, Zhijie Lin, Jiabin Liang, and

Shuicheng Yan. Towards garment sewing pattern reconstruc-

tion from a single image. ACM Transactions on Graphics
(SIGGRAPH Asia), 2023. 2, 5, 7

[41] Siqi Liu, Yong-Lu Li, Zhou Fang, Xinpeng Liu, Yang You,

and Cewu Lu. Primitive-based 3d human-object interac-

tion modelling and programming. In Proceedings of the

AAAI Conference on Artificial Intelligence, pages 3711–

3719, 2024. 3

[42] Zhen Liu, Yao Feng, Yuliang Xiu, Weiyang Liu, Liam Paull,

Michael J. Black, and Bernhard Schölkopf. Ghost on the

shell: An expressive representation of general 3d shapes.

arXiv preprint arXiv:2310.15168, 2023. 2

[43] Erik Nijkamp et al. A conversational approach to code gen-

eration using pre-trained language models. arXiv preprint
arXiv:2203.13474, 2022. 3

[44] Wamiq Para, Shariq Bhat, Paul Guerrero, Tom Kelly, Niloy

Mitra, Leonidas J Guibas, and Peter Wonka. Sketchgen:

Generating constrained cad sketches. Advances in Neural
Information Processing Systems, 34:5077–5088, 2021. 3

[45] Wamiq Para, Paul Guerrero, Tom Kelly, Leonidas J Guibas,

and Peter Wonka. Generative layout modeling using con-

straint graphs. In Proceedings of the IEEE/CVF interna-
tional Conference on Computer Vision, pages 6690–6700,

2021. 3

[46] Nico Pietroni, Corentin Dumery, Raphael Falque, Mark Liu,

Teresa A Vidal-Calleja, and Olga Sorkine-Hornung. Com-

putational pattern making from 3d garment models. ACM
Transactions on Graphics, 41(4):157–1, 2022. 2

[47] Daniel Ritchie, Paul Guerrero, R Kenny Jones, Niloy J Mitra,

Adriana Schulz, Karl DD Willis, and Jiajun Wu. Neurosym-

bolic models for computer graphics. Computer Graphics Fo-
rum, 42(2):545–568, 2023. 2, 3

[48] Boxiang Rong, Artur Grigorev, Wenbo Wang, Michael J

Black, Bernhard Thomaszewski, Christina Tsalicoglou,

and Otmar Hilliges. Gaussian garments: Reconstruct-

ing simulation-ready clothing with photorealistic appearance

from multi-view video. arXiv preprint arXiv:2409.08189,

2024. 2

[49] Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P Adams.

Vitruvion: A generative model of parametric cad sketches.

arXiv preprint arXiv:2109.14124, 2021. 3

[50] Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli,
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7. Validations in Design2GarmentCode
7.1. Rule-based Validation

Rule-based validation primarily addresses issues of com-

pleteness and hallucination during the MMUA’s generation

process. With prompts generated by the DSL-GA contain-

ing over 100 questions, the MMUA often struggles to pro-

vide comprehensive answers in a single attempt. Addition-

ally, due to the inherent hallucination tendencies of LLMs,

some responses may fall outside the reasonable parame-

ter range defined by GarmentCode. To mitigate these is-

sues, we compare the MMUA’s responses against a prede-

fined complete question space to verify whether all ques-

tions have been adequately addressed before program syn-

thesis. Each response is further validated to ensure it falls

within GarmentCode’s permissible parameter space. Ques-

tions with either missing or invalid answers are sent back

to the MMUA for re-evaluation, with a maximum of two

validation loops to refine the outputs.

7.2. MMUA Design Comparison

During design comparison we ask the MMUA to compare

the output design image versus the design input and propose

modification suggestions to DSL-GA to edit the generated

pattern. Design comparison is especially useful for image-

guided generation, where the output design image is ren-

dered from the draped garment mesh under a similar view-

point to the input image, we use TokenHMR [15] to esti-

mate the camera pose and rough human pose from the input

design image. The prompt used for design comparison is

given in Figure 10.

8. Implementation Details
We use GPT-4V [6] for MMUA, and an instruction tuned

version of Llama-3.2-3B for DSL-GA (Γ). The following

sections contains the detailed explanation for the finetuned

DSL-GA (Supp. 8.1), and training details for the Projector

Ψ (Supp. 8.2).

8.1. Finetuning DSL-GA Γft

To optimize the trade-off between computational cost and

generation quality, we use Llama-3.2-3B-Instruct[52] as the

base model for DSL-GA, fine-tuned over two epochs with

LoRA (rank 16) and a learning rate of 5 × 10−4 on a

dataset with 583 hierarchically defined NL-DSL pairs from

GarmentCode’s public code repository. All code genera-

tion experiments were conducted on a single NVIDIA GTX

Figure 10. Prompt for MMUA during design comparison.

4090. For multi-modal understanding tasks, GPT-4V was

employed as the designated agent.

8.2. Training The Projector Ψ

The projector Ψ is trained on the GarmentCodeData [32]

dataset, which comprises approximately 115,000 garment

samples draped on a standard A-pose body. We generate

initial design descriptions for each sample using GPT-4V

or rule-based inverse mapping from the ground truth design

parameters for the sample, for example

if design.shirt.length.v > 1.0:
return 'shirt__length__long'

The token sequence length is fixed at 122, which is equal

to the number of design parameters in GarmentCode. The

projection MLP and Transformer decoder are designed with

feature dimensions of 128. The MLP consists of 4 interme-

diate layers, while the Transformer decoder includes 8 lay-

ers. Training is conducted using the Adam optimizer with a

learning rate of 5× 10−4, a batch size of 16, and completed

on a single NVIDIA GTX 4090 within 10 hours.

Notably, although we adopt a decoder-only Transformer

architecture similar to DressCode, our innovative approach



Figure 11. LMM-based interface for Design2GarmentCode, built upon the original GarmentCode GUI. The chat interface (left) allows

users to provide natural language design descriptions or upload reference images or sketches, facilitating multi-modal design parsing into

executable GarmentCode programs. We use the original GarmentCode execution engine to turn the generated program into 3D garments.

Figure 12. User study interface for evaluating sewing pattern generation quality. For each test input (Original image on the left for image-

based evaluation or Text Description on the right for text-based evaluation), participants are presented with the simulation results of sewing

patterns generated by Design2GarmentCode and a baseline method. Users are asked to evaluate the results based on two criteria: agreement

with the input description and overall sewing pattern quality. If unsure, participants can select the ”Unsure” option.

of quantifying sewing patterns through design parame-

ters proves to be significantly more efficient and scalable.

Specifically, with DressCode’s quantization scheme, the to-

ken sequence length is calculated as:

Lseq = Np × (Ne × Le + ‖R‖+ ‖T‖+Ne × ‖S‖) + 2

where Np, Ne denotes the maximum number of panels

and edges respectively. ‖R‖ = 4 is the length of rota-



Figure 13. Example answers from Llama 3.2 3B when prompted

with “How to draft a basic upper body bodice?”.

tion quaternions, and ‖T‖ = 3 is the length of 3D trans-

lation vector. ‖S‖ = 4 represents the per-edge stitching

parameters containing a stitch tag and its existence indi-

cator. Le represent the length of quantified edge vectors,

which might be 6 for cubic bezier curves and 4 for quadratic

bezier curves. Using GarmentCodeData as an example, to

fully cover GarmentCode’s modeling space, the required se-

quence length under DressCode’s method would be 13, 951,

with Np = Ne = 37, Le = 6, which will cost ≈ 1.5h to

generate a single sewing pattern using DressCode, while our

token sequence length is fixed at 122.

8.3. Inference Interface

For more convenient inference, we build an intelligent

chat-based interface integrated into the original Garment-

Code [31] GUI (Figure 11). The chat interface (left

panel) enables users to provide natural language descrip-

tions, upload reference images, or supply design sketches,

facilitating multi-modal design parsing into GarmentCode-

compliant programs which are then passed to the Garment-

Code execution engine. The engine generates sewing pat-

terns and 3D garment simulations (right panel). This inter-

active interface provides an intuitive environment for creat-

ing, editing, and refining sewing patterns, significantly im-

proving accessibility for users without extensive expertise

in parametric pattern-making. We provide a recording to

demostrate the inference process in demo.mp4.

8.4. User Study Interface

To evaluate the quality of sewing pattern generation, we

design a user study interface tailored for comparison (Fig-

ure 12). For each test input—either an original image (for

image-based evaluation) or a text description (for text-based

evaluation)—the interface presents participants with sim-

ulated garment results generated by Design2GarmentCode

and a baseline method. Participants assess the results based

on two criteria: Agreement, which measures how well the

generated patterns align with the input description, and Aes-
thetic, which evaluates the structural integrity and aesthetic

appeal quality of the patterns. An ”Unsure” option is avail-

able for cases where a clear preference cannot be deter-

mined, ensuring unbiased and flexible feedback.

9. LMM Prompting Details
9.1. Pattern Drafting Test

As outlined in Sec. 3.2.1, a key prerequisite for De-

sign2GarmentCode is the presence of embedded pattern-

drafting knowledge in pre-trained large models. To assess

this capability, we prompted models like O1-preview and

LLama 3.2 3B Instruct with the question, ”How to draft a

basic upper body bodice?”. These models produced step-

by-step drafting instructions in natural language, including

commands such as: ”STEP 1: Take Your Measurements,”

and ”STEP 2: Draw the Center Front Line, Draw the Shoul-

der Line, Draw the Armhole, Draw the Side Seam (Measure

the distance from the underbust measurement and divide it

by 4. Mark this distance from the armhole point down to

the waist. Draw a vertical line to represent the side seam).”

Figure 13 showcases sample outputs from Llama-3.2-3B In-

struct which we used as baseline for DSL-GA.

9.2. Prompting for MMUA

Based on different input design modalities and tasks, we

assigned five specific tasks to the MMUA.

Task 1: Identify the image, extract answers for each

prompt question based on the image, and combine them to

form the recognized clothing information. This task estab-

lishes the relationships between parameters and the ques-

tions corresponding to each parameter. It serves as the foun-

dation for all subsequent tasks.

Task 2: Generate clothing information based on text.

Building on Task 1, this task generates clothing prototype

information according to user preferences.

Task 3: Retrieve existing clothing information and mod-

ify the clothing design according to the user’s ideas.

Task 4: Input stress test images along with the current

clothing information from the text space. MMUA interprets

the colors in the image as stress levels—red, yellow, or sim-

ilar colors indicate areas that are too tight. MMUA dynam-

ically adjusts the clothing information to reduce stress.



Figure 14. Limitations of Design2GarmentCode, including failed to modeling thin structures like halter-neck, unable to model unconven-

tional bodices and stitching relationships are limited to one-to-one mapping.

Task 5: Compare previously generated clothing simula-

tion images, their corresponding clothing information, and

the original input image. Identify differences between the

simulation and the original image, and dynamically adjust

the clothing information to make the final simulation image

more closely resemble the original.

As discussed in Sec. 3.2.2, due to the probabilistic na-

ture of LMMs, the MMUA struggles to accurately esti-

mate numerical values in the design configuration. There-

fore, we limit the MMUA’s task to answering multiple-

choice questions, with responses formatted as a selective

parameter list. Fig. 15 illustrates example parameters before

(design cfg num) and after (design cfg slc) mod-

ification. The complete prompt will be publicly available

with Design2GarmentCode code base.

10. Limitations
A limitation of Design2GarmentCode is its current inability

to substantially modify GarmentCode’s underlying struc-

ture and logic, which impacts the generation quality due to

inherent constraints in GarmentCode’s design and modeling

capabilities. For example, the range of upper garment pat-

terns is limited, making it difficult to model personalized

segmentations (Figure 14 (b)). Additionally, for designs

like halter necks or strapless tops (Figure 14 (a)), Garment-

Code cannot model fine straps, leading to potential simula-

tion failures. These constraints restrict the system’s ability

to accurately represent certain complex or customized gar-

ment designs.

11. Additional Results
In the following, we present additional experimental results

in text-, image-, and sketch-guided pattern generation and

highlight the versatility and effectiveness of our approach

across various modalities.

Figure 15. Example of original design configurations with numer-

ical values and modified design configurations with only selective

parameters.Example of original design configurations with numer-

ical values and modified design configurations with only selective

parameters.



Figure 16. Additional Text-guided generation results. From left to right: input text; output from MMUA; generated sewing pattern;

simulation results.



Figure 17. Additional Image-guided generation results. From left to right: input image; output from MMUA; generated sewing pattern;

simulation results.



Figure 18. Additional Sketch-guided generation results. From left to right: input sketch; output from MMUA; generated sewing pattern;

simulation results.



Figure 19. Additional sewing pattern editing results.Starting from the original sewing pattern on the far left, the system applies user

instructions to edit the pattern. The left side of each arrow represents the original pattern, while the right side displays the edited result.


